145
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, In Vitro and in Cell Study of a New Spirooxindoles-Based N-Alkylated Maleimides Targeting HER2/3 Signaling Pathway

ORCID Icon, , , , , , ORCID Icon, , , & ORCID Icon show all
Pages 5251-5275 | Received 16 Feb 2022, Accepted 29 Jun 2022, Published online: 02 Aug 2022

References

  • L.M. Zhou, R.Y. Qu, and G.F. Yang, “An Overview of Spirooxindole as a Promising Scaffold for Novel Drug Discovery,” Expert Opinion on Drug Discovery 15, no. 5 (2020): 603–25. doi:10.1080/17460441.2020.1733526.
  • S.S. Panda, R.A. Jones, P. Bachawala, and P.P. Mohapatra, “Spirooxindoles as Potential Pharmacophores,” Mini Reviews in Medicinal Chemistry 17, no. 16 (2017): 1515–36.
  • B. Yu, D.Q. Yu, and H.M. Liu, “Spirooxindoles: Promising Scaffolds for Anticancer Agents,” European Journal of Medicinal Chemistry 97 (2015): 673–98. doi:10.1016/j.ejmech.2014.06.056.
  • C.B. Cui, H. Kakeya, and H. Osada, “Spirotryprostatin B, a Novel Mammalian Cell Cycle Inhibitor Produced by Aspergillus fumigatus,” The Journal of Antibiotics 49, no. 8 (1996): 832–5. doi:10.7164/antibiotics.49.832.
  • Yujun Zhao, Shanghai Yu, Wei Sun, Liu Liu, Jianfeng Lu, Donna McEachern, Sanjeev Shargary, Denzil Bernard, Xiaoqin Li, Ting Zhao, et al., “A Potent Small-Molecule Inhibitor of the MDM2–p53 Interaction (MI-888) Achieved Complete and Durable Tumor Regression in Mice,” Journal of Medicinal Chemistry 56, no. 13 (2013): 5553–61., doi:10.1021/jm4005708.
  • A. Kumar, G. Gupta, A.K. Bishnoi, R. Saxena, K.S. Saini, R. Konwar, S. Kumar, and A. Dwivedi, “Design and Synthesis of New Bioisosteres of Spirooxindoles (MI-63/219) as anti-Breast Cancer Agents,” Bioorganic & Medicinal Chemistry 23, no. 4 (2015): 839–48. doi:10.1016/j.bmc.2014.12.037.
  • A.S. Girgis, J. Stawinski, N.S. Ismail, and H. Farag, “Synthesis and QSAR Study of Novel Cytotoxic Spiro,” European Journal of Medicinal Chemistry 47, no. 1 (2012): 312–22. doi:10.1016/j.ejmech.2011.10.058.
  • W.M. Eldehna, D.H. El-Naggar, A.R. Hamed, H.S. Ibrahim, H.A. Ghabbour, and H.A. Abdel-Aziz, “One-Pot Three-Component Synthesis of Novel Spirooxindoles with Potential Cytotoxic Activity against Triple-Negative Breast Cancer MDA-MB-231 Cells,” Journal of Enzyme Inhibition and Medicinal Chemistry 33, no. 1 (2018): 309–18. doi:10.1080/14756366.2017.1417276.
  • G. Lotfy, Y.M.A. Aziz, M.M. Said, H. El Sayed, H. El Sayed, M.M. Abu-Serie, M. Teleb, A. Dömling, and A. Barakat, “Molecular Hybridization Design and Synthesis of Novel Spirooxindole-Based MDM2 Inhibitors Endowed with BCL2 Signaling Attenuation; a Step towards the Next Generation p53 Activators,” Bioorganic Chemistry 117 (2021): 105427. doi:10.1016/j.bioorg.2021.105427.
  • Yasmine M. Abdel Aziz, Gehad Lotfy, Mohamed M. Said, El Sayed H. El Ashry, El Sayed H. El Tamany, Saied M. Soliman, Marwa M. Abu-Serie, Mohamed Teleb, Sammer Yousuf, Alexander Dömling, et al., “Design, Synthesis, Chemical and Biochemical Insights on to Novel Hybrid Spirooxindoles-Based p53-MDM2 Inhibitors with Potential Bcl2 Signaling Attenuation,” Frontiers in Chemistry 9 (2021): 7352. doi:10.3389/fchem.2021.735236.
  • K.J. Chavez, S.V. Garimella, and S. Lipkowitz, “Triple Negative Breast Cancer Cell Lines: One Tool in the Search for Better Treatment of Triple Negative Breast Cancer,” Breast Disease 32, no. 1–2 (2010): 35–48. doi:10.3233/BD-2010-0307.
  • C.B. Cui, H. Kakeya, and H. Osada, “Novel Mammalian Cell Cycle Inhibitors, Spirotryprostatins a and B, Produced by Aspergillus fumigatus, Which Inhibit Mammalian Cell Cycle at G2/M Phase,” Tetrahedron 52, no. 39 (1996): 12651–66. doi:10.1016/0040-4020(96)00737-5.
  • L.M. Elwarrakya, M.A. Abdel-Fattaha, B.D. Garyb, G.A. Piazzab, and A.H. Abadia, “An Efficient and Green One-Pot Synthesis of Novel Spirooxindole Derivatives with Potential anti-Tumor Activity in an Aqueous Solvent,” Chemical Rapid Communications 2, no. 2 (2014): 33–40.
  • X. Jiang, Y. Sun, J. Yao, Y. Cao, M. Kai, N. He, X. Zhang, Y. Wang, and R. Wang, “Core Scaffold‐Inspired Concise Synthesis of Chiral Spirooxindole‐Pyranopyrimidines with Broad‐Spectrum Anticancer Potency,” Advanced Synthesis & Catalysis 354, no. 5 (2012): 917–25. doi:10.1002/adsc.201100792.
  • R. Dent, M. Trudeau, K.I. Pritchard, W.M. Hanna, H.K. Kahn, C.A. Sawka, L.A. Lickley, E. Rawlinson, P. Sun, and S.A. Narod, “Triple-Negative Breast Cancer: clinical Features and Patterns of Recurrence,” Clinical Cancer Research 13, no. 15 (2007): 4429–34. doi:10.1158/1078-0432.CCR-06-3045.
  • M. Hergueta-Redondo, J. Palacios, A. Cano, and G. Moreno-Bueno, “New” Molecular Taxonomy in Breast Cancer,” Clinical & Translational Oncology 10, no. 12 (2008): 777–85. doi:10.1007/s12094-008-0290-x.
  • N.E. Hynes, and G. MacDonald, “ErbB Receptors and Signaling Pathways in Cancer,” Current Opinion in Cell Biology 21, no. 2 (2009): 177–84. doi:10.1016/j.ceb.2008.12.010.
  • H.S. Cho, K. Mason, K.X. Ramyar, A.M. Stanley, S.B. Gabelli, D.W. Denney, and D.J. Leahy, “Structure of the Extracellular Region of HER2 Alone and in Complex with the Herceptin Fab,” Nature 421, no. 6924 (2003): 756–60.
  • A.A. Hsieh, and M.M. Moasser, “Targeting HER Proteins in Cancer Therapy and the Role of the Non-Target HER3,” British Journal of Cancer 97, no. 4 (2007): 453–7. doi:10.1038/sj.bjc.6603910.
  • E.L. Niero, B. Rocha-Sales, C. Lauand, B.A. Cortez, M.M. de Souza, P. Rezende-Teixeira, M.S. Urabayashi, A.A. Martens, J.H. Neves, and G.M. Machado-Santelli, “The Multiple Facets of Drug Resistance: one History, Different Approaches,” Journal of Experimental & Clinical Cancer Research : CR 33, no. 1 (2014): 37–14. doi:10.1186/1756-9966-33-37.
  • P. De, and B. Leyland-Jones, “Whither HER2-Related Therapeutics?,” Journal of Clinical Oncology : official Journal of the American Society of Clinical Oncology 28, no. 7 (2010): 1091–6. doi:10.1200/JCO.2009.25.8624.
  • B.K. Choi, X. Fan, H. Deng, N. Zhang, and Z. An, “ERBB 3 (HER 3) is a Key Sensor in the Regulation of ERBB‐Mediated Signaling in Both Low and High ERBB 2 (HER 2) Expressing Cancer Cells,” Cancer Medicine 1, no. 1 (2012): 28–38. doi:10.1002/cam4.10.
  • R. Mishra, S. Alanazi, L. Yuan, T. Solomon, T.M. Thaker, N. Jura, and J.T. Garrett, “Activating HER3 Mutations in Breast Cancer,” Oncotarget 9, no. 45 (2018): 27773–88. doi:10.18632/oncotarget.25576.
  • R. Mishra, H. Patel, S. Alanazi, L. Yuan, and J.T. Garrett, “HER3 Signaling and Targeted Therapy in Cancer,” Oncology Reviews 12, no. 1 (2018): 355. doi:10.4081/oncol.2018.355.
  • K. Sonne-Hansen, I.C. Norrie, K.B. Emdal, R.V. Benjaminsen, T. Frogne, I.J. Christiansen, T. Kirkegaard, and A.E. Lykkesfeldt, “Breast Cancer Cells Can Switch between Estrogen Receptor α and ErbB Signaling and Combined Treatment against Both Signaling Pathways Postpones Development of Resistance,” Breast Cancer Research and Treatment 121, no. 3 (2010): 601–13. doi:10.1007/s10549-009-0506-y.
  • Elizabeth A. Mittendorf, Yun Wu, Maurizio Scaltriti, Funda Meric-Bernstam, Kelly K. Hunt, Shaheenah Dawood, Francisco J. Esteva, Aman U. Buzdar, Huiqin Chen, Sameena Eksambi, et al., “Loss of HER2 Amplification following Trastuzumab-Based Neoadjuvant Systemic Therapy and Survival Outcomes,” Clinical Cancer Research 15, no. 23 (2009): 7381–8., doi:10.1158/1078-0432.CCR-09-1735.
  • D. de Melo Gagliato, D.L.F. Jardim, M.S.P. Marchesi, and G.N. Hortobagyi, “Mechanisms of Resistance and Sensitivity to anti-HER2 Therapies in HER2+ Breast Cancer,” Oncotarget 7, no. 39 (2016): 64431–46. doi:10.18632/oncotarget.7043.
  • (a) H.Y. Song, M.H. Ngai, Z.Y. Song, P.A. MacAry, J. Hobley, and M.J. Lear, “Practical Synthesis of Maleimides and Coumarin-Linked Probes for Protein and Antibody Labelling via Reduction of Native Disulfides,” Organic & Biomolecular Chemistry 7, no. 17 (2009): 3400–6. doi:10.1039/b904060a.(b) R.J. Pearson, E. Kassianidis, A.M. Slawin, and D. Philp, “Self-Replication vs. reactive Binary Complexes—Manipulating Recognition-Mediated Cycloadditions by Simple Structural Modifications,” Organic & Biomolecular Chemistry 2, no. 23 (2004): 3434–41.
  • L.R. Domingo, “Molecular Electron Density Theory: A Modern View of Reactivity in Organic Chemistry,” Molecules 21, no. 10 (2016): 1319. doi:10.3390/molecules21101319.
  • M. Ríos‐Gutiérrez, and L.R. Domingo, “Unravelling the Mysteries of the [3 + 2] Cycloaddition Reactions,” European Journal of Organic Chemistry 2019, no. 2–3 (2019): 267–82. doi:10.1002/ejoc.201800916.
  • L. R Domingo, E. Chamorro, and P. Perez, “Understanding the High Reactivity of the Azomethine Ylides in [3 + 2] Cycloaddition Reactions,” Letters in Organic Chemistry 7, no. 6 (2010): 432–9. doi:10.2174/157017810791824900.
  • L.R. Domingo, K. Kula, and M. Ríos‐Gutiérrez, “Unveiling the Reactivity of Cyclic Azomethine Ylides in [3 + 2] Cycloaddition Reactions within the Molecular Electron Density Theory,” European Journal of Organic Chemistry 2020, no. 37 (2020): 5938–48. doi:10.1002/ejoc.202000745.
  • R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (New York, NY: Oxford University Press, 1989).
  • L.R. Domingo, M. Ríos-Gutiérrez, and P. Pérez, “Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity,” Molecules 21, no. 6 (2016): 748. doi:10.3390/molecules21060748.
  • L.R. Domingo, “A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density,” RSC Advances 4, no. 61 (2014): 32415–28. doi:10.1039/C4RA04280H.
  • L.R. Domingo, M. Ríos-Gutiérrez, and P. Pérez, “A Molecular Electron Density Theory Study of the Participation of Tetrazines in Aza-Diels–Alder Reactions,” RSC Advances 10, no. 26 (2020): 15394–405. doi:10.1039/d0ra01548b.
  • R.G. Parr, L.V. Szentpály, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121, no. 9 (1999): 1922–4. doi:10.1021/ja983494x.
  • L.R. Domingo, E. Chamorro, and P. Pérez, “Understanding the Reactivity of Captodative Ethylenes in Polar Cycloaddition Reactions. A Theoretical Study,” The Journal of Organic Chemistry 73, no. 12 (2008): 4615–24. doi:10.1021/jo800572a.
  • E. Chamorro, M. Duque-Noreña, N. Gutierrez-Sánchez, E. Rincón, and L.R. Domingo, “A Close Look to the Oxaphosphetane Formation along the Wittig Reaction: A [2 + 2] Cycloaddition?,” The Journal of Organic Chemistry 85, no. 10 (2020): 6675–86. doi:10.1021/acs.joc.0c00697.
  • Bin Ma, Wenjia Guo, Meihui Shan, Nan Zhang, Binlin Ma, Gang Sun. BRCA1 subcellular localization regulated by PI3K signaling pathway in triple-negative breast cancer MDA-MB-231 cells and hormone-sensitive T47D cells. Open Life Sciences 2020; 15: 501–510.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.