188
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

KIT-5 Supported Copper (II) Oxide Mesoporous Materials: An Efficient Catalyst for Regioselective Synthesis of 1,4- Disubstituted-1H-1,2,3-Triazoles in Water

, , , & ORCID Icon
Pages 5338-5353 | Received 11 Jan 2022, Accepted 04 Jul 2022, Published online: 27 Jul 2022

References

  • (a) P.K. Kadaba, B. Stanovnik, and M. Tisler, “Δ2-1,2,3-Triazolines,” Advances in Heterocyclic Chemistry 37 (1984): 217–349. (b) G.A. Romeiro, L.O.R. Pereira, M.C.B.V. de Souza, V.F. Ferreira, and A.C. Cunha, “A New and Efficient Procedure for Preparing 1,2,3-Triazoles,” Tetrahedron Letters 38, no. 29 (1997): 5103–6. doi:10.1016/S0040-4039(97)01137-4. (c) J.H. Boyer, C.H. Mack, N. Goebel, and L.R. Morgan, Jr. “Reactions of Sodium Phenylacetylide and Sodium Alkoxide with Tosyl and Mesyl Azides,” The Journal of Organic Chemistry 23, no. 7 (1958): 1051–3.
  • (a) J.A. Johnson, M.G. Finn, J.T. Koberstein, and N.J. Turro, “Construction of Linear Polymers, Dendrimers, Networks, and Other Polymeric Architectures by Copper-Catalyzed Azide-Alkyne Cycloaddition “Click” Chemistry,” Macromolecular Rapid Communications 29, no. 12–13 (2008): 1052–72. doi:10.1002/marc.200800208. (b) Y. Hua, and A.H. Flood, “Click Chemistry Generates Privileged CH Hydrogen-Bonding Triazoles: The Latest Addition To Anion Supramolecular Chemistry,” Chemical Society Reviews 39, no. 4 (2010): 1262–71.
  • C.M. Salisbury, and B.F. Cravatt, “Click Chemistry-Led Advances in High Content Functional Proteomics,” QSAR & Combinatorial Science 26, no. 11–12 (2007): 1229–38. doi:10.1002/qsar.200740090.
  • (a) R.K. Iha, K.L. Wooley, A.M. Nystrom, D.J. Burke, M.J. Kade, and C.J. Hawker, “Applications of Orthogonal “Click” Chemistries in the Synthesis of Functional Soft Materials,” Chemical Reviews 109, no. 11 (2009): 5620–86. doi:10.1021/cr900138t. (b) K. Kempe, A. Krieg, C.R. Becer, and U.S. Schubert, ““Clicking” on/with Polymers: A Rapidly Expanding Field for the Straightforward Preparation of Novel Macromolecular Architectures,” Chemical Society Reviews 41, no. 1 (2012): 176–91.
  • F. Alonso, Y. Moglie, G. Radivoy, and M. Yus, “Multicomponent Click Synthesis of Potentially Biologically Active Triazoles Catalysed by Copper Nanoparticles on Activated Carbon in Water,” Heterocycles 84, no. 2 (2012): 1033–44. doi:10.3987/COM-11-S(P)81.
  • C.D. Hein, X.-M. Liu, and D. Wang, “Click Chemistry, a Powerful Tool for Pharmaceutical Sciences,” Pharmaceutical Research 25, no. 10 (2008): 2216–30. doi:10.1007/s11095-008-9616-1.
  • (a) P.M. Chaudhary, S.R. Chavan, F. Shirazi, M. Razdan, P. Nimkar, S.P. Maybhate, A.P. Likhite, R. Gonnade, B.G. Hazara, M.V. Deshpande, et al., “Exploration of Click Reaction for the Synthesis of Modified Nucleosides as Chitin Synthase Inhibitors,” Bioorganic & Medicinal Chemistry 17, no. 6 (2009): 2433–40. doi:10.1016/j.bmc.2009.02.019. (b) D.R. Buckle, C.J.M. Rockell, H. Smith, and B.A. Spicer, “Studies on 1,2,3-Triazoles. “(Piperazinylalkoxy)[l]Benzopyrano[2,3-d]-l,2,3-Triazol-9(1H)-Ones with Combined H1-Antihistamine and Mast Cell Stabilizing Properties,” Journal of Medicinal Chemistry 29, no. 11 (1986): 2262–7. (c) Y. Xia, Z. Fan, J. Yao, Q. Liao, W. Li, F. Qu, and L. Peng, “Discovery of Bitriazolyl Compounds as Novel Antiviral Candidates for Combating the Tobacco Mosaic Virus,” Bioorganic & Medicinal Chemistry Letters 16, no. 10 (2006): 2693–8. (d) F. Reck, F. Zhou, M. Girardot, G. Kern, C.J. Eyermann, N.J. Hales, R.R. Ramsay, and M.B. Gravestock, “Identification of 4-Substituted 1,2,3-Triazoles as Novel Oxazolidinone Antibacterial Agents with Reduced Activity against Monoamine Oxidase A,” Journal of Medicinal Chemistry 48, no. 2 (2005): 499–506. (e) M.J. Soltis, H.J. Yeh, K.A. Cole, N. Whittaker, R.P. Wersto, and E.C. Kohn, “Identification and Characterization of Human Metabolites of CAI [5-Amino-1-1(4'-Chlorobenzoyl-3,5-Dichlorobenzyl)-1,2,3-Triazole- 4-Carboxamide),” Drug Metabolism and Disposition: The Biological Fate of Chemicals 24, no. 7 (1996): 799–806. (f) R. Alvarez, S. Velazquez, A. San-Felix, S. Aquaro, E. De Clercq, C.-F. Perno, A. Karlsson, J. Balzarini, and M.J. Camarasa, “l,2,3-Triazole-[2′,5′,-Bis-O-(Tert-Butyldimethylsilyl)-β-D-Ribofuranosyl]- 3′-Spiro-5′′-(4′′-Amino-L′′,2′′-Oxathiole 2′′,2′′-Dioxide) (TSAO) Analogues: synthesis and anti-HIV-1 Activity,” Journal of Medicinal Chemistry 37, no. 24 (1994): 4185–94. (g) A.A. Ali, D. Gogoi, A.K. Chaliha, A.K. Buragohain, P. Trivedi, P.J. Saikia, P.S. Gehlot, A. Kumar, V. Chaturvedi, and D. Sarma, “Synthesis and Biological Evaluation of Novel 1,2,3-Triazole Derivatives as anti-Tubercular Agents,” Bioorganic & Medicinal Chemistry Letters 27, no. 16 (2017): 3698–703.
  • F. Himo, T. Lovell, R. Hilgraf, V.V. Rostovtsev, L. Noodleman, K.B. Sharpless, and V.V. Fokin, “Copper(I)-Catalyzed Synthesis of Azoles. DFT Study Predicts Unprecedented Reactivity and Intermediates,” Journal of the American Chemical Society 127, no. 1 (2005): 210–6. doi:10.1021/ja0471525.
  • B. Dervaux, and F.E. Du Prez, “Heterogeneous Azide-Alkyne Click Chemistry: Towards Metal-Free End Products,” Chemical Science 3, no. 4 (2012): 959–66. doi:10.1039/C2SC00848C.
  • E.R. Costa, F.C.D. Andrade, D.Y. de Albuquerque, L.E.M. Ferreira, T.M. Lima, C.G.S. Lima, D.S.A. Silva, E.A. Urquieta-González, M.W. Paixão, and R.S. Schwab, “Greener Synthesis of 1,2,3-Triazoles Using a Copper(I)-Exchanged Magnetically Recoverable β-Zeolite as Catalyst,” New Journal of Chemistry 44, no. 35 (2020): 15046–53. doi:10.1039/D0NJ02473B.
  • M.V.N. de Souza, C.F. da Costa, V. Facchinetti, C.R.B. Gomes, and P.M. Pacheco, “Advances in Triazole Synthesis from Copper-Catalyzed Azide-Alkyne Cycloadditions (CuAAC) Based on Eco-Friendly Procedures,” Current Organic Synthesis 16, no. 2 (2019): 244–57. doi:10.2174/1570179416666190104141454.
  • N. Mnasri, J.L. Nyalosaso, E. Colacino, G. Derrien, F. Lamaty, J. Martinez, J. Zajac, and C. Charnay, “Copper-Containing Rod-Shaped Nanosized Silica Particles for Microwave-Assisted Synthesis of Triazoles in Aqueous Solution,” ACS Sustainable Chemistry & Engineering 3, no. 10 (2015): 2516–25. doi:10.1021/acssuschemeng.5b00661.
  • Saeed Bahadorikhalili, Leila Ma'mani, Hossein Mahdavi, and Abbas Shafiee, “Copper Supported β-Cyclodextrin Functionalized PEGylated Mesoporous Silica Nanoparticle-Graphene Oxide Hybrid: An Efficient and Recyclable Nano-Catalyst for Straightforward Synthesis of 2-Arylbenzimidazoles and 1,2,3-Triazoles,” Microporous and Mesoporous Materials 262 (2018): 207–16. doi:10.1016/j.micromeso.2017.11.046.
  • (a) H. Tüysüz, and F. Schüth, “Ordered Mesoporous Materials as Catalysts,” Advances in Catalysis 55 (2012): 127–239. (b) M. Ding, X. Liu, P. Ma, and J. Yao, “Porous Materials for Capture and Catalytic Conversion of CO2 at Low Concentration,” Coordination Chemistry Reviews 465 (2022): 214576. doi:10.1016/j.ccr.2022.214576. (c) N. Azizi, and M. Edrisi, “Deep Eutectic Solvent Immobilized on SBA-15 as a Novel Separable Catalyst for One-Pot Three-Component Mannich Reaction,” Microporous and Mesoporous Materials 240 (2017): 130–6. (d) N. Azizi, M. Edrisi, and F. Abbasi, “Mesoporous Silica SBA-15 Functionalized with Acidic Deep Eutectic Solvent: A Highly Active Heterogeneous N -Formylation Catalyst under Solvent-Free Conditions,” Applied Organometallic Chemistry 32, no. 1 (2018): e3901. (e) N. Pal, and A. Bhaumik, “Mesoporous Materials: versatile Supports in Heterogeneous Catalysis for Liquid Phase Catalytic Transformations,” RSC Advances 5, no. 31 (2015): 24363–91. (f) C. Perego, and R. Millini, “Porous Materials in Catalysis: challenges for Mesoporous Materials,” Chemical Society Reviews 42, no. 9 (2013): 3956–76. (g) P. Srinivasu, S. Alam, V.V. Balasubramanian, S. Velmathi, D.P. Sawant, W. Bohlmann, S.P. Mirajkar, K. Ariga, S.B. Halligudi, and A. Vinu, “Novel Three Dimensional Cubic fm3m Mesoporous Aluminosilicates with Tailored Cage Type Pore Structure and High Aluminum Content,” Advanced Functional Materials 18, no. 4 (2008): 640–51.
  • (a) In Multicomponent Reactions, edited by J. Zhu and H. Bienayme (Weinheim: Wiley-VCH, 2005). (b) C. Hulme, and V. Gore, “Multi-Component Reactions: Emerging Chemistry in Drug Discovery” ‘from Xylocain to Crixivan,” Current Medicinal Chemistry 10, no. 1 (2003): 51–80. (c) A. Dçmling, “Recent Developments in Isocyanide Based Multicomponent Reaction in Applied Chemistry,” Chemical Reviews 106 (2006): 17–89. (d) D.M. D’Souza, and T.J.J. Muller, “Multi-Component Syntheses of Heterocycles by Transition-Metal Catalysis,” Chemical Society Reviews 36 (2007): 1095–108. (e) B.B. Toure, and D.G. Hall, “Natural Product Synthesis Using Multicomponent Reaction Strategies,” Chemical Reviews 109, no. 9 (2009): 4439–86. (f) S. Perreault, and T. Rovis, “Multi-Component Cycloaddition Approaches in the Catalytic Asymmetric Synthesis of Alkaloid Targets,” Chemical Society Reviews 38, no. 11 (2009): 3149–59. (g) M.J. Climent, A. Corma, and S. Iborra, “Homogeneous and Heterogeneous Catalysts for Multicomponent Reactions,” RSC Advances 2, no. 1 (2012): 16–58. doi:10.1039/C1RA00807B. (h) C. De Graaff, E. Ruijter, and R.V.A. Orru, “Recent Developments in Asymmetric Multicomponent Reactions,” Chemical Society Reviews 41, no. 10 (2012): 3969–4009. (i) Verónica Estévez, Mercedes Villacampa, and J. Carlos Menéndez, “Recent Advances in the Synthesis of Pyrroles by Multicomponent Reactions,” Chemical Society Reviews 43, no. 13 (2014): 4633–53. (j) Sidra Hassan, and Thomas J.J. Müller, “Multicomponent Syntheses Based upon Copper-Catalyzed Alkyne-Azide Cycloaddition,” Advanced Synthesis & Catalysis 357, no. 4 (2015): 617–66. (k) G. Fang, and X. Bi, “Silver-Catalysed Reactions of Alkynes: Recent Advances,” Chemical Society Reviews 44, no. 22 (2015): 8124–73. (l) M.L. Kantam, V.S. Jaya, B. Sreedhar, M.M. Rao, and B.M. Choudary, “Preparation of Alumina Supported Copper Nanoparticles and Their Application in the Synthesis of 1,2,3-Triazoles,” Journal of Molecular Catalysis A: Chemical 256, no. 1–2 (2006): 273–7.
  • (a) D. Bonne, Y. Coquerel, T. Constantieux, and J. Rodriguez, “1,3-Dicarbonyl Compounds in Stereoselective Domino and Multicomponent Reactions,” Tetrahedron: Asymmetry 21, no. 9–10 (2010): 1085–109. doi:10.1016/j.tetasy.2010.04.045. (b) B.M. Trost, “Atom Economy-A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way,” Angewandte Chemie International Edition in English 34, no. 3 (1995): 259–81. (c) B.M. Trost, “On Inventing Reactions for Atom Economy,” Accounts of Chemical Research 35, no. 9 (2002): 695–705.
  • (a) M.L. Deb, C.D. Pegu, P.J. Borpatra, P.J. Saikia, and P.K. Baruah, “Catalyst-Free Multi-Component Cascade C–H-Functionalization in Water Using Molecular Oxygen: An Approach to 1,3-Oxazines,” Green Chemistry 19, no. 17 (2017): 4036–42. doi:10.1039/C7GC01494E. (b) P.J. Borpatra, M.L. Deb, and P.K. Baruah, “Copper-Catalyzed Tandem Multi-Component Approach to 1,3-Oxazines at Room Temperature by Cross-Dehydrogenative Coupling Using Methanol as C1 Feedstock,” Synlett 29, no. 09 (2018): 1171–5. (c) M.L. Deb, P.J. Borpatra, and P.K. Baruah, “A One-Pot Catalyst/External Oxidant/Solvent-Free Cascade Approach to Pyrimidines via a 1,5-hydrideTransfer,” Green Chemistry 21, no. 1 (2019): 69–74. (d) I. Rahman, B. Deka, R. Thakuria, M.L. Deb, and P.K. Baruah, “L-Proline Catalyzed Regioselective C1 Arylation of Tetrahydroisoquinolines through a Multi-Component Reaction under Solvent-Free Conditions,” Organic & Biomolecular Chemistry 18, no. 33 (2020): 6514–8. (e) K. Barman, K.P. Dutta, D. Chowdhury, and P.K. Baruah, “Green Biosynthesis of Copper Oxide Nanoparticles Using Waste Colocasia esculenta Leaves Extract and Their Application as Recyclable Catalyst towards the Synthesis of 1,2,3-Triazoles,” BioNanoScience 11, no. 1 (2021): 189–99.
  • P. Kalita, N.M. Gupta, and R. Kumar, “Synergistic Role of Acid Sites in the Ce-Enhanced Activity of Mesoporous Ce-Al-MCM-41 Catalysts in Alkylation Reactions: FTIR and TPD-Ammonia Studies,” Journal of Catalysis 245, no. 2 (2007): 338–47. doi:10.1016/j.jcat.2006.10.022.
  • (a) P. Kalita, C.D. Pegu, P. Dutta, and P.K. Baruah, “Room Temperature Solvent Free Aza-Michael Reactions over Nano-Cage Mesoporous Materials,” Journal of Molecular Catalysis A: Chemical 394 (2014): 145–50. doi:10.1016/j.molcata.2014.06.031. (b) Pranjal Kalita, Prantu Datta, and Pranjal K. Baruah, “Conversion of Fructose and Xylose into Platform Chemicals Using Organo-Functionalized Mesoporous Material,” ChemistrySelect 3, no. 39 (2018): 10971–6.
  • J. McNulty, and K. Keskar, “Discovery of a Robust and Efficient Homogeneous Silver(I) catalyst for the Cycloaddition of Azides onto Terminal Alkynes,” European Journal of Organic Chemistry 2012, no. 28 (2012): 5462–70. doi:10.1002/ejoc.201200930.
  • (a) S. Elavarasan, A. Bhaumik, and M. Sasidharan, “An Efficient Cu Mesoporous Organic Nanorod for Frieldländer Quinoline Synthesis, and Click Reactions,” ChemCatChem 11, no. 17 (2019): 4340–50. doi:10.1002/cctc.201900860. (b) Mahdieh Darroudi, Hossein Rouh, Mohammad Hasanzadeh, and Nasrin Shadjou, “Cu/SiO2-Pr-NH-Benz as a Novel Nanocatalyst for the Efficient Synthesis of 1,4-Disubstituted Triazoles and Propargyl Amine Derivatives in an Aqueous Solution,” Heliyon 7, no. 4 (2021): e06766. (c) M.S. Asgari, S. Bahadorikhalili, R. Rahimi, and M. Mahdavi, “Copper Supported onto Magnetic Nanoparticles as an Efficient Catalyst for the Synthesis of Triazolobenzodiazepino [7,1-b]Quinazolin-11(9h)-Ones via Click n-Arylation Reactions,” ChemistrySelect 6, no. 6 (2021): 1385–92. (d) A.G. Samuel, K. Nagarajan, K. Cidhuraj, B. Gopal, S. Chakravarty, V. Selvaraj, E. Lourdusamy, and J. Bhagavathsingh, “Copper(II) Complex Intercalated Graphene Oxide Nanocomposites as Versatile, Reusable Catalysts for Click Reaction,” Applied Organometallic Chemistry 34, no. 12 (2020): e6017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.