133
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Computation of Neighborhood M-Polynomial of Three Classes of Polycyclic Aromatic Hydrocarbons

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5519-5535 | Received 11 Jan 2022, Accepted 08 Jul 2022, Published online: 01 Aug 2022

References

  • J.C. Fetzer, Large (C = 24) Polycyclic Aromatic Hydrocarbons: Chemistry and Analysis (New York: Wiley and Sons, 2000).
  • R.G. Harvey, Polycyclic Aromatic Hydrocarbons (New York: Wiley and Sons, 1997).
  • A. Bjorseth, and T. Ramdhal, Handbook of Polycyclic Aromatic Hydrocarbons: Emission Sources and Recent Progress in Analytical Chemistry (New York: Marcel Dekker Inc., 1985).
  • N.M. Marinov, W.J. Pitz, C.K. Westbrook, M.J. Castaldi, and S.M. Senkan, “Modeling of Aromatic and Polycyclic Aromatic Hydrocarbon Formation in Premixed Methane and Ethane Flames,” Combustion Science and Technology 116–117, no. 1–6 (1996): 211–87. doi:10.1080/00102209608935550.
  • A. Luch, The Carcinogenic Effects of Polycyclic Aromatic Hydrocarbons (London: Imperial College Pr, 2005).
  • S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, et al., “Discotic Liquid Crystals: From Tailor-Made Synthesis to Plastic Electronics,” Angewandte Chemie (International ed. in English) 46, no. 26 (2007): 4832–87. doi:10.1002/anie.200604203.
  • R.J. Bushby, and O.R. Lozman, “Discotic Liquid Crystals 25 Years on,” Current Opinion in Colloid & Interface Science 7, no. 5–6 (2002): 343–54. doi:10.1016/S1359-0294(02)00085-7.
  • S. Kumar, “Self-Organization of Disc-like Molecules: Chemical Aspects,” Chemical Society Reviews 35, no. 1 (2006): 83–109. doi:10.1039/b506619k.
  • X.L. Feng, V. Marcon, W. Pisula, M.R. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko, K. Kremer, and K. Mullen, “Towards High Charge-Carrier Mobilities by Rational Design of the Shape and Periphery of Discotics,” Nature Materials 8, no. 5 (2009): 421–6. doi:10.1038/nmat2427.
  • J.S. Wu, W. Pisula, and K. Mullen, “Graphenes as Potential Material for Electronics,” Chemical Reviews 107, no. 3 (2007): 718–47. doi:10.1021/cr068010r.
  • K. Müllen, and J.P. Rabe, “Nanographenes as Active Components of Single-Molecule Electronics and How a Scanning Tunneling Microscope Puts Them to Work,” Accounts of Chemical Research 41, no. 4 (2008): 511–20. doi:10.1021/ar7001446.
  • G. Rapenne, “Synthesis of Technomimetic Molecules: Towards Rotation Control in Single-Molecular Machines and Motors,” Organic & Biomolecular Chemistry 3, no. 7 (2005): 1165–9. doi:10.1039/b419282f.
  • P. Ruffieux, O. Groning, R. Fasel, M. Kastler, D. Wasserfallen, K. Mullen, and P. Groning, “Self-Assembly of Extended Polycyclic Aromatic Hydrocarbons on Cu(111),” The Journal of Physical Chemistry. B 110, no. 23 (2006): 11253–8. doi:10.1021/jp057158w.
  • J.R. Dias, “Phenyl Substituted Benzenoid Hydrocarbons-relationships of the Lepfrog Algorithm in Regard to Clar’s Sextet Rule, Strain-Free, and Perimeter Topology Concepts,” Polycyclic Aromatic Compounds 25, no. 2 (2005): 113–27. doi:10.1080/10406630590912572.
  • J.R. Dias, “Perimeter Topology of Benzenoid Polycyclic Hydrocarbons,” Journal of Chemical Information and Modeling 45, no. 3 (2005): 562–71. doi:10.1021/ci0500334.
  • B.A. Hess, and L.J. Schaad, “Hueckel Molecular Orbital π-Resonance Energies. New Approach,” Journal of the American Chemical Society 93, no. 2 (1971): 305–10. doi:10.1021/ja00731a003.
  • J.R. Dias, “A Periodic Table for Polycyclic Aromatic Hydrocarbons,” Accounts of Chemical Research 18, no. 8 (1985): 241–8. doi:10.1021/ar00116a003.
  • S.E. Stein, and R.L. Brown, “π-Electronic Properties of Large Condensed Polyaromatic Hydrocarbons,” Journal of the American Chemical Society 109, no. 12 (1987): 3721–9. doi:10.1021/ja00246a033.
  • K. Nakada, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, “Edge State in Graphene Ribbons: Nanometer Size Effect and Edge Shape Dependence,” Physical Review. B, Condensed Matter 54, no. 24 (1996): 17954–61. doi:10.1103/physrevb.54.17954.
  • S.C. Basak, D. Mills, and M.M. Mumtaz, “A Quantitative Structure-Activity Relationship (QSAR) Study of Dermal Absorption Using Theoretical Molecular Descriptors,” SAR and QSAR in Environmental Research 18, no. 1–2 (2007): 45–55. doi:10.1080/10629360601033671.
  • B. Gute, G. Grunwald, and S.C. Basak, “Prediction of the Dermal and Penetration of Polycyclic Aromatics: A Hierachical QSAR Approach,” SAR and QSAR in Environmental Research 10, no. 1 (1999): 1–15. doi:10.1080/10629369908039162.
  • V.N. Viswanadhan, G.A. Mueller, S.C. Basak, and J.N. Weinstein, “Comparison of a Neural Net-Based QSAR Algorithm (PCANN) with Hologram-and Multiple Linear Regression-Based QSAR Approaches: Application to 1,4-Dihydropyridine-Based Calcium Channel Antagonists,” Journal of Chemical Information and Computer Sciences 41, no. 3 (2001): 505–11. doi:10.1021/ci000072+.
  • G. Korinth, T. Wellner, K.H. Schaller, and H. Drexler, “Potential of the Octanol-Water Partition Coefficient (logP) to Predict the Dermal Penetration Behaviour of Amphiphilic Compounds in Aqueous Solutions,” Toxicology Letters 215, no. 1 (2012): 49–53. doi:10.1016/j.toxlet.2012.09.013.
  • A.C. Williams, and B.W. Barry, “Terpenes and the Lipid-Protein-Partitioning Theory of Skin Penetration Enhancement,” Pharmaceutical Research 8, no. 1 (1991): 17–24.
  • M.S. Roberts, and K.A. Walters, Dermal Absorption and Toxicity Assessment (New York: Drugs and the Pharmaceutical Sciences: Informa Healthcare Inc, 2008).
  • E. Estrada, L. Torres, L. Rodríguez, and I. Gutman, “An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes,” Indian Journal of Chemistry 37A (1998): 849–55.
  • M. Thakur, A. Thakur, and K. Balasubramanian, “QSAR and SAR Studies on the Reduction of Some Aromatic Nitro Compounds by Xanthine Oxidase,” Journal of Chemical Information and Modeling 46, no. 1 (2006): 103–10. doi:10.1021/ci050478s.
  • M. Arockiaraj, J. Clement, and K. Balasubramanian, “Analytical Expressions for Topological Properties of Polycyclic Benzenoid Networks,” Journal of Chemometrics 30, no. 11 (2016): 682–97. doi:10.1002/cem.2851.
  • I. Gutman, and S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons (Berlin: Springer-Verlag, 1989).
  • M. Nagase, K. Kato, A. Yagi, Y. Segawa, and K. Itami, “Six-Fold C-H Borylation of Hexa-Peri-Hexabenzocoronene,” Beilstein Journal of Organic Chemistry 16, no. 1 (2020): 391–7. doi:10.3762/bjoc.16.37.
  • C. Gao, Z. Qiao, K. Shi, S. Chen, Y. Li, G. Yu, X. Li, and H. Wang, “Hexa-Peri-Hexabenzocoronene and Diketopyrrolopyrrole Based D-a Conjugated Copolymers for Organic Field Effect Transistor and Polymer Solar Cells,” Organic Electronics 38 (2016): 245–55. doi:10.1016/j.orgel.2016.08.008.
  • W. Pisula, X. Feng, and K. Müllen, “Charge-Carrier Transporting Graphene-Type Molecules,” Chemistry of Materials 23, no. 3 (2011): 554–67. doi:10.1021/cm102252w.
  • K. Sakamoto, N. Nishina, T. Enoki, and J.I. Aihara, “Aromatic Character of Nanographene Model Compounds,” The Journal of Physical Chemistry. A 118, no. 16 (2014): 3014–25.
  • W. Hendel, Z.H. Khan, and W. Schmidt, “Hexa-Peri-Benzocoronene, a Candidate for the Origin of the Diffuse Interstellar Visible Absorption Bands?,” Tetrahedron 42, no. 4 (1986): 1127–34. doi:10.1016/S0040-4020(01)87517-7.
  • H. Seyler, B. Purushothaman, D.J. Jones, A.B. Holmes, and W.W. Wong, “Hexa-Peri-Hexabenzocoronene in Organic Electronics,” Pure and Applied Chemistry 84, no. 4 (2012): 1047–67. doi:10.1351/PAC-CON-11-09-24.
  • A.M. van de Craats, and J.M. Warman, “The Core-Size Effect on the Mobility of Charge in Discotic Liquid Crystalline Materials,” Advanced Materials 13, no. 2 (2001): 130–3. doi:10.1002/1521-4095(200101)13:2<130::AID-ADMA130>3.0.CO;2-L.
  • M. Duati, C. Grave, C. Tcbeborateva, J. Wu, K. Müllen, A. Shaporenko, M. Zharnikov, J.K. Kriebel, G.M. Whitesides, and M.A. Rampi, “Electron Transport across Hexa-Peri-Hexabenzocoronene Units in a Metal-Self-Assembled Monolayer-Metal Junction,” Advanced Materials 18, no. 3 (2006): 329–33. doi:10.1002/adma.200501482.
  • F.J. Lin, H.H. Chen, and Y.T. Tao, “Molecularly Aligned Hexa-Peri-Hexabenzocoronene Films by Brush-Coating and Their Application in Thin-Film Transistors,” ACS Applied Materials & Interfaces 11, no. 11 (2019): 10801–9. doi:10.1021/acsami.9b00873.
  • F.J. Lin, C.W. Yang, H.H. Chen, and Y.T. Tao, “Alignment and Photopolymerization of Hexa-Peri-Hexabenzocoronene Derivatives Carrying Diacetylenic Side Chains for Charge-Transporting Application,” Journal of the American Chemical Society 142, no. 27 (2020): 11763–71. doi:10.1021/jacs.0c02055.
  • R.J. Bushby, S.M. Kelly, and Mary. O’Neill, Liquid Crystalline Semiconductors: Materials, Properties and Applications (Netherlands: Springer, 2014).
  • D. Sepúlveda, Y. Guan, U. Rangel, and S.E. Wheeler, “Stacked Homodimers of Substituted Contorted Hexabenzocoronenes and Their Complexes with C60 Fullerene,” Organic & Biomolecular Chemistry 15, no. 28 (2017): 6042–9.
  • C. Chien-Yang, K. Bumjung, G. Alon, S. Wesley, W. Sujun, S. Aaron, S. Michael, and N. Colin, “Shape-Shifting in Contorted Dibenzotetrathienocoronenes,” Chemical Science 2, no. 8 (2011): 1480–6.
  • S. Xiao, M. Myers, Q. Miao, S. Sanaur, K. Pang, M.L. Steigerwald, and C. Nuckolls, “Molecular Wires from Contorted Aromatic Compounds,” Angewandte Chemie (International ed. in English) 44, no. 45 (2005): 7390–4.
  • X. Guo, S. Xiao, M. Myers, Q. Miao, M.L. Steigerwald, and C. Nuckolls, “Photoresponsive Nanoscale Columnar Transistors,” Proceedings of the National Academy of Sciences of the United States of America 106, no. 3 (2009): 691–6.
  • A.M. Hiszpanski, C.J. Dsilva, I.G. Kevrekidis, and Y.L. Loo, “Data Mining for Parameters Affecting Polymorph Selection in Contorted Hexabenzocoronene Derivatives,” Chemistry of Materials : a Publication of the American Chemical Society 30, no. 10 (2018): 3330–7.
  • Jaehyun Park, Cheol Woo Lee, Se Hun Joo, Ju Hyun Park, Chihyun Hwang, Hyun-Kon Song, Young Seok Park, Sang Kyu Kwak, Seokhoon Ahn, and Seok Ju Kang, “Contorted Polycyclic Aromatic Hydrocarbon: Promising Li Insertion Organic Anode,” Journal of Materials Chemistry A 6, no. 26 (2018): 12589–97. doi:10.1039/C8TA03633K.
  • K.T. Rim, M. Siaj, S. Xiao, M. Myers, V.D. Carpentier, L. Liu, C. Su, M.L. Steigerwald, M.S. Hybertsen, P.H. McBreen, et al, “Forming Aromatic Hemispheres on Transition-Metal Surfaces,” Angewandte Chemie (International ed. in English) 46, no. 41 (2007): 7891–5. doi:10.1002/anie.200701117.
  • Y.S. Cohen, S. Xiao, M.L. Steigerwald, C. Nuckolls, and C.R. Kagan, “Enforced One-Dimensional Photoconductivity in Core-Cladding Hexabenzocoronenes,” Nano Letters 6, no. 12 (2006): 2838–41.
  • S.J. Kang, J.B. Kim, C.Y. Chiu, S. Ahn, T. Schiros, S.S. Lee, K.G. Yager, M.F. Toney, Y.L. Loo, and C. Nuckolls, “A Super Molecular Complex in Small Molecule Solar Cells Based on Contorted Aromatic Molecules,” Angewandte Chemie International Edition 51, no. 34 (2012): 8594–7. doi:10.1002/anie.201203330.
  • J. Yu, Y. Chen, Y.H. Zhang, X. Xu, and Y. Liu, “Super Molecular Assembly of Coronene Derivatives for Drug Delivery,” Organic Letters 18, no. 18 (2016): 4542–5. doi:10.1021/acs.orglett.6b02183.
  • G. Chiappe, E. Louis, A. Guijarro, E. San-Fabián, and J.A. Vergés, “Exponential Decay of Spin-Spin Correlation between Distant Defect States Produced by Contour Hydrogenation of Polycyclic Aromatic Hydrocarbon Molecules,” Physical Reviews B 87, no. 12 (2013): 125126.
  • S. Prabhu, G. Murugan, M. Arockiaraj, M. Arulperumjothi, and V. Manimozhi, “Molecular Topological Characterization of Three Classes of Polycyclic Aromatic Hydrocarbons,” Journal of Molecular Structure 1229 (2021): 129501. doi:10.1016/j.molstruc.2020.129501.
  • K. Julietraja, P. Venugopal, and P. Chellamani, “Topological Analysis of PAHs Using Irregularity Based Indices,” Biointerface Research in Applied Chemistry 12, no. 3 (2022): 2970–87.
  • E. Deutsch, and S. Klavžar, “M-Polynomial and Degree-Based Topological Indices,” Iranian Journal of Mathematical Chemistry 6, no. 2 (2015): 93–102.
  • Y.-M. Chu, K. Julietraja, P. Venugopal, M.K. Siddiqui, and S. Prabhu, “Degree-and Irregularity-Based Molecular Descriptors for Benzenoid Systems,” The European Physical Journal Plus 136, no. 1 (2021): 1–17. doi:10.1140/epjp/s13360-020-01033-z.
  • J.-B. Liu, M. Arockiaraj, M. Arulperumjothi, and S. Prabhu, “Distance Based and Bond Additive Topological Indices of Certain Repurposed Antiviral Drug Compounds Tested for Treating COVID-19,” International Journal of Quantum Chemistry 121, no. 10 (2021): e26617.
  • K. Julietraja, P. Venugopal, S. Prabhu, and J.-B. Liu, “M-Polynomial and Degree-Based Molecular Descriptors of Certain Classes of Benzenoid Systems,” Polycyclic Aromatic Compounds (2021): 1–30. doi:10.1080/10406638.2020.1867205.
  • M. Radhakrishnan, S. Prabhu, M. Arockiaraj, and M. Arulperumjothi, “Molecular Structural Characterization of Superphenalene and Supertriphenylene,” International Journal of Quantum Chemistry 122, no. 2 (2022): e26818. doi:10.1002/qua.26818.
  • V. Gayathri, R. Muthucumaraswamy, S. Prabhu, and M.R. Farahani, “Omega, Theta, PI, Sadhana Polynomials, and Subsequent Indices of Convex Benzenoid System,” Computational and Theoretical Chemistry 1203 (2021): 113310. doi:10.1016/j.comptc.2021.113310.
  • S.M. Hosamani, “Computing Sanskruti Index of Certain Nanostructures,” Journal of Applied Mathematics and Computing 54, no. 1–2 (2017): 425–33. doi:10.1007/s12190-016-1016-9.
  • S. Mondal, N. De, and A. Pal, “On Some New Neighborhood Degree Based Indices,” Acta Chemica Iasi 27, no. 1 (2019): 31–46. doi:10.2478/achi-2019-0003.
  • S. Mondal, N. De, and A. Pal, “QSPR Analysis of Some Novel Neighborhood Degree Based Topological Descriptors” (arXiv: 1906.06660, 2019).
  • M. Ghorbani, and M.A. Hosseinzadeh, “A Note of Zagreb Indices of Nanostar Dendrimers,” Optoelectronics and Advanced Materials-Rapid Communications 4, no. 11 (2010): 1877–80.
  • A. Verma, S. Mondal, N. De, and A. Pal, “Topological Properties of Bismuth-Tri-Iodide Using Neighborhood M-Polynomial,” International Journal of Mathematics Trends and Technology 65, no. 10 (2019): 83–90.
  • K. Julietraja, P. Venugopal, S. Prabhu, A.K. Arulmozhi, and Muhammad Kamran Siddiqui, “Structural Analysis of Three Types of PAHs Using Entropy Measures,” Polycyclic Aromatic Compounds (2021): 1–31. doi: 10.1080/10406638.2021.1884101
  • K. Julietraja, P. Venugopal, S. Prabhu, S. Deepa, and Muhammad Kamran Siddiqui, “Molecular Structural Descriptors of Donut Benzenoid Systems,” Polycyclic Aromatic Compounds (2022). doi: 10.1080/10406638.2021.1885456
  • K. Julietraja, and P. Venugopal, “Computation of Degree-Based Topological Descriptors Using M-Polynomial for Coronoid Systems,” Polycyclic Aromatic Compounds 42, no. 4 (2022): 1770–93. doi:10.1080/10406638.2020.1804415.
  • Weidong Zhao, K. Julietraja, P. Venugopal, and Xiujun Zhang, “VDB Entropy Measures and Irregularity-Based Indices for Rectangular Kekulene System,” Journal of Mathematics 2021 (2021): 1–15. doi:10.1155/2021/7404529.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.