126
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Structural Aspects and Stability of Interactions between Phenyl-3,3'-Bis(Indolyl)Methanes and β-Cyclodextrin from Density Functional Theory

, , , &
Pages 5276-5298 | Received 15 Apr 2022, Accepted 29 Jun 2022, Published online: 04 Aug 2022

References

  • P. Dhiman and M. Bhatia, “Pharmaceutical Applications of Cyclodextrins and Their Derivatives,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 98, no. 3–4 (2020): 171–86. doi:10.1007/s10847-020-01029-3.
  • A. Delrivo, A. Zoppi, and M.R. Longhi, “Interaction of Sulfadiazine with Cyclodextrins in Aqueous Solution and Solid State,” Carbohydrate Polymers 87, no. 3 (2012): 1980–8. doi:10.1016/j.carbpol.2011.10.025.
  • En-Ju Wang, Zhao-Xun Lian, and Jiwen Cai, “The Crystal Structure of the 1:1 Inclusion Complex of β-Cyclodextrin with Benzamide,” Carbohydrate Research 342, no. 5 (2007): 767–71. doi:10.1016/j.carres.2006.12.004.
  • C. Yan, Z. Xiu, X. Li, and C. Hao, “Molecular Modeling Study of β-Cyclodextrin Complexes with (+)-Catechin and (-)-Epicatechin,” Journal of Molecular Graphics & Modelling 26, no. 2 (2007): 420–8. doi:10.1016/j.jmgm.2007.01.010.
  • H.A. Yahia, O.A. Yahia, D. Khatmi, R. Belghiche, and A. Bouzitouna, “Quantum Chemical Investigations on Hydrogen Bonding Interactions Established in the Inclusion Complex β-Cyclodextrin/Benzocaine through the DFT, AIM and NBO Approaches,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 89, no. 3–4 (2017): 353–65. doi:10.1007/s10847-017-0753-1.
  • A. Bouhadiba, Y. Belhocine, M. Rahim, I. Djilani, L. Nouar, and D.E. Khatmi, “Host-Guest Interaction between Tyrosine and β-Cyclodextrin: Molecular Modeling and Nuclear Studies,” Journal of Molecular Liquids 233 (2017): 358–63. doi:10.1016/j.molliq.2017.03.029.
  • M. Abdelaali, M. Fatiha, N. Leila, M. Nora, C. Mouna, H. Sakina, and K.D. Eddine, “Computational Approach in the Study of the Inclusion Processes of Thymol with β-Cyclodextrin,” Journal of Molecular Liquids 242 (2017): 714–21. doi:10.1016/j.molliq.2017.07.021.
  • L. Nadia, K. Djameleddine, and D. Rayenne, “Theoretical Study of the Inclusion Processes of Octopamine with β-Cyclodextrin: PM6, ONIOM, and NBO Analysis,” Comptes Rendus Chimie 17, no. 12 (2014): 1169–75. doi:10.1016/j.crci.2014.03.010.
  • K.M. Al Azzam and E. Muhammad, “Host-Guest Inclusion Complexes between Mitiglinide and the Naturally Occurring Cyclodextrins α, β and γ: A Theoretical Approach,” Advanced Pharmaceutical Bulletin 5, no. 2 (2015): 289–91. doi:10.15171/apb.2015.040.
  • I. Djilani, F. Madi, L. Nouar, S. Haiahem, M. Rahim, D.E. Khatmi, and A. Bouhadiba, “Theoretical Investigation to Characterize the Inclusion Complex of α-Lipoic Acid and β-Cyclodextrin,” Comptes Rendus Chimie 18, no. 2 (2015): 170–7. doi:10.1016/j.crci.2014.05.003.
  • R.V. Pinjari, K.A. Joshi, and S.P. Gejji, “Theoretical Studies on Hydrogen Bonding, NMR Chemical Shifts and Electron Density Topography in α-, β-, and γ-Cyclodextrins Conformers,” The Journal of Physical Chemistry A 111, no. 51 (2007): 13583–9. doi:10.1021/jp074539w.
  • S. Haiahem, L. Nouar, I. Djilani, A. Bouhadiba, F. Madi, and D.E. Khatmi, “Host-Guest Inclusion Complex between β-Cyclodextrin and Paeonol: A Theoretical Approach,” Comptes Rendus Chimie 16, no. 4 (2013): 372–9. doi:10.1016/j.crci.2012.11.008.
  • Mehmet Gümüş, Şemsi N. Babacan, Yeliz Demir, Yusuf Sert, İrfan Koca, and İlhami Gülçin, “Discovery of Sulfadrug-Pyrrole Conjugates as Carbonic Anhydrase and Acetylcholinesterase Inhibitors,” Archiv Der Pharmazie 355, no. 1 (2022): 2100242–56. doi:10.1002/ardp.202100242.
  • A.A. Abdulridha, M.A. Albo Hay Allah, S.Q. Makki, Y. Sert, H.E. Salman, and A.A. Balakit, “Corrosion Inhibition of Carbon Steel in 1 M H2SO4 Using New Azo Schiff Compound: Electrochemical, Gravimetric, Adsorption, Surface and DFT Studies,” Journal of Molecular Liquids 315 (2020): 113690–700. doi:10.1016/j.molliq.2020.113690.
  • İrfan Çapan, Mehmet Gümüş, Halil Gökce, Hidayet Çetin, Yusuf Sert, and İrfan Koca, “Synthesis, Dielectric Properties, Molecular Docking and ADME Studies of Pyrrole-3-Ones,” Journal of Biomolecular Structure and Dynamics Apr 23, (2021): 1-17. doi:10.1080/07391102.2021.1914174.
  • A.A. Balakit, S.Q. Makki, Y. Sert, F. Ucun, M.B. Alshammari, P. Thordarson, and G.A. El-Hiti, “Synthesis, Spectrophotometric and DFT Studies of New Triazole Schiff Bases as Selective Naked-Eye Sensors for Acetate Anion,” Supramolecular Chemistry 32, no. 10 (2020): 519–26. doi:10.1080/10610278.2020.1808217.
  • T.R. Garbe, M. Kobayashi, N. Shimizu, N. Takesue, M. Ozawa, and H.J. Yukawa, “Indolyl Carboxylic Acids by Condensation of Indoles with α-Keto Acids,” Journal of Natural Products 63, no. 5 (2000): 596–8. doi:10.1021/np990517s.
  • G. Sivaprasad, P.T. Perumal, V.R. Prabavathy, and N. Mathivanan, “Synthesis and anti-Microbial Activity of Pyrazolylbisindoles-Promising anti-Fungal Compounds,” Bioorganic & Medicinal Chemistry Letters 16, no. 24 (2006): 6302–5. doi:10.1016/j.bmcl.2006.09.019.
  • A. Kamal, M.N.A. Khan, K.S. Reddy, Y.V.V. Srikanth, S.K. Ahmed, K.P. Kumar, and U.S.N. Murthy, “An Efficient Synthesis of Bis(Indolyl)Methanes and Evaluation of Their Antimicrobial Activities,” Journal of Enzyme Inhibition and Medicinal Chemistry 24, no. 2 (2009): 559–65. doi:10.1080/14756360802292974.
  • K. Sujatha, P.T. Perumal, D. Muralidharan, and M. Rajendran, “Synthesis, Analgesic and anti-Inflammatory Activities of Bis(Indolyl)Methanes,” Indian Journal of Chemistry 48B (2009): 267–72. http://nopr.niscair.res.in/handle/123456789/3432.
  • S.H. Benabadji, R. Wen, J. Zheng, X. Dong, and S. Yuan, “Anticarcinogenic and Antioxidant Activity of Diindolylmethane Derivatives,” Acta Pharmacologica Sinica 25, no. 5 (2004): 666–71. https://pubmed.ncbi.nlm.nih.gov/15132835.
  • Churala Pal, Sumit Dey, Sanjit Kumar Mahato, Jayaraman Vinayagam, Prasun K. Pradhan, Venkatachalam Sesha Giri, Parasuraman Jaisankar, Tanvir Hossain, Shikhi Baruri, Debjit Ray, et al., “Eco-Friendly Synthesis and Study of New Plant Growth Promoters: 3,3’-Diindolylmethane and Its Derivatives,” Bioorganic & Medicinal Chemistry Letters 17, no. 17 (2007): 4924–8. doi:10.1016/j.bmcl.2007.06.025.
  • R. Martinez, A. Espinosa, A. Tarraga, and P. Molina, “Bis(Indolyl)Methane Derivatives as Highly Selective Colourimetric and Ratiometric Fluorescence Molecular Chemosensors for Cu2+ Cations,” Tetrahedron 64, no. 9 (2008): 2184–91. doi:10.1016/j.tet.2007.12.025.
  • G.S. Suresh Kumar, S. Kumaresan, A.A.M. Prabhu, N. Bhuvanesh, and P.G. Seethalakshmi, “An Efficient One Pot Syntheses of Aryl-3,3’-Bis(Indolyl)Methanes and Studies on Their Spectral Characteristics, DPPH Radical Scavenging-, Antimicrobial-, Cytotoxicity-, and Antituberculosis Activity,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 101 (2013): 254–63. doi:10.1016/j.saa.2012.09.046.
  • G.S. Suresh Kumar, A.A.M. Prabhu, P.G. Seethalaksmi, N. Bhuvanesh, and S. Kumaresan, “In Situ Bronsted–Lowry Acid Catalyzed Syntheses, Characterization, Single Crystal XRD, Electronic Spectral-, DPPH Radical Scavenging-, and DNA Protection Studies of Aryl-3,3’-Bis(Indolyl)Methanes,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 123 (2014): 249–56. doi:10.1016/j.saa.2013.12.017.
  • G.S. Suresh Kumar, A.A.M. Prabhu (A. Antony Muthu Prabhu), S. Jegan Jenniefer, N. Bhuvanesh, P. Thomas Muthiah, and S. Kumaresan, “Syntheses of Phenoxyalkyl Esters of 3,3’-Bis(Indolyl)Methanes and Studies on Their Molecular Properties from Single Crystal XRD and DFT Techniques,” Journal of Molecular Structure 1047 (2013): 109–20. doi:10.1016/j.molstruc.2013.04.024.
  • A.A.M. Prabhu and G.S. Suresh Kumar, “Inclusion Complexation of Phenoxyaliphatic Acid Derivatives of 3,3′-Bis(Indolyl)Methanes with β-Cyclodextrin,” Journal of Fluorescence 24, no. 3 (2014): 925–31. doi:10.1007/s10895-014-1373-4.
  • A.A.M. Prabhu, G.S. Suresh Kumar, M. Fatiha, S. Sorimuthu, and M. Sundar Raj, “Encapsulation of Phenylalanine and 3,4-Dihydroxyphenylalanine into β-Cyclodextrin: Spectral and Molecular Modeling Studies,” Journal of Molecular Structure 1079 (2015): 370–82. doi:10.1016/j.molstruc.2014.08.045.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, and J.R. Cheeseman, Wallingford, CT: Gaussian, Inc. (2009. )
  • L. Lei and G. Qing-Xiang, “Use of Quantum Chemical Methods to Study Cyclodextrin Chemistry,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 50 (2004): 95–103. doi:10.1007/s10847-003-8847-3.
  • F. Adrian, M. Narcisa, M. Stelian, C. Adina, and M.P. Dan Mariana, “Theoretical Study on β-Cyclodextrin Inclusion Complexes with Propiconazole and Protonated Propiconazole,” Beilstein Journal of Organic Chemistry 8 (2012): 2191–201. doi:10.3762/bjoc.8.247.
  • R.G. Pearson, “Absolute Electronegativity and Hardness: Applications to Inorganic Chemistry,” Inorganic Chemistry 27, no. 4 (1988): 734–40. doi:10.1021/ic00277a030.
  • P.K. Chattaraj and A. Poddar, “Molecular Reactivity in the Ground and Excited Electronic States through Density-Dependent Local and Global Reactivity Parameters,” The Journal of Physical Chemistry A 103, no. 43 (1999): 8691–9. doi:10.1021/jp991214+.
  • R.G. Parr, L.V. Szentpaly, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121, no. 9 (1999): 1922–4. doi:10.1021/ja983494x.
  • R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (New York: Oxford University Press, 1989). doi:10.1093/oso/9780195092769.001.0001.
  • F. Weinhold and J.E. Carpenter, The Structure of Small Molecules and Ions, edited by R. Naaman and Z. Vager (New York: Plenum, 1988), 227–236.
  • A.E. Reed, L.A. Curtiss, and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint,” Chemical Reviews 88, no. 6 (1988): 899–926. doi:10.1021/cr00088a005.
  • E.R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A.J. Cohen, and W. Yang, “Revealing Noncovalent Interactions,” Journal of the American Chemical Society 132, no. 18 (2010): 6498–506. 10.1021/ja100936w
  • T. Lu and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyser,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92. 10.1002/jcc.22885
  • G.A. Zhurko and D.A. Zhurko, “Chemcraft,” www.chemcraftprog.com (accessed August 28, 2019).
  • AIMALL (Version 17.01.25), Todd A. Keith (Overland Park, KS: TK Gristmill Software, 2017).
  • T. Sivasankar, A.A.M. Prabhu, M. Karthick, and N. Rajendiran, “Encapsulation of Vanillylamine by Native and Modified Cyclodextrins: Spectral and Computational Studies,” Journal of Molecular Structure 1028 (2012): 57–67. doi:10.1016/j.molstruc.2012.06.025.
  • M. Jude Jenita, A.A.M. Prabhu, and N. Rajendiran, “Theoretical Study of Inclusion Complexation of Tricyclic Antidepressant Drugs with β-Cyclodextrin,” Indian Journal of Chemistry 51A (2012): 1686–94. http://nopr.niscair.res.in/handle/123456789/15201.
  • G. Venkatesh, T. Sivasankar, M. Karthick, and N. Rajendiran, “Inclusion Complexes of Sulphanilamide Drugs and β-Cyclodextrin: A Theoretical Approach,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 77, no. 1–4 (2013): 309–18. doi:10.1007/s10847-012-0248-z.
  • A.A.M. Prabhu, and N. Rajendiran, “Computational Study of Inclusion Complexation of Sulphanilamide Drugs with β-Cyclodextrin,” Journal of the Indian Chemical Society 90 (2013): 1127–36. doi:10.5281/zenodo.5786239.
  • A.A.M. Prabhu, “Inclusion Complexation of Benzanilide and Fast Violet B with β-Cyclodextrin – A Theoretical Approach,” Organic Chemistry Plus 1 (2020): 23–8. doi:10.37256/ocp.112020147.
  • M. Rahim, F. Madi, L. Nouar, A. Bouhadiba, S. Haiahem, D.E. Khatmi, and Y. Belhocine, “Driving Forces and Electronic Structure in β-Cyclodextrin/3,3’-Diaminodiphenylsulphone Complex,” Journal of Molecular Liquids 199 (2014): 501–10. doi:10.1016/j.molliq.2014.09.035.
  • S. Siva, J. Thulasidhasan, and N. Rajendiran, “Host–Guest Inclusion Complex of Propafenone Hydrochloride with α- and β-Cyclodextrins: Spectral and Molecular Modeling Studies,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 115 (2013): 559–67. doi:10.1016/j.saa.2013.06.079.
  • M. Shanmugam, J. Thulasidhasan, G. Venkatesh, V. Chidambaranathan, and N. Rajendiran, “Effect of α- and β-Cyclodextrins on S-Triazine Derivatives: spectral and Molecular Modelling Studies,” Physics and Chemistry of Liquids 52, no. 5 (2014): 583–600. doi:10.1080/00319104.2014.880437.
  • M. Cheriet, F. Madi, L. Nouar, I. Lafifi, S. Himri, N. Merabet, and D. Khatmi, “A DFT Study of Inclusion Complexes of the Antituberculosis Drugs Pyrazinamide and Isoniazid with Cucurbit[7]Uril,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 89, no. 1–2 (2017): 127–36. doi:10.1007/s10847-017-0738-0.
  • L. Seridi, and A. Boufelfel, “Molecular Modeling Study of Lamotrigine/β-Cyclodextrin Inclusion Complex,” Journal of Molecular Liquids 158, no. 2 (2011): 151–8. doi:10.1016/j.molliq.2010.11.011.
  • Mércia A.S. Costa, Cleber P.A. Anconi, Hélio F. Dos Santos, Wagner B. De Almeida, and Clebio S. Nascimento, “Inclusion Process of Tetracycline in β- and γ-Cyclodextrins: A Theoretical Investigation,” Chemical Physics Letters 626 (2015): 80–4. doi:10.1016/j.cplett.2015.03.016.
  • H. Hamdi, R. Abderrahim, and F. Meganem, “Spectroscopic Studies of Inclusion Complex of β-Cyclodextrin and Benzidine Diammonium Dipicrate,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 75, no. 1 (2010): 32–6. doi:10.1016/j.saa.2009.09.018.
  • S.K. Xing, C. Zhang, H.Q. Ai, Q. Zhao, Q. Zhang, and D.Z. Sun, “Theoretical Study of the Interactions of β-Cyclodextrin with 2′-Hydroxyl-5′-Methoxyacetophone and Two of Its Isomers,” Journal of Molecular Liquids 146, no. 1–2 (2009): 15–22. doi:10.1016/j.molliq.2009.01.005.
  • M. Szafran, A. Komasa, and E.B. Adamska, “Crystal and Molecular Structure of 4-Carboxypiperidinium Chloride (4-Piperidinecarboxylic Acid Hydrochloride),” Journal of Molecular Structure: Theochem 827, no. 1–3 (2007): 101–7. doi:10.1016/j.molstruc.2006.05.012.
  • B.A. Shainyan, N.N. Chipanina, T.N. Aksamentova, L.P. Oznobikhina, G.N. Rosentsveig, and G.I.B. Rosentsveig, “Intramolecular Hydrogen Bonds in the Sulfonamide Derivatives of Oxamide, Dithiooxamide, and Biuret. FT-IR and DFT Study, AIM and NBO Analysis,” Tetrahedron 66, no. 44 (2010): 8551–6. doi:10.1016/j.tet.2010.08.076.
  • S. Aayisha, T.S. Renuga Devi, S. Janani, S. Muthu, M. Raja, and S. Sevvanthi, “DFT, Molecular Docking and Experimental FT-IR, FT-Raman, NMR Inquisitions on “4-chloro-N-(4,5-Dihydro-1H-Imidazol-2-yl)-6-Methoxy-2-Methylpyrimidin-5-Amine” Alpha-2-Imidazoline Receptor Agonist Antihypertensive Agent,” Journal of Molecular Structure 1186 (2019): 468–81. doi:10.1016/j.molstruc.2019.03.056.
  • T.K. Kuruvilla, S. Muthu, J.C. Prasana, J. George, and S. Sevvanthi, “Spectroscopic (FT-IR, FT-Raman), Quantum Mechanical and Docking Studies on Methyl[(3S)-3-(Naphthalen-1-Yloxy)-3-(Thiophen-2-yl)Propyl]Amine,” Journal of Molecular Structure 1175 (2019): 163–74. doi:10.1016/j.molstruc.2018.07.097.
  • S. Muthu, E.E. Porchelvi, M. Karabacak, A.M. Asiri, and S.S. Swathi, “Synthesis, Structure, Spectroscopic Studies (FT-IR, FT-Raman and UV), Normal Coordinate, NBO and NLO Analysis of Salicylaldehyde p-Chlorophenyl Thiosemicarbazone,” Journal of Molecular Structure 1081 (2015): 400–12. doi:10.1016/j.molstruc.2014.10.024.
  • E. Zahedi, S. Shaabani, and A. Shiroudi, “Following the Molecular Mechanism of Decarbonylation of Unsaturated Cyclic Ketones Using Bonding Evolution Theory Coupled with NCI Analysis,” The Journal of Physical Chemistry A 121, no. 44 (2017): 8504–17. doi:10.1021/acs.jpca.7b08503.
  • N.S. Venkataramanan, A. Suvitha, and Y. Kawazoe, “Density Functional Theory Study on the Dihydrogen Bond Cooperativity in the Growth Behavior of Dimethyl Sulfoxide Clusters,” Journal of Molecular Liquids 249 (2018): 454–62. doi:10.1016/j.molliq.2017.11.062.
  • N.S. Venkataramanan, A. Suvitha, and Y. Kawazoe, “Unraveling the Binding Nature of Hexane with Quinone Functionalized Pillar[5]Quinone: A Computational Study,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 95, no. 3–4 (2019): 307–19. doi:10.1007/s10847-019-00945-3.
  • M. Nora, L. Ismahan, G. Abdelkrim, A. Guendouzi, M. Cheriet, L. Nouar, F. Madi, N. Boulaha, and B. Houari, “Interactions in Inclusion Complex of β-Cyclodextrin/l-Metheonine: DFT Computational Studies,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 96, no. 1–2 (2020): 43–54. doi:10.1007/s10847-019-00948-0.
  • G. Meryem, K. Rabah, M. Fatiha, N. Leila, B.A. Aziz, D. Imane, and M. Rachid, “Computational Investigation of Vanillin@Βéta-Cyclodextrin Inclusion Complex: Electronic and Intermolecular Analysis,” Journal of Molecular Liquids 321 (2021): 114839. doi:10.1016/j.molliq.2020.114839.
  • H. Bouchemela, F. Madi, and L. Nouar, “DFT Investigation of Host–Guest Interactions between α‑Terpineol and β‑Cyclodextrin,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 95, no. 3–4 (2019): 247–58. doi:10.1007/s10847-019-00940-8.
  • E.J. Baerends, ADF, 2017. SCM, Theoretical Chemistry (Amsterdam, The Netherlands: Vrije Universiteit, 2007).
  • G. Te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, and T. Ziegler, “Chemistry with ADF,” Journal of Computational Chemistry 22, no. 9 (2001): 931–67. doi:10.1002/jcc.1056.
  • F. Weinhold and R. Landis Clark, Discovering Chemistry with Natural Bond Orbitals (Chichester: Wiley, 2012). doi:10.1002/9781118229101.
  • R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford: Oxford University Press, 1990).
  • C.F. Matta and R.J. Boyd, The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design (Weinheim: Wiley, 2007). doi:10.1021/ja076962o.
  • P.S.V. Kumar, V.R. Vendra, and V. Subramanian, “Bader’s Theory of Atoms in Molecules (AIM) and Its Applications to Chemical Bonding,” Journal of Chemical Sciences 128, no. 10 (2016): 1527–36. doi:10.1007/s12039-016-1172-3.
  • U. Koch and P.L.A. Popelier, “Characterization of C-H-O Hydrogen Bonds on the Basis of the Charge Density,” The Journal of Physical Chemistry 99, no. 24 (1995): 9747–54. doi:10.1021/j100024a016.
  • P. Kolandaivel and V. Nirmala, “Study of Proper and Improper Hydrogen Bonding Using Bader’s Atoms in Molecules (AIM) Theory and NBO Analysis,” Journal of Molecular Structure 694, no. 1–3 (2004): 33–8. doi:10.1016/j.molstruc.2004.01.030.
  • K. Yahiaoui, L. Seridi, and K. Mansouri, “Temozolomide Binding to Cucurbit[7]Uril: QTAIM, NCI‑RDG and NBO Analyses,” Journal of Inclusion Phenomena and Macrocyclic Chemistry 99, no. 1–2 (2021): 61–77. doi:10.1007/s10847-020-01027-5.
  • I. Rozas, I. Alkorta, and J. Elguero, “The Behaviour of Ylides Containing N, O, and C Atoms, as Hydrogen Bond Acceptors,” Journal of the American Chemical Society 122, no. 45 (2000): 11154–61. doi:10.1021/ja0017864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.