152
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

One Pot Approach of Novel Xanthan Perchloric Acid Catalyst in Synthesis of Bis(Indolyl)Methane Derivatives via Greener Perspective

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 5826-5839 | Received 15 Apr 2022, Accepted 21 Jul 2022, Published online: 11 Aug 2022

References

  • S. Manda, S. Sharma, A. Wani, P. Joshi, V. Kumar, S. K. Guru, S. S. Bharate, S. Bhushan, R. A. Vishwakarma, A. Kumar, et al., “Discovery of a Marine-Derived Bis-Indole Alkaloid Fascaplysin, as a New Class of Potent P-Glycoprotein Inducer and Establishment of Its Structure–Activity Relationship,” European Journal of Medicinal Chemistry 107 (2016): 1–11.
  • C. Grosso, A. L. Cardoso, A. Lemos, J. Varela, M. J. Rodrigues, L. Custódio, L. Barreira, e Melo. Pinho, and M. V. D. Teresa, “Novel Approach to Bis(Indolyl)Methanes: De Novo Synthesis of 1-Hydroxyiminomethyl Derivatives with Anti-Cancer Properties,” European Journal of Medicinal Chemistry 93 (2015): 9–15. [PMC][10.1016/j.ejmech.2015.01.050] [25644672]
  • Andreani, S. Burnelli, M. Granaiola, A. Leoni, A. Locatelli, R. Morigi, M. Rambaldi, L. Varoli, L. Landi, C. Prata, M. V. Berridge, et al., “Antitumor Activity of Bis-Indole Derivatives,” Journal of Medicinal Chemistry 51, no. 15 (2008): 4563–70.
  • Y. Zhang, and C. Hu, “Anticancer Activity of Bisindole Alkaloids Derived from Natural Sources and Synthetic Bisindole Hybrids,” Archiv Der Pharmazie 353, no. 9 (2020): 2000092–15.
  • N. A. Khan, N. Kaur, P. Owens, O. P. Thomas, and A. Boyd, “Bis-Indole Alkaloids Isolated from the Sponge Spongosorites Calcicola Disrupt Cell Membranes of MRSA,” International Journal of Molecular Sciences 23, no. 4 (2022): 1991.
  • S. Singhal, P. Khanna, and L. Khanna, “Synthesis, Comparative in Vitro Antibacterial, Antioxidant and UV Fluorescence Studies of Bis Indole Schiff Bases and Molecular Docking with ct‐DNA and SARS‐CoV‐2 Mpro,” Luminescence 36, no. 6 (2021): 1531–43.
  • Sunil Kumar, “A Brief Review of the Biological Potential of Indole Derivatives,” Future Journal of Pharmaceutical Sciences 6, no. 1 (2020): 1–19.
  • P. Choppara, M. S. Bethu, P. Y. Vara, J. Venkateswara Rao, T. J. Uday Ranjan, G. V. Siva Prasad, R. Doradla, and Y. L. N. Murthy, “Synthesis, Characterization and Cytotoxic Investigations of Novel Bis(Indole) Analogues besides Antimicrobial Study,” Arabian Journal of Chemistry 12, no.8 (2019): 2721–2731.
  • Jae Sung Park, Eunji Cho, Ji-Yeon Hwang, Sung Chul Park, Beomkoo Chung, Oh-Seok Kwon, Chung J. Sim, Dong-Chan Oh, Ki-Bong Oh, and Jongheon Shin, “Bioactive Bis(Indole) Alkaloids from a Spongosorites sp. Sponge,” Marine Drugs 19, no. 1suppl 3 (2020): 3–14.
  • S. Sarva, J. S. Harinath, S. P. Sthanikam, S. Ethiraj, M. Vaithiyalingam, and S. R. Cirandur, “Synthesis, Antibacterial and anti-Inflammatory Activity of Bis(Indolyl)Methanes,” Chinese Chemical Letters. 27, no. 1 (2016): 16–20.
  • Ming-Zhi Zhang, Qiong Chen, and Guang-Fu Yang, “A Review on Recent Developments of Indole-Containing Antiviral Agents,” European Journal of Medicinal Chemistry 89 (2015): 421–41.
  • W. M. Eldehna, G. S. Hassan, S. T. Al-Rashood, H. M. Alkahtani, A. A. Almehizia, and Al-G H. Ansary, “Marine-Inspired Bis-Indoles Possessing Antiproliferative Activity against Breast Cancer, Design, Synthesis, and Biological Evaluation,” Marine Drugs 18, no. 4 (2020): 190.
  • E. Maestro, C. Martín-Encinas, E. Alonso, G. Martinez de Marigorta, J. Rubiales, Javier Vicario, and F. Palacios, “Synthesis of Novel Antiproliferative Hybrid Bis-(3-Indolyl)Methane Phosphonate Derivatives,” European Journal of Medicinal Chemistry 158 (2018): 874–83. [PMC][10.1016/j.ejmech.2018.09.011] [30253344]
  • Donghwan. Choe, Haeri. So, Soyoung. Park, Hangyul. Lee, Ju. Byeong Chae, Jiwon. Kim, Ki-Tae. Kim, and Cheal. Kim, “An Indole-Based Fluorescent Chemosensor for Detecting Zn2+ in Aqueous Media and Zebrafish,” Sensors 21, no. 16 (2021): 5591.
  • Barnali Deb, Sudhan Debnath, Ankita Chakraborty, and Swapan Majumdar, “Bis-Indolylation of Aldehydes and Ketones Using Silica-Supported FeCl3: Molecular Docking Studies of Bisindoles by Targeting SARS-CoV-2 Main Protease Binding Sites,” RSC Advances 11, no. 49 (2021): 30827–39.
  • Xiong-Wei. Liu, Zhi-Yong. Chen, Guan-Lian. Wang, Xi-Tao. Ma, Yi Gong, Xiong-Li. Liu, Ting-Ting. Feng, and Ying. Zhou, “Diversity-Oriented TsOH Catalysis-Enabled Construction of Tanshinone-Substituted Bis(Indolyl/Pyrrolyl)Methanes and Their Biological Evaluation for Anticancer Activities,” Synthetic Communications 47, no. 24 (2017): 2378–86.
  • M. A. Amrollahi, and Z. Kheilkordi, “H3PW12O40-Catalyzed One-Pot Synthesis of Bis(Indole) Derivatives under Silent and Ultrasonic Irradiation Conditions in Aqueous Media,” Journal of the Iranian Chemical Society 13, no. 5 (2016): 925–9.
  • S. H. Siadatifard, M. Abdoli-Senejani, M. A. Bodaghifard, and G. Weaver, “An Efficient Method for Synthesis of Bis(Indolyl)Methane and di-Bis(Indolyl)Methane Derivatives in Environmentally Benign Conditions Using TBAHS,” Cogent Chemistry 2, no. 1 (2016): 1188435.
  • S. Mathavan, K. Kannan, and Y. B. R. D. Rajesh, “Thiamine Hydrochloride as a Recyclable Organocatalyst for the Synthesis of Bis(Indolyl)Methanes, Tris(Indolyl)Methanes, 3,3-di(Indol-3-yl)Indolin-2-Ones and Biscoumarins,” Organic & Biomolecular Chemistry 17, no. 44 (2019): 9620–6.
  • S. Ramesh, and D. Sarvanan, “An Efficient Method for the Synthesis of Bis(Indolyl)Methane Catalyzed by Nickel (II) Iodide,” Organic Chem Curr Res 8, no. 2 (2020): 199.
  • S. B. Gaikwad, S. B. Borul, and S. R. Bembalkar, “Synthesis of Bis 1h-Indole Methane Derivatives Using Cellulose Perchloric Acid under Solvent-Free Conditions,” IJCPS 4, no. 6 (2015): 62–5.
  • N. G. Singh, C. Kathing, Jims W. S. Rani, and R. L. Nongkhlaw, “Synthesis of Pharmacologically Active Bis(Indolyl) and Tris(Indolyl) Derivatives Using Chlorotrimethylsilane,” Journal of the Chinese Chemical Society 61, no. 4 (2014): 442–6.
  • J. Kothandapani, A. Ganesan, and S. S. Ganesan, “Magnetically Separable Sulfonic Acid Catalysed One-Pot Synthesis of Diverse Indole Derivatives,” Tetrahedron Letters 56, no. 41 (2015): 5568–72. [CrossRef][10.1016/j.tetlet.2015.08.043]
  • V. S. Mozafari, and A. M. Ali, “Preparation, Characterization and Comparison of β-CD-Ti4+-Fe3O4 and β-CD-Fe3O4-Ti4+ Composites as Efficient Magnetic Catalysts for the Synthesis of Bis(Indolyl)Methane and Benzo[a]Xanthen-11-One Derivatives,” Polycyclic Aromatic Compounds (2021): 1–13. 10.1080/10406638.2021.2002374.
  • Y. Wang, R. Sang, Y. Zheng, L. Guo, M. Guan, and Y. Wu, “Graphene Oxide: An Efficient Recyclable Solid Acid for the Synthesis of Bis(Indolyl)Methanes from Aldehydes and Indoles in Water,” Catalysis Communications 89 (2017): 138–42.
  • H. K. Indurthi, R. Virdi, P. Koli, D. Nageswara. Rao, and D. K. Sharma, “Seralite SRC-120 Resin Catalyzed Synthesis of Bis(Indolyl)Methanes Using Indoles and Low/High Boiling Point Carbonyl Compounds under Solvent Free Conditions,” Synthetic Communications 51, no. 1 (2021): 139–50.
  • H. Halawa, A. H. Bedair, A. M. El-Agrody, E. M. Eliwa, M. Frese, N. Sewald, and M. Shaaban, “Synthesis and Biological Activities of New Bis-Indole Derivatives via Microwave Irradiation,” Zeitschrift Für Naturforschung B 72, no. 9 (2017): 639–46.
  • S. Rahimi, M. A. Amrollahi, and Z. Kheilkordi, “An Efficient Ultrasound-Promoted Method for the Synthesis of Bis(Indole) Derivatives,” Comptes Rendus Chimie 18, no. 5 (2015): 558–63.
  • S. R. Deshmukh, A. S. Nalkar, and S. R. Thopate, “Ultrasound-Promoted Pyruvic Acid Catalyzed Green Synthesis of Biologically Relevant Bis(Indolyl)Methanes Scaffold under Aqueous Condition,” Polycyclic Aromatic Compounds (2021): 1–9. doi: 10.1080/10406638.2021.1984259
  • B. S. Hote, T. A. J. Siddiqui, P. M. Pisal, and G. G. Mandawad, “Green Approach of Solvent- and Catalyst Free Synthesis of Bis(Indolyl)Methanes under Visible Light Irradiation,” Polycyclic Aromatic Compounds 42, no.4 (2020): 1761–1769.
  • R. S. Varma, “Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications,” ACS Sustainable Chemistry & Engineering 7, no. 7 (2019): 6458–70.
  • Y. Zhu, Z. Li, and J. Chen, “Applications of Lignin-Derived Catalysts for Green Synthesis,” Green Energy & Environment 4, no. 3 (2019): 210–44.
  • Qianqian. Xie, Xiao. Yang, Kangning. Xu, Zheng. Chen, Binoy. Sarkar, and Xiaomin. Dou, “Conversion Biochar to Sulfonated Solid Acid Catalysts for Spiramycin Hydrolyses: Insights into the Sulfonation Processes,” Environmental Research 188 (2020): 109887.
  • D. J. Macquarrie, and Jeff J. E. Hardy, “Applications of Functionalized Chitosan in Catalysis,” Industrial & Engineering Chemistry Research 44, no. 23 (2005): 8499–520.
  • M. Chtchigrovsky, A. Primo, P. Gonzalez, K. Molvinger, M. Robitzer, F. Quignard, and F. Taran, “Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3 + 2] Huisgen Cycloaddition,” Angewandte Chemie (International ed. in English) 48, no. 32 (2009): 5916–20.
  • Khaled Khalil, Hamad Al-Matar, and Mohamed Elnagdi, “Chitosan as an Eco-Friendly Heterogeneous Catalyst for Michael Type Addition Reactions. A Simple and Efficient Route to Pyridones and Phthalazines,” European Journal of Chemistry 1, no. 4 (2010): 252–8.
  • Minfeng. Zeng, Yijun. Du, Linjun. Shao, Chenze. Qi, and Xian-Man. Zhang, “Palladium-Catalyzed Reductive Homocoupling of Aromatic Halides and Oxidation of Alcohols,” The Journal of Organic Chemistry 75, no. 8 (2010): 2556–63.
  • M. Lee, Bo-Yen. Chen, and W. Den, “Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications,” Applied Sciences 5, no. 4 (2015): 1272–83.
  • K. R. Reddy, K. Rajgopal, C. Uma. Maheswari, and K. M. Lakshmi, “Chitosan Hydrogel: A Green and Recyclable Biopolymer Catalyst for Aldol and Knoevenagel Reactions,” New Journal of Chemistry 30, no. 11 (2006): 1549–52.
  • Y. Tian, R. Zhang, W. Zhao, S. Wen, Y. Xiang, and X. Liu, “A New Sulfonic Acid-Functionalized Organic Polymer Catalyst for the Synthesis of Biomass-Derived Alkyl Levulinates,” Catalysis Letters 150, no. 12 (2020): 3553–60.
  • Zeba N. Siddiqui, and Saima. Tarannum, “Xanthan Sulfuric Acid: An Efficient and Biodegradable Solid Acid Catalyst for the Synthesis of Bis(Indolyl)Methanes under Solvent-Free Conditions,” Comptes Rendus Chimie 16, no. 9 (2013): 829–37.
  • Yan. Zhang, Xiang. Chen, Jun. Liang, and Zhi-cai. Shang, “Room-Temperature Synthesis of Diindolylmethanes Using Silica-Supported Sulfuric Acid as a Reusable Catalyst under Solvent-Free Conditions,” Synthetic Communications 41, no. 16 (2011): 2446–54.
  • Mohit L. Deb, B. Deka, P. J. Saikia, and P. K. Baruah, “Base-Promoted Three-Component Cascade Approach to Unsymmetrical Bis(Indolyl)Methanes,” Tetrahedron Letters 58, no. 20 (2017): 1999–2003.
  • N. Saehlim, T. Kasemsuk, U. Sirion, and R. Saeeng, “One Pot Approach for the Synthesis of Bis-Indole-1,4-Disubstituted-1,2,3-Triazoles,” The Journal of Organic Chemistry 83, no. 21 (2018): 13233–42.
  • R. M. N. Kalla, Sung Chul. Hong, and Il. Kim, “Synthesis of Bis(Indolyl)Methanes Using Hyper-Cross-Linked Polyaromatic Spheres Decorated with Bromomethyl Groups as Efficient and Recyclable Catalysts,” ACS Omega 3, no. 2 (2018): 2242–53.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.