295
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Virtual Screening of Alkaloids and Flavonoids as Acetylcholinesterase and MAO-B Inhibitors by Molecular Docking and Dynamic Simulation Studies

, , &
Pages 5453-5477 | Received 31 Jan 2022, Accepted 08 Jul 2022, Published online: 01 Aug 2022

References

  • S. Przedborski, M. Vila, and V. Jackson, “Series Introduction: Neurodegeneration: What Is It and Where Are We?,” Journal of Clinical Investigation 111, no. 1 (2003): 3–10. doi:10.1172/JCI200317522.
  • B.N. Dugger, and D.W. Dickson, “Pathology of Neurodegenerative Diseases,” Cold Spring Harbor Perspectives in Biology 9, no. 7 (2017): a028035. doi:10.1101/cshperspect.a028035.
  • A.D. Gitler, P. Dhillon, and J. Shorter, “Neurodegenerative Disease: Models, Mechanisms, and a New Hope,” Disease Models & Mechanisms 10, no. 5 (2017): 499–502. doi:10.1242/dmm.030205.
  • Mehdi Sharifi-Rad, Chintha Lankatillake, Daniel A. Dias, Anca Oana Docea, Mohamad Fawzi Mahomoodally, Devina Lobine, Paul L. Chazot, Begum Kurt, Tugba Boyunegmez Tumer, Ana Catarina Moreira, et al., “Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics,” Journal of Clinical Medicine 9, no. 4 (2020): 1061. 1061. doi:10.3390/jcm9041061.
  • G.P. Kumar, and F. Khanum, “Neuroprotective Potential of Phytochemicals,” Pharmacognosy Reviews 6, no. 12 (2012): 81–90. doi:10.4103/0973-7847.99898.
  • S. Bhambhani, R.K.R. Kondhare, and A.P. Giri, “Diversity in Chemical Structures and Biological Properties of Plant Alkaloids,” Molecules 26, no. 11 (2021): 3374. doi:10.3390/molecules26113374.
  • B. Noureddine, “Pharmacological Activity of Alkaloids: A Review,” Asian Journal of Botany 1, no. 1 (2018): 1–6.
  • H. Ghulam, A. Rasul, H. Anwar, N. Aziz, A. Razzaq, W. Wei, M. Ali, J. Li, and X. Li, “Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders,” International Journal of Biological Sciences 14, no. 3 (2018): 341–57. doi:10.7150/ijbs.23247.
  • G. Shikha, A. Girdhar, S.K. Verma, V. Lather, and D. Pandita, “Plant Derived Alkaloids in Major Neurodegenerative Diseases: From Animal Models to Clinical Trials,” Journal of Ayurvedic and Herbal Medicine 1, no. 3 (2015): 91–100. doi:10.31254/jahm.2015.1307.
  • M.R. Loizzo, R. Tundis, F. Menichini, and F. Menichini, “Natural Products and Their Derivatives as Cholinesterase Inhibitors in the Treatment of Neurodegenerative Disorders: An Update,” Current Medicinal Chemistry 15, no. 12 (2008): 1209–28. doi:10.2174/092986708784310422.
  • M. Pamela, “The Potential of Flavonoids for the Treatment of Neurodegenerative Diseases,” International Journal of Molecular Sciences 20, no. 12 (2019): 3056.
  • S.L. Costa, V.D.A. Silva, C.S. Souza, C.C. Santos, I. Paris, P. Muñoz, and J. Segura-Aguilar, “Impact of Plant-Derived Flavonoids on Neurodegenerative Diseases,” Neurotoxicity Research 30, no. 1 (2016): 41–52. doi:10.1007/s12640-016-9600-1.
  • J.R. Frandsen, and P. Narayanasamy, “Neuroprotection through Flavonoid: Enhancement of the Glyoxalase Pathway,” Redox Biology 14 (2018): 465–73. doi:10.1016/j.redox.2017.10.015.
  • W. Shao-Hui, H. Yan-Lan, and L. Tong-Xiang, “Plant Distribution and Pharmacological Activity of Flavonoids,” Traditional Medicine Research 4 (2019): 269–87.
  • T.T. Cushnie, and A.J. Lamb, “Antimicrobial Activity of Flavonoids,” International Journal of Antimicrobial Agents 26, no. 5 (2005): 343–56. doi:10.1016/j.ijantimicag.2005.09.002.
  • A. Haake, K. Nguyen, L. Friedman, B. Chakkamparambil, and G.T. Grossberg, “An Update on the Utility and Safety of Cholinesterase Inhibitors for the Treatment of Alzheimer's Disease,” Expert Opinion on Drug Safety 19, no. 2 (2020): 147–57. doi:10.1080/14740338.2020.1721456.
  • M. Bijo, D.G.T. Parambi, G.E. Mathew, M.S. Uddin, S.T. Inasu, H. Kim, A. Marathakam, M.K. Unnikrishnan, and S. Carradori, “Emerging Therapeutic Potentials of Dual‐Acting MAO and AChE Inhibitors in Alzheimer's and Parkinson's Diseases,” Archiv Der Pharmazie 352, no. 11 (2019): 1900177. doi:10.1002/ardp.201900177.
  • N. Makoto, and W. Maruyama, “Monoamine Oxidase Inhibitors as Neuroprotective Agents in Age-Dependent Neurodegenerative Disorders,” Current Pharmaceutical Design 16, no. 25 (2010): 2799–817.
  • P. Guglielmi, S. Carradori, G. Poli, D. Secci, R. Cirilli, G. Rotondi, P. Chimenti, A. Petzer, and J.P. Petzer, “Design, Synthesis, Docking Studies and Monoamine Oxidase Inhibition of a Small Library of 1-Acetyl-and 1-Thiocarbamoyl-3, 5-Diphenyl-4, 5-Dihydro-(1H)-Pyrazoles,” Molecules 24, no. 3 (2019): 484. doi:10.3390/molecules24030484.
  • J.P. James, D. Jyothi, and S. Priya, “In Silico Screening of Phytoconstituents with Antiviral Activities against SARS-COV-2 Main Protease, Nsp12 Polymerase, and Nsp13 Helicase Proteins,” Letters in Drug Design & Discovery 18, no. 8 (2021): 841–57. doi:10.2174/1570180818666210317162502.
  • D.D. Kodical, J.P. James, K. Deepthi, P. Kumar, C. Cyriac, and K.V. Gopika, “ADMET, Molecular Docking Studies and Binding Energy Calculations of Pyrimidine-2-Thiol Derivatives as Cox Inhibitors,” Research Journal of Pharmacy and Technology 13, no. 9 (2020): 4200–6. doi:10.5958/0974-360X.2020.00742.8.
  • J.P. James, P. Kumar, A. Kumar, K.I. Bhat, and C.S. Shastry, “In Silico Anticancer Evaluation, Molecular Docking and Pharmacophore Modeling of Flavonoids against Various Cancer Targets,” Letters in Drug Design & Discovery 17, no. 12 (2020): 1485–501. doi:10.2174/1570180817999200730164222.
  • J.P. James, Apoorva, S.R. Monteiro, K.B. Sukesh, and A. Varun, “Design and Identification of Lead Compounds Targeting Nipah G Attachment Glycoprotein by In Silico Approaches,” Journal of Pharmaceutical Research International 33, no. 40A (2021): 156–69.
  • F.R. Makhouri, and J.B. Ghasemi, “In Silico Studies in Drug Research against Neurodegenerative Diseases,” Current Neuropharmacology 16, no. 6 (2018): 664–725. doi:10.2174/1570159X15666170823095628.
  • Y. Wang, C. Reis, R. Applegate, II, G. Stier, R. Martin, and J.H. Zhang, “Ischemic Conditioning-Induced Endogenous Brain Protection: Applications Pre-, Per-or Post-Stroke,” Experimental Neurology 272 (2015): 26–40. doi:10.1016/j.expneurol.2015.04.009.
  • Y.J. Liu, W. Peng, M.B. Hu, M. Xu, and C.J. Wu, “The Pharmacology, Toxicology and Potential Applications of Arecoline, a Review,” Pharmaceutical Biology 54, no. 11 (2016): 2753–60. doi:10.3109/13880209.2016.1160251.
  • K.S. Rangappa, “P1‐228: Muscarinic Receptor 1 Agonist Activity of Novel Arecoline Derivatives in Alzheimer's Dementia Models,” Alzheimer's & Dementia 5, no. 4S_Part_8 (2009): P243–P243. doi:10.1016/j.jalz.2009.04.235.
  • A. Touqeer, M. Abdollahi, M. Daglia, S.F. Nabavi, and S.M. Nabavi, “Berberine and Neurodegeneration: A Review of Literature,” Pharmacological Reports 67, no. 5 (2015): 970–9.
  • Q. Siru, H. Tang, W. Li, Y. Gong, S. Li, J. Huang, and Y. Fang, “AMPK and Its Activator Berberine in the Treatment of Neurodegenerative Diseases,” Current Pharmaceutical Design 26, no. 39 (2020): 5054–66.
  • S.K. Anurag, S.K. Singh, M.K. Nandi, G. Mishra, A. Maurya, A. Rai, G.K. Rai, R. Awasthi, B. Sharma, and G.T. Kulkarni, “Berberine: A Plant-Derived Alkaloid with Therapeutic Potential to Combat Alzheimer’s Disease,” Central Nervous System Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Central Nervous System Agents) 19, no. 3 (2019): 154–70.
  • A.M. Lotfi, M.E. Rezvani, M. Khaksari, Z. Hafizi, Z. Pirmoradi, S. Niknazar, and F.Z. Mehrjerdi, “Neuroprotective Effect of Berberine Chloride on Cognitive Impairment and Hippocampal Damage in Experimental Model of Vascular Dementia,” Iranian Journal of Basic Medical Sciences 21, no. 1 (2018): 53.
  • M. Rivera-Oliver, and M. Diaz-Rios, “Using Caffeine and Other Adenosine Receptor Antagonists and Agonists as Therapeutic Tools against Neurodegenerative Diseases, a Review,” Life Sciences 101, no. 1-2 (2014): 1–9. doi:10.1016/j.lfs.2014.01.083.
  • D.M. Alexandre, and R.A. Cunha, “Therapeutic Opportunities for Caffeine in Alzheimer’s Disease and Other Neurodegenerative Disorders,” Journal of Alzheimer's Disease 20, no. 1 (2010): S1–S2.
  • P. David, H. Hampel, and J. Pantel, “Galantamine for Alzheimer's Disease,” Expert Opinion on Drug Metabolism & Toxicology 6, no. 3 (2010): 345–54.
  • A.J. Queiroz, J.A. Lima, A.C. Pinto, R.B. De Alencastro, and M.G. Albuquerque, “Docking of the Alkaloid Geissospermine into Acetylcholinesterase: A Natural Scaffold Targeting the Treatment of Alzheimer’s Disease,” Journal of Molecular Modeling 17, no. 6 (2011): 1401–12.
  • H. Dandan, H. Wu, Y. Wei, W. Liu, F. Huang, H. Shi, B. Zhang, X. Wu, and C. Wang, “Effects of Harmine, an Acetylcholinesterase Inhibitor, on Spatial Learning and Memory of APP/PS1 Transgenic Mice and Scopolamine-Induced Memory Impairment Mice,” European Journal of Pharmacology 768 (2015): 96–107.
  • C. Bijaya, S. Prem, and S. Viral, “Neurodegenrative Disorders: Past, Present and Future,” International Journal of Applied Biology and Pharmaceutical Technology 5, no. 2 (2014): 14–28.
  • M. Shinghung, W. Li, H. Fu, J. Luo, W. Cui, S. Hu, Y. Pang, P.R. Carlier, K.W. Tsim, R. Pi, et al., “Promising Tacrine/Huperzine a‐Based Dimeric Acetylcholinesterase Inhibitors for Neurodegenerative Disorders: From Relieving Symptoms to Modifying Diseases through Multitarget,” Journal of Neurochemistry 158, no. 6 (2021): 1381–93.
  • Q.Z. Ming, and Y. Ke, “Huperzine A: Is It an Effective Disease-Modifying Drug for Alzheimer’s Disease?,” Frontiers in Aging Neuroscience 6 (2014): 216.
  • Y.F. Xian, Q.Q. Mao, J.C. Wu, Z.R. Su, J.N. Chen, X.P. Lai, S.P. Ip, and Z.X. Lin, “Isorhynchophylline Treatment Improves the Amyloid-β-Induced Cognitive Impairment in Rats via Inhibition of Neuronal Apoptosis and Tau Protein Hyperphosphorylation,” Journal of Alzheimer's Disease 39, no. 2 (2014): 331–46. doi:10.3233/JAD-131457.
  • H.Q. Li, S.P. Ip, Q.J. Yuan, G.Q. Zheng, K.K. Tsim, T.T. Dong, G. Lin, Y. Han, Y. Liu, Y.F. Xian, et al., “Isorhynchophylline Ameliorates Cognitive Impairment via Modulating Amyloid Pathology, Tau Hyperphosphorylation and Neuroinflammation: Studies in a Transgenic Mouse Model of Alzheimer’s Disease,” Brain, Behavior, and Immunity 82 (2019): 264–78. doi:10.1016/j.bbi.2019.08.194.
  • J.J. Dimatelis, V.A. Russell, D.J. Stein, and W.M. Daniels, “The Effects of Lobeline and Naltrexone on Methamphetamine-Induced Place Preference and Striatal Dopamine and Serotonin Levels in Adolescent Rats with a History of Maternal Separation,” Metabolic Brain Disease 27, no. 3 (2012): 351–61. doi:10.1007/s11011-012-9288-8.
  • K. Jaskiran, P. Famta, M. Famta, M. Mehta, S. Satija, N. Sharma, M. Vyas, G.L. Khatik, D.K. Chellappan, and K. Dua, “Potential anti-Epileptic Phytoconstituents: An Updated Review,” Journal of Ethnopharmacology 268 (2021): 113565.
  • T. Pak, P. Cadet, K.J. Mantione, and G.B. Stefano, “Morphine via Nitric Oxide Modulates β-Amyloid Metabolism: A Novel Protective Mechanism for Alzheimer’s Disease,” Medical Science Monitor. 11, no. 10 (2005): 366.
  • R.A. Ribeiro, and J.R. Leite, “Nantenine Alkaloid Presents Anticonvulsant Effect on Two Classical Animal Models,” Phytomedicine 10, no. 6–7 (2003): 563–8. doi:10.1078/094471103322331557.
  • L.A. Jess, and F.J. Sanz, “Nicotine for Alzheimer's Disease,” Cochrane Database of Systematic Reviews 2 (2001): CD001749.
  • M. Awanish, J.K. Punia, C. Bladen, G.W. Zamponi, and R.K. Goel, “Anticonvulsant Mechanisms of Piperine, a Piperidine Alkaloid,” Channels 9, no. 5 (2015): 317–23.
  • H. Lucian, J.A. Noumedem, O. Cioanca, M. Hancianu, V. Kuete, and M. Mihasan, “Methanolic Extract of Piper Nigrum Fruits Improves Memory Impairment by Decreasing Brain Oxidative Stress in Amyloid Beta (1–42) Rat Model of Alzheimer’s Disease,” Cellular and Molecular Neurobiology 34, no. 3 (2014): 437–49.
  • A. Baghdadi, B. Osamah, I.N. Prater, C.J. Schyf, and J. Werner, Geldenhuys, “Inhibition of Monoamine Oxidase by Derivatives of Piperine, an Alkaloid from the Pepper Plant Piper nigrum, for Possible Use in Parkinson’s Disease,” Bioorganic & Medicinal Chemistry Letters 22, no. 23 (2012): 7183–8. doi:10.1016/j.bmcl.2012.09.056.
  • I.E. Orhan, and F.S. Senol, “Alkaloids and Inhibitory Effects against Enzymes Linked to Neurodegenerative Diseases (Physostigmine, Galanthamine, Huperzine, Etc.),” in Natural Products, edited by K. Ramawat and J. M. Mérillon (Berlin, Heidelberg: Springer).
  • W. Philip, A. Sorribas, and M.J.R. Howes, “Natural Products as a Source of Alzheimer's Drug Leads,” Natural Product Reports 28, no. 1 (2011): 48–77.
  • H. Wang, K. Zhang, L. Zhao, J. Tang, L. Gao, and Z. Wei, “Anti-Inflammatory Effects of Vinpocetine on the Functional Expression of Nuclear Factor-Kappa B and Tumor Necrosis Factor-Alpha in a Rat Model of Cerebral Ischemia-Reperfusion Injury,” Neuroscience Letters 566 (2014): 247–51. doi:10.1016/j.neulet.2014.02.045.
  • N.S. Fazel, H. Khan, G. D'onofrio, D. Samec, S. Shirooie, A.R. Dehpour, S. Arguelles, S. Habtemariam, and E.S. Sanchez, “Apigenin as Neuroprotective Agent: Of Mice and Men,” Pharmacological Research 128 (2018): 359–65.
  • L. Yanwei, J. Zhao, and C. Holscher, “Therapeutic Potential of Baicalein in Alzheimer’s Disease and Parkinson’s Disease,” CNS Drugs 31, no. 8 (2017): 639–52.
  • M.B. Khan, M.M. Khan, A. Khan, M.E. Ahmed, T. Ishrat, R. Tabassum, K. Vaibhav, A. Ahmad, and F. Islam, “Naringenin Ameliorates Alzheimer’s Disease (AD)-Type Neurodegeneration with Cognitive Impairment (AD-TNDCI) Caused by the Intracerebroventricular-Streptozotocin in Rat Model,” Neurochemistry International 61, no. 7 (2012): 1081–93. doi:10.1016/j.neuint.2012.07.025.
  • D.M. Wang, Y.J. Yang, L. Zhang, X. Zhang, F.F. Guan, and L.F. Zhang, “Naringin Enhances CaMKII Activity and Improves Long-Term Memory in a Mouse Model of Alzheimer’s Disease,” International Journal of Molecular Sciences 14, no. 3 (2013): 5576–86. doi:10.3390/ijms14035576.
  • H. Ullah, and H. Khan, “Anti-Parkinson Potential of Silymarin: Mechanistic Insight and Therapeutic Standing,” Frontiers in Pharmacology 9 (2018): 422. doi:10.3389/fphar.2018.00422.
  • B. Budzynska, C. Faggio, M. Kruk-Slomka, D. Samec, S.F. Nabavi, A. Sureda, K.P. Devi, and S.M. Nabavi, “Rutin as Neuroprotective Agent: From Bench to Bedside,” Current Medicinal Chemistry 26, no. 27 (2019): 5152–64. doi:10.2174/0929867324666171003114154.
  • Md Shahazul Islam, Cristina Quispe, Rajib Hossain, Muhammad Torequl Islam, Ahmed Al-Harrasi, Ahmed Al-Rawahi, Miquel Martorell, Assem Mamurova, Ainur Seilkhan, Nazgul Altybaeva, et al., “Neuropharmacological Effects of Quercetin: A Literature-Based Review,” Frontiers in Pharmacology 12 (2021): 665031. doi:10.3389/fphar.2021.665031.
  • “Schrodinger. Schrodinger Release 2020-4.” https://www.schrodinger.com.
  • O. Gerlits, K.Y. Ho, X. Cheng, D. Blumenthal, P. Taylor, A. Kovalevsky, and Z. Radic, “A New Crystal Form of Human Acetylcholinesterase for Exploratory Room-Temperature Crystallography Studies,” Chemico-Biological Interactions 25, no. 309 (2019): 108698. doi:10.1016/j.cbi.2019.06.011.
  • C. Binda, J. Wang, L. Pisani, C. Caccia, A. Carotti, P. Salvati, D.E. Edmondson, and A. Mattevi, “Structures of Human Monoamine Oxidase B Complexes with Selective Noncovalent Inhibitors: safinamide and Coumarin Analogs,” Journal of Medicinal Chemistry 50, no. 23 (2007): 5848–52. doi:10.1021/jm070677y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.