137
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Polyphenolic Phytochemicals Exhibit Promising SARS-COV-2 Papain Like Protease (PLpro) Inhibition Validated through a Computational Approach

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5545-5566 | Received 28 Feb 2022, Accepted 14 Jul 2022, Published online: 28 Jul 2022

References

  • David S. Hui, Esam I Azhar, Tariq A. Madani, Francine Ntoumi, Richard Kock, Osman Dar, Giuseppe Ippolito, Timothy D. Mchugh, Ziad A. Memish, Christian Drosten, et al., “The Continuing 2019-nCoV Epidemic Threat of Novel Coronaviruses to Global Health—The Latest 2019 Novel Coronavirus Outbreak in Wuhan, China,” International Journal of Infectious Diseases 91 (2020): 264–6. doi:10.1016/j.ijid.2020.01.009.
  • Hyun Lee, Hao Lei, Bernard D. Santarsiero, Joseph L. Gatuz, Shuyi Cao, Amy J. Rice, Kavankumar Patel, Michael Z. Szypulinski, Isabel Ojeda, Arun K. Ghosh, et al., “Inhibitor Recognition Specificity of MERS-CoV Papain-like Protease May Differ from That of SARS-CoV,” ACS Chemical Biology 10, no. 6 (2015): 1456–65. doi:10.1021/cb500917m.
  • K. Dutta, D. Ghosh, and A. Basu, “Curcumin Protects Neuronal Cells from Japanese Encephalitis Virus-Mediated Cell Death and Also Inhibits Infective Viral Particle Formation by Dysregulation of the Ubiquitin-Proteasome System,” Journal of Neuroimmune Pharmacology 4, no. 3 (2009): 328–37. doi:10.1007/s11481-009-9158-2.
  • M. Działo, J. Mierziak, U. Korzun, M. Preisner, J. Szopa, and A. Kulma, “The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders,” International Journal of Molecular Sciences 17, no. 2 (2016): 160. doi:10.3390/ijms17020160.
  • A. Allouche, “Software News and Updates Gab Edit — A Graphical User Interface for Computational Chemistry Software,” Journal of Computational Chemistry 32, no. 1 (2011): 174–82. doi:10.1002/jcc.21600.
  • K.O. Chang, Y. Kim, S. Lovell, A.D. Rathnayake, and W.C. Groutas, “Antiviral Drug Discovery: Norovirus Proteases and Development of Inhibitors,” Viruses 11, no. 2 (2019): 197–14. doi:10.3390/v11020197.
  • J.R. Clasman, R.K. Everett, K. Srinivasan, and A.D. Mesecar, “Decoupling deISGylating and Deubiquitinating Activities of the MERS Virus Papain-like Protease,” Antiviral Research 174 (2020): 104661. doi:10.1016/j.antiviral.2019.104661.
  • Che C. Colpitts, Luis M. Schang, Heni Rachmawati, Anne Frentzen, Stephanie Pfaender, Patrick Behrendt, Richard J.P. Brown, Dorothea Bankwitz, Joerg Steinmann, Michael Ott, et al., “Turmeric Curcumin Inhibits Entry of All Hepatitis C Virus Genotypes into Human Liver Cells,” British Medical Journal of Gut 63, no. 7 (2014): 1137–49. doi:10.1136/gutjnl-2012-304299.
  • O. Trott, and A.J. Olson, “Auto-Dock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–46. doi:10.1002/jcc.21334.
  • D. Guzenko, S.K. Burley, and J.M. Duarte, “Real-Time Structural Search of the Protein Data Bank,” PLoS Computational Biology 16, no. 7 (2020): e1007970. doi:10.1371/journal.pcbi.1007970.
  • E.J. Snijder, E. Decroly, and J. Ziebuhr, “The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing,” Journal of Advanced Virus Research 96 (2016): 59–126.
  • B.D. Lindenbach, and C.M. Rice, “The Ins and Outs of Hepatitis C Virus Entry and Assembly,” Nature Reviews. Microbiology 11, no. 10 (2013): 688–700. doi:10.1038/nrmicro3098.
  • R. Kong, G. Yang, R. Xue, M. Liu, F. Wang, J. Hu, X. Guo, and S. Chang, “COVID-19 Docking Server: An Interactive Server for Docking Small Molecules, Peptides and Antibodies against Potential Targets of COVID-19,” Journal of Quantitative Biology 36, no. 20 (2003):5109-5111. doi: 10.1093/bioinformatics/btaa645.
  • L.T. Lin, W.C. Hsu, and C.C. Lin, “Antiviral Natural Products and Herbal Medicines,” Journal of Traditional and Complementary Medicine 4, no. 1 (2014): 24–35. doi:10.4103/2225-4110.124335.
  • Holger A. Lindner, Viktoria Lytvyn, Hongtao Qi, Paule Lachance, Edmund Ziomek, and Robert Ménard, “Selectivity in ISG15 and Ubiquitin Recognition by the SARS Coronavirus Papain-like Protease,” Archives of Biochemistry and Biophysics 466, no. 1 (2007): 8–14. doi:10.1016/j.abb.2007.07.006.
  • K. Ratia, A. Kilianski, Y.M. Baez-Santos, S.C. Baker, and A. Mesecar, “Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease,” PLoS Pathogens, 510 (2014): e1004113.
  • C.Y. Yiu, S.Y. Chen, L.K. Chang, Y.F. Chiu, and T.P. Lin, “Inhibitory Effects of Resveratrol on the Epstein-Barr Virus Lytic Cycle,” Molecules 15, no. 10 (2010): 7115–24. doi:10.3390/molecules15107115.
  • Li Zhang, Yuanyuan Li, Zhiwen Gu, Yuyue Wang, Mei Shi, Yun Ji, Jing Sun, Xiaopeng Xu, Lirong Zhang, Jingtin Jiang, et al., “Resveratrol Inhibits Enterovirus 71 Replication and Pro-Inflammatory Cytokine Secretion in Rhabdosarcoma Cells through Blocking IKKs/NF-κB Signaling Pathway,” PLoS One 10, no. 2 (2015): e0116879. doi:10.1371/journal.pone.0116879.
  • S.A. Faith, T.J. Sweet, E. Bailey, T. Booth, and J.J. Docherty, “Resveratrol Suppresses Nuclear Factor-kappaB in Herpes Simplex Virus-Infected Cells,” Antiviral Research 72, no. 3 (2006): 242–51. doi:10.1016/j.antiviral.2006.06.011.
  • Chao-Jen Lin, Hui-Ju Lin, Ter-Hsin Chen, Yu-An Hsu, Chin-San Liu, Guang-Yuh Hwang, and Lei Wan, “Polygonumcuspidatum and Its Active Components Inhibit Replication of the Influenza Virus through Toll-like Receptor 9-Induced Interferon Beta Expression,” PLoS One 10, no. 2 (2015): e0117602. doi:10.1371/journal.pone.0117602.
  • Ahmed M. Sayed, Amira R. Khattab, Asmaa M. AboulMagd, Hossam M. Hassan, Mostafa E. Rateb, Hala Zaid, and Usama Ramadan Abdelmohsen, “Nature as a Treasure Trove of Potential anti-SARS-CoV Drug Leads: A Structural/Mechanistic Rationale,” RSC Advances 10, no. 34 (2020): 19790–802. doi:10.1039/d0ra04199h.
  • Hongbin Yang, Chaofeng Lou, Lixia Sun, Jie Li, Yingchun Cai, Zhuang Wang, Weihua Li, Guixia Liu, and Yun Tang, “AdmetSAR 2.0: Web-Service for Prediction and Optimization of Chemical ADMET Properties,” Bioinformatics 35, no. 6 (2019): 1067–9. doi:10.1093/bioinformatics/bty707.
  • M.Z. Tay, C.M. Poh, L. Rénia, P.A. MacAry, and L.F.P. Ng, “The Trinity of COVID-19: Immunity, Inflammation, and Intervention,” Nature Reviews. Immunology 20, no. 6 (2020): 363–74. doi:10.1038/s41577-020-0311-8.
  • R. Thirumalaisamy, P. Murugan, P. Srinivasan, S. Arjunan, and T. Selvankumar, “Phytochemical 6-Gingerol – A Promising Drug of Choice for COVID-19,” International Journal of Advanced Science and Engineering 6 (2020): 1482–9.
  • R. Thirumalaisamy, V. Aroulmoji, M.N. Iqbal, M. Deepa, C. Sivasankar, R. Khan, and T. Selvankumar, “Molecular Insights of the Hyaluronic Acid-Hydroxychloroquine Conjugate as a Promising Drug in Targeting SARS-CoV-2 Viral Proteins,” Journal of Molecular Structure 1238 (2021): 130457. doi:10.1016/j.molstruc.2021.130457.
  • Zhe Wang, Huiyong Sun, Xiaojun Yao, Dan Li, Lei Xu, Youyong Li, Sheng Tian, and Tingjun Hou, “Comprehensive Evaluation of Ten Docking Programs on a Diverse Set of Protein-Ligand Complexes: The Prediction Accuracy of Sampling Power and Scoring Power,” Physical Chemistry Chemical Physics 18, no. 18 (2016): 12964–75. doi:10.1039/c6cp01555g.
  • K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis, I. Kolossvary, M.A. Moraes, F.D. Sacerdoti, et al., “Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters” (Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06, 2006, November), 1188455–1188544. doi:10.1145/1188455.1188544.
  • Surjeet Verma, Danielle Twilley, Tenille Esmear, Carel B. Oosthuizen, Anna-Mari Reid, Marizé Nel, and Namrita Lall, “Anti-SARS-CoVid Natural Products with the Potential to Inhibit SARS-CoV-2 (COVID-19),” Frontiers in Pharmacology 11 (2020): 1514. doi:10.3389/fphar.2020.561334.
  • A. Elfiky, and N.S. Ibrahim, “Anti-SARS and Anti-HCV Drugs Repurposing against the Papain-like Protease of the Newly Emerged Coronavirus (2019-nCoV),” Biomedical and Pharmacology Journal 13, no. 2 (2020): 873–81.
  • A. Fehr, and S. Perlman, “Coronavirus: An Overview of Their Replication and Pathogenesis,” Methods in Molecular Biology 1282 (2015): 1–23.
  • Dae Wook Kim, Kyung Hye Seo, Marcus J. Curtis-Long, Kyeong Yeol Oh, Jong-Won Oh, Jung Keun Cho, Kon Ho Lee, and Ki Hun Park, “Phenolic Phytochemical Displaying SARS-CoV Papain-like Protease Inhibition from the Seeds of Psoralea Corylifolia,” Journal of Enzyme Inhibition and Medicinal Chemistry 29, no. 1 (2014): 59–63.
  • Kazuya Mori, Toshitaka Kido, Haruyuki Daikuhara, Iwao Sakakibara, Toshiya Sakata, Keiko Shimizu, Sakae Amagaya, Hiroshi Sasaki, and Yasuhiro Komatsu, “Effect of Hochu-Ekki-to (TJ-41), a Japanese Herbal Medicine, on the Survival of Mice Infected with Influenza Virus,” Antiviral Research 44, no. 2 (1999): 103–11. doi:10.1016/S0166-3542(99)00048-0.
  • B.C. Mounce, T. Cesaro, L. Carrau, T. Vallet, and M. Vignuzzi, “Curcumin Inhibits Zika and Chikungunya Virus Infection by Inhibiting Cell-Binding,” Antiviral Research 142 (2017): 148–57. doi:10.1016/j.antiviral.2017.03.014.
  • C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Y. Wang, Q. Wang, Y. Xu, M. Li, X. Li, et al., “Analysis of Therapeutic Targets for SARS-CoV-2 and Discovery of Potential Drugs by Computational Methods,” Acta Pharmaceutica Sinica. B 10, no. 5 (2020): 766–44. doi:10.1016/j.apsb.2020.02.008.
  • B. Agostino, C. Gabriele, S. Luca, and R. Marco, “The In-Silico Drug Discovery Toolbox: Applications in Lead Discovery and Optimization,” Journal of Current Medicinal Chemistry 26 (2019): 3838–73.
  • N. Kumari, A.A. Kulkarni, X. Lin, C. McLean, T. Ammosova, A. Ivanov, M. Hipolito, S. Nekhai, and E. Nwulia, “Inhibition of HIV-1 by Curcumin A, a Novel Curcumin Analog,” Drug Design, Development and Therapy 9 (2015): 5051–60. doi:10.2147/DDDT.S86558.
  • D. Weininger, “Smiles, a Chemical Language and Information System. Introduction to Methodology and Encoding Rules,” Journal of Chemical Information and Modeling 28, no. 1 (1988): 31–6. doi:10.1021/ci00057a005.
  • M. Wink, “Modes of Action of Herbal Medicines and Plant Secondary Metabolites,” Medicines 2, no. 3 (2015): 251–86. no doi:10.3390/medicines2030251.
  • Y. Han, J. Zhang, C.Q. Hu, X. Zhang, B. Ma, and P. Zhang, “In Silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities,” Frontiers in Pharmacology 10 (2019): 434. doi:10.3389/fphar.2019.00434.
  • Y.M. Baez-Santos, S.E. St John, and A.D. Mesecar, “The SARS-Coronavirus Papain-Like Protease: Structure, Function, and Inhibition by Designed Antiviral Compounds,” Antiviral Research 115 (2015): 21–38. doi:10.1016/j.antiviral.2014.12.015.
  • A. Daina, O. Michielin, and V. Zoete, “Swiss ADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7 (2017): 42717–3. doi:10.1038/srep42717.
  • J. Zaretzki, C. Bergeron, T-w. Huang, P. Rydberg, S.J. Swamidass, and C.M. Breneman, “RS-WebPredictor: A Server for Predicting CYPmediated Sites of Metabolism on Drug-like Molecules,” Bioinformatics 29, no. 4 (2013): 497–8. doi:10.1093/bioinformatics/bts705.
  • M. Wagener, and V.J. Van Geerestein, “Potential Drugs and Nondrugs: Prediction and Identification of Important Structural Features,” Journal of Chemical Information and Computer Sciences 40, no. 2 (2000): 280–92. doi:10.1021/ci990266t.
  • Aramice Y.S. Malkhasian, and Brendan J. Howlin, “Docking and DFT Studies on Ligand Binding to Quercetin 2,3-Dioxygenase,” Journal of Biomolecular Structure & Dynamics 34, no. 11 (2016): 2453–22. doi:10.1080/07391102.2015.1123190.
  • Vineet D. Menachery, Boyd L. Yount, Kari Debbink, Sudhakar Agnihothram, Lisa E. Gralinski, Jessica A. Plante, Rachel L. Graham, Trevor Scobey, Xing-Yi Ge, Eric F. Donaldson, et al., “A SARS-like Cluster of Circulating Bat Coronaviruses Shows Potential for Human Emergence,” Nature Medicine 21, no. 12 (2015): 1508–6. doi:10.1038/nm.3985.
  • G. Annunziata, M. Jiménez-García, X. Capó, D. Moranta, A. Arnone, G.C. Tenore, A. Sureda, and S. Tejada, “Microencapsulation as a Tool to Counteract the Typical Low Bioavailability of Polyphones in the Management of Diabetes,” Food and Chemical Toxicology 139 (2020): 111248. doi:10.1016/j.fct.2020.111248.
  • W.A. De Lima, “Flexibility in the Molecular Design of Acetylcholinesterase Reactivators: Probing Representative Conformations by Chemometric Techniques and Docking/QM Calculations,” Letters in Drug Design and Discovery 13 (2016): 360–71.
  • H. Noor, A. Ikram, T. Rathinavel, S. Kumarasamy, M. Nasir Iqbal, and Z. Bashir, “Immunomodulatory and anti-Cytokine Therapeutic Potential of Curcumin and Its Derivatives for Treating COVID-19–A Computational Modeling,” Journal of Biomolecular Structure and Dynamics 0, no. 0 (2021): 1–16. doi:10.1080/07391102.2021.1873190.
  • A. Ajay, W.P. Walters, and M.A. Murcko, “Can We Learn to Distinguish between ‘Drug-like ‘and ‘Nondrug-like ‘Molecules?’,” Journal of Medicinal Chemistry 41, no. 18 (1998): 3314–24. doi:10.1021/jm970666c.
  • A. Mazumder, K. Raghavan, J. Weinstein, K.W. Kohn, and Y. Pommier, “Inhibition of Human Immunodeficiency Virus Type-1 Integrase by Curcumin,” Biochemical Pharmacology 49, no. 8 (1995): 1165–70. doi:10.1016/0006-2952(95)98514-A.
  • T. Ira, and Z. Zlatin, “Total Phenolic Content and Antioxidant Activity of Yogurt with Goji Berries (Lyciumbarbarum),” Journal of Scientific Study & Research: Chemistry & Chemical Engineering, Biotechnology, Food Industry 21, no. 1 (2020): 125–31.
  • Donghyuk Shin, Rukmini Mukherjee, Diana Grewe, Denisa Bojkova, Kheewoong Baek, Anshu Bhattacharya, Laura Schulz, Marek Widera, Ahmad Reza Mehdipour, Georg Tascher, et al., “Papain-like Protease Regulates SARS-CoV-2 Viral Spread and Innate Immunity,” Nature 587, no. 7835 (2020): 657–62. doi:10.1038/s41586-020-2601-5.
  • Tudor I. Oprea, Sonny Kim Nielsen, Oleg Ursu, Jeremy J. Yang, Olivier Taboureau, Stephen L. Mathias, Lrene Kouskoumvekaki, Larry A. Sklar, and Cristian G. Bologa, “Associating Drugs, Targets and Clinical Outcomes into an Integrated Network Affords a New Platform for Computer-Aided Drug Repurposing,” Molecular Informatics 30, no. 2–3 (2011): 100–11. doi:10.1002/minf.201100023.
  • S. Prasad, and B.B. Aggarwal, “Turmeric the Golden Spice in Herbal Medicine,” Journal of Biomolecular and Clinical Aspects (2011) Chapter 13.
  • Y. Wang, C. Wu, Y. Liu, Y. Yang, P. Zhang, W. Zhong, Q. Wang, Y. Xu, M. Li, X. Li, et al., “Analysis of Therapeutic Targets for SARS-CoV-2 and Discovery of Potential Drugs by Computational Methods,” Journal of Acta Pharmaceutica Sinica B 20 (2020): 1–44.
  • Hari Krishna Anantha, Scott Parker, Erin Touchette, R. Mark Buller, Gopi Patel, Daniel Kalman, J. S. Salzer, N. Gallardo-Romero, V. Olson, I.K. Damon et al., “Preclinical Pharmacokinetic Evaluation to Facilitate Repurposing of Tyrosine Kinase Inhibitors Nilotinib and Imatinib as Antiviral Agents,” British Medicinal Chemistry Pharmacology and Toxicology 19, no. 1 (2018): 80–270.
  • Periyannan Velu, Thirumalaisamy Rathinavel, Suresh Kumarasamy, Muhammad Nasir Iqbal, Hasnat Noor, Ayesha Ikram, Karthika Rajamanickam, and Gyanendra Shanmugam, “Whole-Genome Analysis and Homology Modeling of SARS-CoV-2 Indian Isolate Reveal Potent FDA Approved Drug Choice for Treating COVID-19,” Journal of Biomolecular Structure and Dynamics 20 (2022): 72–82.
  • Banoth Karan Kumar, Kondapalli Venkata Gowri Chandra Sekhar, Rupal Ojha, Vijay Kumar Prajapati, Aravinda Pai, and Sankaranarayanan Murugesan, “Pharmacophore Based Virtual Screening, Molecular Docking, Molecular Dynamics and MM-GBSA Approach for Identification of Prospective SARS-CoV-2 Inhibitor from Natural Product Databases,” Journal of Biomolecular Structure & Dynamics 40, no. 3 (2022): 1363–24. doi:10.1080/07391102.2020.1824814.
  • R. Kaul, P. Paul, S. Kumar, D. Büsselberg, V.D. Dwivedi, and A. Chaari, “Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets-Systematic Review,” International Journal of Molecular Sciences 22, no. 20 (2021): 11069. doi:10.3390/ijms222011069.
  • Helen M. Berman, Tammy Battistuz, T.N. Bhat, Wolfgang F. Bluhm, Philip E. Bourne, Kyle Burkhardt, Zukang Feng, Gary L. Gilliland, Lisa Iype, Shri Jain, et al., “The Protein Data Bank,” Acta Crystallographica. Section D, Biological Crystallography 58, no. Pt 6 No 1 (2002): 899–907. doi:10.1107/s0907444902003451.
  • Dongyue Cao, Junmei Wang, Rui Zhou, Youyong Li, Huidong Yu, and Tingjun Hou, “ADMET Evaluation in Drug Discovery. 11. PharmacoKinetics Knowledge Base (PKKB): A Comprehensive Database of Pharmacokinetic and Toxic Properties for Drugs,” Journal of Chemical Information and Modeling 52, no. 5 (2012): 1132–7. doi:10.1021/ci300112j.
  • M.T. Islam, C. Sarkar, D.M. El-Kersh, S. Jamaddar, S.J. Uddin, J.A. Shilpi, and M.S. Mubarak, “Natural Products and Their Derivatives against Coronavirus: A Review of the Non-Clinical and Pre-Clinical Data,” Phytotherapy Research: PTR 34, no. 10 (2020): 2471–22. doi:10.1002/ptr.6700.
  • W. Tian, C. Chen, and J. Liang, “CASTp 3.0: computed Atlas of Surface Topography of Proteins and beyond,” Biophysical Journal 114, no. 3 (2018): 50a. doi:10.1016/j.bpj.2017.11.325.
  • M. Martínez-Archundia, T.G. Hernández Mojica, J. Correa-Basurto, S. Montaño, and A. Camacho-Molina, “Molecular Dynamics Simulations Reveal Structural Differences among Wild-Type NPC1 Protein and Its Mutant Forms,” Journal of Biomolecular Structure & Dynamics 38, no. 12 (2020): 3527–9. doi:10.1080/07391102.2019.1664324.
  • Alejandra Ward, Gayathri Sivakumar, Sindu Kanjeekal, Caroline Hamm, Brayden C. Labute, David Shum, and and John W. Hudson, “The Deregulated Promoter Methylation of the Polo-like Kinases as a Potential Biomarker in Hematological Malignancies,” Leukemia and Lymphoma 97 (2015): 1–11.
  • Samuel Genheden, and Ulf Ryde, “Ulf the MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities,” Expert Opinion on Drug Discovery 10, no. 5 (2015): 449–61.
  • Shih-Wen Li, Ching-Ying Wang, Yu-Jen Jou, Su-Hua Huang, Li-Hsin Hsiao, Lei Wan, Ying-Ju Lin, Szu-Hao Kung, and Cheng-Wen Lin, “SARS Coronavirus Papain-like Protease Inhibits the TLR7 Signaling Pathway through Removing Lys63-Linked Polyubiquitination of TRAF3 and TRAF6,” International Journal of Molecular Sciences 17, no. 5 (2016): 678. doi:10.3390/ijms17050678.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.