131
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular Structure, Spectroscopic, Quantum Computational, and Molecular Docking Investigations on Propyl Gallate

, ORCID Icon, &
Pages 5747-5767 | Received 07 Jun 2022, Accepted 18 Jul 2022, Published online: 11 Aug 2022

References

  • F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W. Tao, J.-H. Tian, Y.-Y. Pei, et al., “A New Coronavirus Associated with Human Respiratory Disease in China,” Nature 579, no. 7798 (2020): 265–9.
  • D. E. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier, K. M. White, M. J. O'Meara, V. V. Rezelj, J. Z. Guo, D. L. Swaney, et al., “A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing,” Nature 583, no. 7816 (2020): 459–68.
  • M. A. Shereen, S. Khan, A. Kazmi, N. Bashir, and R. Siddique, “COVID-19 Infection: origin, Transmission, and Characteristics of Human Coronaviruses,” Journal of Advanced Research 24 (2020): 91–8.
  • L. Du, Y. He, Y. Zhou, S. Liu, B.-J. Zheng, and S. Jiang, “The Spike Protein of SARS-CoV – a Target for Vaccine and Therapeutic Development,” Nature Reviews, Microbiology 7, no. 3 (2009): 226–36.
  • D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C.-L. Hsieh, O. Abiona, B. S. Graham, and J. S. McLellan, “Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation,” Science 367, no. 6483 (2020): 1260–3.
  • M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N.-H. Wu, A. Nitsche, et al., “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is Blocked by a Clinically Proven Protease Inhibitor,” Cell 181, no. 2 (2020): 271–80.e8.
  • T. P. Cushnie and A. J. Lamb, “Antimicrobial Activity of Flavonoids,” International Journal of Antimicrobial Agents 26, no. 5 (2005): 343–56.
  • S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B. A. Shoemaker, P. A. Thiessen, B. Yu, et al., “PubChem in 2021: new Data Content and Improved Web Interfaces,” Nucleic Acids Research 49, no. D1 (2021): D1388–D1395.
  • W. H. Brooks, W. C. Guida, and K. G. Daniel, “The Significance of Chirality in Drug Design and Development,” Current Topics in Medicinal Chemistry 11, no. 7 (2011): 760–70.
  • B. L. Podlogar, I. Muegge, and L. J. Brice, “Computational Methods to Estimate Drug Development Parameters,” Current Opinion in Drug Discovery & Development 4, no. 1 (2001): 102–9.
  • Gökce, H., Şen, F., Sert, Y., Abdel-Wahab, B. F., Kariuki, B. M., & El-Hiti, G. A. "Quantum computational investigation of (E)-1-(4-methoxyphenyl)-5-methyl-N′-(3-phenoxybenzylidene)-1 H-1, 2, 3-triazole-4-carbohydrazide," Molecules 27, no. 7 (2022): 2193.
  • V. Law, C. Knox, Y. Djoumbou, T. Jewison, A. C. Guo, Y. Liu, A. Maciejewski, D. Arndt, M. Wilson, V. Neveu, et al., “DrugBank 4.0: shedding New Light on Drug Metabolism,” Nucleic Acids Research 42, no. Database issue (2014): D1091–7.
  • National Center for Biotechnology Information, “PubChem Compound Summary for CID 4947,” Propyl gallate; 2022. Retrieved May 8, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Propyl-gallate.
  • Becker, L. Final report on the amended safety assessment of propyl gallate. International Journal of Toxicology 26 (2007) 89–118.
  • T. W. Wu, K. P. Fung, L. H. Zeng, J. Wu, and H. Nakamura, “Propyl Gallate as a Hepatoprotector in Vitro and in Vivo,” Biochemical Pharmacology 48, no. 2 (1994): 419–22.
  • Zhuang, Y., Guo, Z., Zhang, Q., Liu, J., Fei, P., & Huang, B. (2022). Preparation of functionalized pectin through acylation with alkyl gallates: Experiments coupled with density functional theory. International Journal of Biological Macromolecules202 (2022) 278-285.
  • B. Huang, Z. Zhang, N. Ding, B. Wang, G. Zhang, and P. Fei, “Investigation of the Pectin Grafting with Gallic Acid and Propyl Gallate and Their Antioxidant Activities, Antibacterial Activities and Fresh Keeping Performance,” International Journal of Biological Macromolecules 190 (2021): 343–50.
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al., Gaussian 16, Revision C.01 (Wallingford CT: Gaussian, Inc., 2016).
  • A. D. Becke, “Density-Functional Thermochemistry III, the Role of Exact Exchange,” Journal of Chemical Physics. 98, no. 7 (1993): 5648–52.
  • Zhurko, G. A., & Zhurko, D. A. (2014). Chemcraft. Version 1.7 (Build 132). HTML: www.chemcraftprog.com.
  • M. H. Jomroz, Vibrational Energy distribution Analysis VEDA4 (Warsaw, 2004).
  • Johnson III, R. D., & NIST, E. (2013). Computational chemistry comparison and benchmark database. NIST standard reference database101 (2013).
  • T. Osaki and S. Eiko, Quadratic Scaling Functions for Obtaining normal Vibrational Wavenumbers from the B3LYP Calculation, 42, no. 2 (2010): 129–134.
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports7, no. 1, (2017): 1–13.
  • S. Dallakyan, and A. J. Olson, “Small-Molecule Library Screening by Docking with PyRx,” Methods in Molecular Biology 1263 (2015): 243–50.
  • D. S. Biovia, Discovery Studio (San Diego: Dassault Systèmes, 2017).
  • M. Silverstein, G. C. Bassler, and C. Morril, Spectro-Scopic Identification of Organic Compounds, fifth ed. (Singapore: John Wiley & Sons Inc., 1991).
  • E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations (New York: Dover Publications Inc., 1980).
  • Dege, N., Gökce, H., Doğan, O. E., Alpaslan, G., Ağar, T., Muthu, S., & Sert, Y. Quantum computational, spectroscopic investigations on N-(2-((2-chloro-4, 5-dicyanophenyl) amino) ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with different solvents, molecular docking and drug-likeness researches. Colloids and Surfaces A: Physicochemical and Engineering Aspects638, (2022): 128311.“
  • K. Bhavani, S. Renuga, S. Muthu, and K. Sankara Narayanan, “Quantum Mechanical Study and Spectroscopic (FT-IR, FT-Raman, 13C, 1H) Study, First Order Hyperpolarizability, NBO Analysis, HOMO and LUMO Analysis of 2- Acetoxybenzoic Acid by Density Functional Methods,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136 (2015): 1260–8.
  • A. Choperena, and P. Painter, “An Infrared Spectroscopic Study of Hydrogen Bonding in Ethyl Phenol: A Model System for Polymer Phenolics,” Vibrational Spectroscopy. 51, no. 1 (2009): 110–8.
  • N. Swarnalatha, S. Gunasekaran, S. Muthu, and M. Nagarajan, “Molecular Structure Analysis and Spectroscopic Characterization of 9-Methoxy-2H-Furo[3,2-g]Chromen-2-One with Experimental (FT-IR and FT-Raman) Techniques and Quantum Chemical Calculations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 137 (2015): 721–9.
  • F. R. Dollish, W. G. Fateley, and F. F. Bentley, Characteristic Raman Frequencies of Organic Compounds (New York: Wiley, 1997).
  • G. Varsanyi, Vibrational Spectra of Benzene Derivatives (New York: Academic Press, 1969).
  • N. Sundaraganesan, S. Illakiamani, C. Meganathan, and B. D. Joshua, “Vibrational Spectroscopy Investigation Using ab Initio and Density Functional Theory Analysis on the Structure of 3-Aminobenzotrifluoride,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 67, no. 1 (2007): 214–24.
  • R. L. Peesole, L. D. Shield, and I. C Mc. Willam, Modern Methods of Chemical Analysis (New York: Wiley, 1976).
  • H. Tanak, F. Ersahin, E. Agar, O. Buyukgungor, and M. Yavuz, Analytical Sciences. 24 (2008): 237.
  • G. Socrates, Infrared Characteristic Frequencies, vol. 198 (New York: John Wiley and Sons, 2004).
  • S. Shahab, M.Sheikhi, L. Filippovich, D. E. Anatol’evich, and H. Yahyaei, “Quantumchemical Modeling, Spectroscopic (FT-IR, Excited States, UV/Vis, Polarization, and Dichroism) Studies of Two New Benzo[d]Oxazole Derivatives,” Journal of Molecular Structure 1137 (2017): 335–48.
  • Balakit, A. A., Makki, S. Q., Sert, Y., Ucun, F., Alshammari, M. B., Thordarson, P., & El-Hiti, G. A. Synthesis, spectrophotometric and DFT studies of new Triazole Schiff bases as selective naked-eye sensors for acetate anion. Supramolecular Chemistry 32, no. 10, (2020): 519–526.
  • P. Rajesh, S. Gunasekaran, A. Manikandan, and T. Gnanasambandan, “Structural, Spectral Analysis of Ambroxol Using DFT Methods,” Journal of Molecular Structure 1144 (2017): 379–88.
  • A. Ramazani, M. Sheikhi, Y. Hanifehpour, P. A. Asiabi, and S. W. Joo, “Molecular Structure, Electronic Properties, Homo–Lumo, MEP and NBO Analysis of (N-Isocyanimino) Triphenylphosphorane (Ph3PNNC): DFT Calculations,” Journal of Structural Chemistry 59, no. 3 (2018): 529–40.
  • J. Poater, M. Duran, M. Sola, and B. Silvi, “Theoretical Evaluation of Electron delocalization in aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches,” Chemical Reviews 105, no. 10 (2005): 3911–47.
  • B. Fathima Rizwana, J. Christian Prasana, S. Muthu, and C. S. Abraham, “Molecular Docking Studies, Charge Transfer Excitation and Wave Function Analyses (ESP, ELF, LOL) on Valacyclovir: A Potential Antiviral Drug,” Computational Biology and Chemistry 78 (2019): 9–17.
  • Abdulridha, A. A., Allah, M. A. A. H., Makki, S. Q., Sert, Y., Salman, H. E., & Balakit, A. A. Corrosion inhibition of carbon steel in 1 M H2SO4 using new Azo Schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. Journal of Molecular Liquids 315, (2020): 113690.
  • C. S. Abraham, J. C. Prasana, S. Muthu, F. Rizwana B, and M. Raja, “Quantum Computational Studies, Spectroscopic (FT-IR, FT-Raman and UV–Vis) Profiling, Natural Hybrid Orbital and Molecular Docking Analysis on 2, 4 Dibromoaniline,” Journal of Molecular Structure 1160 (2018): 393–405.
  • P. Politzer, and P. Lane, “A Computational Study of Some Nitrofluoromethanes,” Structural Chemistry 1, no. 2–3 (1990): 159–64.
  • Patricio Fuentealba, E. Chamorro, Juan C. Santos, [Theoretical and Computational Chemistry] Theoretical Aspects of Chemical Reactivity Volume 19 ǁ Chapter 5 Understanding and using the Electron Localization Function, 2007. 57–85.
  • H. Jacobsen, “Hypovalency–a Kinetic-Energy Density Description of a 4c-2e Bond,” Dalton Transactions, no. 21 (2009): 4252–8.
  • R. S. Saji, J. C. Prasana, S. Muthu, J. George, T. K. Kuruvilla, and B. R. Raajaraman, “Spectroscopic and Quantum Computational Study on Naproxen Sodium,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 226 (2020): 117614.
  • B. Fathima Rizwana, S. Muthu, J. Christian Prasana, C. S. Abraham, and M. Raja, “Spectroscopic (FT-IR,FT-Raman) Investigation, Topology(ESP,ELF,LOL) Analyses, Charge Transfer Excitation and Molecular Docking (Dengue, HCV) Studies on Ribavirin,” Chemical Data Collections. 17–18 (2018): 236–50.
  • B. Fathima Rizwana, J. C. Prasana, C. S. Abraham, and S. Muthu, “Spectroscopic Investigation, Hirshfeld Surface Analysis and Molecular Docking Studies on Antiviral Drug Entecavir,” Journal of Molecular Structure 1164 (2018): 447–58.
  • G. Saleh, C. Gatti, and LLo. Presti, “Non-Covalent Interaction via the Reduced Density Gradient: independent Atom Model vs Experimental Multipolar Electron Densities,” Computational and Theoretical Chemistry 998 (2012): 148–63.
  • S. Muthu, and E. I. Paulraj, “EI Paulraj Molecular Structure, Vibrational Spectra, First Order Hyper Polarizability, NBO and HOMO-LUMO Analysis of 4-Amino-3 (4-Chlorophenyl) Butanoic Acid,” Solid State Sciences 14, no. 4 (2012): 476–87.
  • P. Rajesh, P. Kandan, S. Sathish, A. Manikandan, S. Gunasekaran, T. Gnanasambandan, and S. Bala Abirami, “Vibrational Spectroscopic, UV-Vis, Molecular Structure and NBO Analysis of Rabeprazole,” Journal of Molecular Structure 1137 (2017): 277–91.
  • Raja, M., R. Raj Muhamed, S. Muthu, and M. Suresh. “Synthesis, spectroscopic (FT-IR, FT-Raman, NMR, UV–Visible), NLO, NBO, HOMO-LUMO, Fukui function and molecular docking study of (E)-1-(5-bromo-2-hydroxybenzylidene) semicarbazide.” Journal of Molecular Structure 1141 (2017): 284–298.
  • A. Ramesh, S. Gunasekaran, and R. Ramkumar, “Molecular Structure, Vibrational Spectra, UV-Visible and NMR Spectral Analysis on Ranitidine Hydrochloride Using AB Initio and DFT Methods,” International Journal of Current Research and Academic review 3, no. 11 (2015): 117–38.
  • A. O. Zacharias, A. Varghese, K. B. Akshaya, M. S. Savitha, and L. George, “DFT, Spectroscopic Studies, NBO, NLO and Fukui Functional Analysis of 1-(1-(2, 4-Difluorophenyl)-2-(1H-1, 2, 4-Triazol-1-yl) Ethylidene) Thiosemicarbazide,” Journal of Molecular Structure 1158 (2018): 1–13.
  • S. Muthu, and J. Uma Maheswari, “Quantum Mechanical Study and Spectroscopic (FT-IR, FT-Raman, 13C, 1H, UV) Study, First Order Hyperpolarizability, NBO Analysis, HOMO and LUMO Analysis of 4-[(4-Aminobenzene) Sulfonyl] Aniline by ab Initio HF and Density Functional Method,” Spectrochimica Acta, Part A, Molecular and Biomolecular Spectroscopy 92 (2012): 154–63.
  • R. Zhang, B. Du, G. Sun, and Y. X. Sun, “Experimental and Theoretical Studies on o-, m- and p-Chlorobenzylideneaminoantipyrines, Spectrochim,” Spectrochimica Acta, Part A, Molecular and Biomolecular Spectroscopy 75, no. 3 (2010): 1115–24.
  • C. S. Abraham, S. Muthu, J. C. Prasana, S. J. Armaković, S. Armaković, F. Rizwana B, and B. Geoffrey A. S., “Spectroscopic Profiling (FT-IR, FT-Raman, NMR and UV-Vis), Autoxidation Mechanism (H-BDE) and Molecular Docking Investigation of 3-(4- Chlorophenyl)-N,N-Dimethyl-3-Pyridin-2-Ylpropan-1-Amine by DFT/TD-DFT and Molecular Dynamics: A Potential SSRI Drug,” Computational Biology and Chemistry 77 (2018): 131–45.
  • S. Muthu, G. Ramachandran, and J. U. Maheswari, “Vibrational Spectroscopic Investigation on the Structure of 2-Ethylpyridine-4-Carbothioamide,” Spectrochimica Acta, Part A, Molecular and Biomolecular Spectroscopy 93 (2012): 214–22.
  • V. K. Rastogi, M. A. Palafox, L. Mittal, N. Peica, W. Kiefer, K. Lang, and S. P. Ojha, “FTIR and FT-Raman Spectra and Density Functional Computations of the Vibrational Spectra, Molecular Geometry and Atomic Charges of the Biomolecule: 5- Bromouracil,” Journal of Raman Spectroscopy 38, no. 10 (2007): 1227–41.
  • S. Gunasekaran, R. A. Balaji, S. Kumaresan, G. Anand, and S. Srinivasan, “Experimental and Theoretical Investigations of Spectroscopic Properties of N-acetyl5-Methoxytryptamine,” Canadian Journal of Analytical Science Spectroscopy 53 (2008): 149–60.
  • T. Joselin Beaula, I. Hubert Joe, V. K. Rastogi, and V. Bena Jothy, “Spectral Investigations, DFT Computations and Molecular Docking Studies of the Antimicrobial 5-Nitroisatin Dimer,” Chemical Physics Letters. 624 (2015): 93–101.
  • M. Balouiri, M. Sadiki, and S. K. Ibnsouda, “Methods for in Vitro Evaluating Antimicrobial Activity: A Review,” Journal of Pharmaceutical Analysis 6, no. 2 (2016): 71–9.
  • M. Digrak, E. Bagci, and M. H. Alma, “Antibiotic Action of Seed Lipids from Five Tree Species Grown in Turkey,” Pharmaceutical Biology. 40, no. 6 (2002): 425–8.
  • T. Lu, and Q. Chen, “Interaction Region Indicator (IRI): a Simple Real Space Function Clearly Revealing Both Chemical Bonds and Weak Interactions,” Chemistry–Methods 1, no. 5 (2021): 231–9.
  • J. Sadique, W. A. Al-Rqobah, M. E. Bugharlth, and A. R. ElGindy, “The Bioactivity of Certain Medicinal Plants on the Stabilization of RBC Membrane System,” Fitoterapia LX, no. 6 (1989): 525–32.
  • P. Rajakumar, and R. Anandhan, “Synthesis and in-Vitro anti-Inflamatory Activity of Novel Glycodendrimers with Benzene 1,3,5 Carboxamide Core and Triazole as Branching Unit,” European Journal of Medicinal Chemistry 46, no. 9 (2011): 4687–95.
  • G. Sangeetha, and R. Vidhya, “In Vitro anti-Inflammatory Activity of Different Parts of Pedalium Murex (L.),” International Jouranl of Herbal Medicine 4, no. 3 (2016): 31–6.
  • S. Banerjee, A. Chanda, A. Adhikari, Ak Das, and S. Biswas, “Evaluation of Phytochemical Screening and anti Inflammatory Activity of Leaves and Stem of Mikania Scandens (L.) Wild,” Annals of Medical and Health Sciences Research 4, no. 4 (2014): 532–6.
  • N. Osman, N. Sidik, A. Awal, N. Adam, and N. Rezali, “In Vitro Xanthine Oxi Dase and Albumin Denaturation Inhibition Assay of Barringtonia Racemosa L. and Total Phenolic Content Analysis for Potential anti-Infl Ammatory Use in Gouty Arthritis,” Journal of Intercultural Ethnopharmacology 5, no. 4 (2016): 343–9.
  • Reshma, “In Vitro anti-Inflammatory, Antioxidant and Nephroprotective Studies on Leaves of Aegle Marmelos and Ocimum Sanctum,” Asian Journal of Pharmaceutical and Clinical Research 7, no. 4 (2014): 121–9.
  • N. Panda, “Comparative in Vitro anti-Inflammatory Activity of Leaf Extracts of Limonia Acidissima and Callistemon Salignus of Similipal Biosphere Researve, Odisha, India,” Journal of Advanced Pharmaceutical Research 4, no. 4 (2013): 96–100.
  • C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 23, no. 1–3 (1997): 3–25.
  • C. A. Lipinski, “Lead-and Drug-like Compounds: The Rule-of-Five Revolution,” Drug Discovery Today. Technologies 1, no. 4 (2004): 337–41.
  • A. Ibezim, K. Onyia, F. Ntie-Kang, and N. Nwodo, “J. Drug-like Properties of Potential anti-Cancer Compounds from Cameroonian Flora: A Virtual Study,” Journal of Applied Pharmaceutical Science 5, no. 06 (2015): 133–7.
  • A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, “A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery.1. A Qualitative and Quantitative Characterization of Known Drug Databases,” Journal of Combinatorial Chemistry 1, no. 1 (1999): 55–68.
  • H. M. Berman, T. Battistuz, T. N. Bhat, W. F. Bluhm, P. E. Bourne, K. Burkhardt, Z. Feng, G. L. Gilliland, L. Iype, S. Jain, et al, “The Protein Data Bank,” Acta Crystallographica. Section D, Biological Crystallography 58, no. 6 (2002): 899–907.
  • F. Li, W. Li, M. Farzan, and S. C. Harrison, “Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor,” Science 309, no. 5742 (2005): 1864–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.