263
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Novel Indoline Spiro Derivatives As Anticancer Agents; Design, Synthesis, Molecular Docking Studies, and ADME Evaluation

&
Pages 6977-6997 | Received 24 Feb 2022, Accepted 20 Sep 2022, Published online: 11 Oct 2022

References

  • P. A. Clarke, S. Santos, and W. H. C. Martin, “Combining Pot, Atom and Step Economy (PASE) in Organic Synthesis. Synthesis of Tetrahydropyran-4-Ones,” Green Chemistry 9, no. 5 (2007): 438.
  • P. A. Wender, F. C. Bi, G. G. Gamber, F. Gosselin, R. D. Hubbard, M. J. C. Scanio, R. Sun, T. J. Williams, and L. Zhang, “Toward the Ideal Synthesis. New Transition Metal-Catalyzed Reactions Inspired by Novel Medicinal Leads,” Pure and Applied Chemistry 74, no. 1 (2002): 25–31.
  • P. Prasanna, S. Perumal, and J. C. Menéndez, “Chemodivergent, Multicomponent Domino Reactions in Aqueous Media: l-Proline-Catalyzed Assembly of Densely Functionalized 4H-Pyrano[2,3-c]Pyrazoles and Bispyrazolyl Propanoates from Simple, Acyclic Starting Materials,” Green Chemistry 15, no. 5 (2013): 1292.
  • M. N. Elinson, M. G. Medvedev, A. I. Ilovaisky, V. M. Merkulova, T. A. Zaimovskaya, and G. I. Nikishin, “Solvent-Free Cascade Assembling of Salicylic Aldehydes and Malononitrile: Rapid and Efficient Approach to 2-Amino-4H-Chromene Scaffold,” Mendeleev Communications 23, no. 2 (2013): 94–5.
  • M. N. Elinson, R. F. Nasybullin, F. V. Ryzhkov, T. A. Zaimovskaya, and M. P. Egorov, “Solvent-Free Cascade Assembling of Salicylaldehydes and Cyanoacetates: Fast and Efficient Approach to Medicinally Relevant 2-Amino-4H-Chromene Scaffold,” Monatshefte Für Chemie - Chemical Monthly 145, no. 4 (2014): 605–10.
  • M. N. Elinson, F. V. Ryzhkov, V. M. Merkulova, A. I. Ilovaisky, and G. I. Nikishin, “Solvent-Free Multicomponent Assembling of Aldehydes, N,N ′-Dialkyl Barbiturates and Malononitrile: fast and Efficient Approach to Pyrano[2,3- d]Pyrimidines,” Heterocyclic Communications 20, no. 5 (2014): 281–4.
  • M. N. Elinson, R. F. Nasybullin, F. V. Ryzhkov, T. A. Zaimovskaya, and G. I. Nikishin, “Solvent-Free and ‘on-Water’ Multicomponent Assembling of Aldehydes, 3-Methyl-2-Pyrazoline-5-One, and Malononitrile: Fast and Efficient Approach to Medicinally Relevant Pyrano[2,3-c]Pyrazole Scaffold,” Monatshefte Für Chemie - Chemical Monthly 146, no. 4 (2015): 631–5.
  • M. N. Elinson, F. V. Ryzhkov, A. N. Vereshchagin, S. V. Gorbunov, and M. P. Egorov, “Multicomponent Assembling of Salicylaldehydes, Malononitrile and Cyanoacetamides: A Simple and Efficient Approach to Medicinally Relevant 2-Amino-4H-Chromene Scaffold,” Comptes Rendus Chimie 18, no. 5 (2015): 540–6. 2014.09.005
  • M. N. Elinson, F. V. Ryzhkov, T. A. Zaimovskaya, and M. P. Egorov, “Non-Catalytic Solvent-Free Synthesis of 5,6,7,8-Tetrahydro-4H-Chromenes from Aldehydes, Dimedone and Malononitrlie at Ambient Temperature,” Mendeleev Communications 25, no. 3 (2015): 185–7.
  • G. S. Singh, and Z. Y. Desta, “Isatins as Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks,” Chemical Reviews 112, no. 11 (2012): 6104–55.
  • M. A. Borad, M. N. Bhoi, N. P. Prajapati, and H. D. Patel, “Review of Synthesis of Multispiro Heterocyclic Compounds from Isatin,” Synthetic Communications 44, no. 8 (2014): 1043–57.
  • D. A. Horton, G. T. Bourne, and M. L. Smythe, “The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures,” Chemical Reviews 103, no. 3 (2003): 893–930.
  • A. Akbari, Z. Azami-Sardooei, and A. Hosseini-Nia, “Synthesis and Biological Evaluation of 2-Amino-4H-Pyran-3,4,5-Tricarboxylate Salt Derivatives,” Journal of the Korean Chemical Society. 57, no. 4 (2013): 455–60.
  • Y. M. Litvinov, V. Y. Mortikov, and A. M. Shestopalov, “Versatile Three-Component Procedure for Combinatorial Synthesis of 2-Aminospiro[(3'H)-Indol-3',4-(4H)-Pyrans],” Journal of Combinatorial Chemistry 10, no. 5 (2008): 741–5.
  • L. Bonsignore, G. Loy, D. Secci, and A. Calignano, “Synthesis and Pharmacological Activity of 2-Oxo-(2H) 1-Benzopyran-3-Carboxamide Derivatives,” European Journal of Medicinal Chemistry 28, no. 6 (1993): 517–20.
  • A. Romdhane, and H. Ben Jannet, “Synthesis of New Pyran and Pyranoquinoline Derivatives,” Arabian Journal of Chemistry 10 (2017): S3128–S3134. 2013.12.002.
  • P. W. Smith, S. L. Sollis, P. D. Howes, P. C. Cherry, I. D. Starkey, K. N. Cobley, H. Weston, J. Scicinski, A. Merritt, A. Whittington, et al, “Dihydropyrancarboxamides Related to Zanamivir: A New Series of Inhibitors of Influenza Virus Sialidases. 1. Discovery, Synthesis, Biological Activity, and Structure-Activity Relationships of 4-Guanidino- and 4-Amino-4H-Pyran-6-Carboxamides,” Journal of Medicinal Chemistry 41, no. 6 (1998): 787–97.
  • M. Kidwai, S. Saxena, M. K. Rahman Khan, and S. S. Thukral, “Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents,” Bioorganic & Medicinal Chemistry Letters 15, no. 19 (2005):4295-4298.‏
  • S. A. Patil, J. Wang, X. S. Li, J. Chen, T. S. Jones, A. Hosni-Ahmed, R. Patil, W. L. Seibel, W. Li, and D. D. Miller, “New Substituted 4H-Chromenes as Anticancer Agents,” Bioorganic & Medicinal Chemistry Letters 22, no. 13 (2012): 4458–61.
  • A. Kumar, P. Lohan, D. K. Aneja, G. K. Gupta, D. Kaushik, and O. Prakash, “Design, Synthesis, Computational and Biological Evaluation of Some New Hydrazino Derivatives of DHA and Pyranopyrazoles,” European Journal of Medicinal Chemistry 50 (2012): 81–9.
  • L. C. Chou, L. J. Huang, J. S. Yang, F. Y. Lee, C. M. Teng, and S. C. Kuo, “Synthesis of Furopyrazole Analogs of 1-Benzyl-3-(5-Hydroxymethyl-2-Furyl)Indazole (YC-1) as Novel anti-Leukemia Agents,” Bioorganic & Medicinal Chemistry 15, no. 4 (2007): 1732–40.
  • H. A. El-Sayed, A. H. Moustafa, and A. E. F Z. Haikal, “Synthesis, Antiviral, and Antimicrobial Activity of 1,2,4-Triazole Thioglycoside Derivatives,” Phosphorus, Sulfur, and Silicon and the Related Elements 188, no. 5 (2013): 649–62.
  • B. B. Sokmen, N. Gumrukcuoglu, S. Ugras, H. Sahin, Y. Sagkal, and H. I. Ugras, “Synthesis, Antibacterial, Antiurease, and Antioxidant Activities of Some New 1,2,4-Triazole Schiff Base and Amine Derivatives,” Applied Biochemistry and Biotechnology 175, no. 2 (2015): 705–14.
  • X. Li, X. Q. Li, H. M. Liu, X. Z. Zhou, and Z. H. Shao, “Synthesis and Evaluation of Antitumor Activities of Novel Chiral 1,2,4-Triazole Schiff Bases Bearing γ-Butenolide Moiety,” Organic and Medicinal Chemistry Letters 2, no. 1 (2012): 26.
  • F. Ahmadi, M. R. Ghayahbashi, M. Sharifzadeh, E. Alipoiur, S. N. Ostad, M. Vosooghi, H. R. Khademi, and M. Amini, “Synthesis and Evaluation of anti-Inflammatory and Analgesic Activities of New 1,2,4-Triazole Derivatives,” Medicinal Chemistry 11, no. 1 (2014): 69–76.
  • C. Radhika, A. Venkatesham, and M. Sarangapani, “Synthesis and Antidepressant Activity of di Substituted-5-Aryl-1,2,4-Triazoles,” Medicinal Chemistry Research 21, no. 11 (2012): 3509–13.
  • P. Mahajan, M. Nikam, A. Chate, U. Nimbalkar, V. Patil, A. Bobade, A. Chaudhari, D. Deolankar, B. Javale, and C. Gill, “Synthesis, Antioxidant, anti-Inflammatory, and Antimicrobial Screening of Newer Thiophene-Fused Arylpyrazolyl 1,3,4-Oxadiazoles,” Phosphorus, Sulfur, and Silicon and the Related Elements 190, no. 11 (2015): 1803–13.
  • N. C. Desai, A. R. Trivedi, H. V. Vaghani, H. C. Somani, and K. A. Bhatt, “Synthesis and Biological Evaluation of 1,3,4-Oxadiazole Bearing Dihydropyrimidines as Potential Antitubercular Agents,” Medicinal Chemistry Research 25, no. 2 (2016): 329–38.
  • C. H. Dohutia, P. P. Kaishap, and D. I. Chetia, "Synthesis and study of analgesic, anti-inflammatory activities of 3-methyl-5-pyrazolone derivatives," International Journal of Pharmacy and Pharmaceutical Sciences 5, no. 1 (2013): 86–90.
  • S. Ebrahimi, and M. Sayadi, “Syntheses of Some Novel and Symmetrical Bis(4-Amino-4H-1,2,4-Triazole-3-Thiols),” Journal of Sulfur Chemistry 33, no. 6 (2012): 647–52.
  • R. G. Chaudhary, J. A. Tanna, A. Mondal, N. V. Gandhare, and H. D. Juneja, “Silica-Coated Nickel Oxide a Core-Shell Nanostructure: Synthesis, Characterization and Its Catalytic Property in One-Pot Synthesis of Malononitrile Derivative,” Journal of the Chinese Advanced Materials Society 5, no. 2 (2017): 103–17.
  • D. Mowry, “New Compounds. 1-Phenylethylidenemalonitrile,” Journal of the American Chemical Society 65, no. 5 (1943): 991.
  • M. R. Boyd, and K. D. Paull, “Some Practical Considerations and Applications of the National Cancer Institute in Vitro Anticancer Drug Discovery Screen,” Drug Development Research 34, no. 2 (1995): 91–109.
  • R. H. Shoemaker, “The NCI60 Human Tumour Cell Line Anticancer Drug Screen,” Nature Reviews Cancer 6, no. 10 (2006): 813–823.
  • A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, C. Hose, J. Langley, P. Cronise, and A. Vaigro-Wolff, “Feasibility of a High-Flux Anticancer Drug Screen Using a Diverse Panel of Cultured Human Tumor Cell Lines,” Journal of the National Cancer Institute 83, no. 11 (1991): 757–766.
  • A. Y. Hassan, N. M. Saleh, M. S. Kadh, and E. S. Abou-Amra, “New Fused Pyrazolopyrimidine Derivatives; Heterocyclic Styling, Synthesis, Molecular Docking and Anticancer Evaluation,” Journal of Heterocyclic Chemistry 57, no. 7 (2020): 2704–2721.
  • K. Rad-Moghadam, and L. Youseftabar-Miri, “Ambient Synthesis of Spiro[4H-Pyran-Oxindole] Derivatives under [BMIm]BF4 Catalysis,” Tetrahedron 67, no. 31 (2011): 5693–5699.
  • S. Khandelwal, Y. K. Tailor, E. Rushell, and M. Kumar, Green Approaches in Medicinal Chemistry for Sustainable Drug Design (Amsterdam, Netherlands: Elsevier, 2020), 245–352.
  • N. Ristovska, and F. Anastasova, “Microwave-assisted Synthesis of Some N-alkylisatin-β-thiocarbohydrazones,” International Journal of Engineering Research & Science (IJOER) 4, no. 5 (2018): 43–47.
  • X. Q. Zhu, J. S. Wu, and J. W. Xie, “Stereoselective Construction of Bi-Spirooxindole Frameworks via a Michael Addition/Cyclization and an Unexpected Redox/Oxidative Coupling/Cyclization,” Tetrahedron 72, no. 50 (2016): 8327–8334.
  • Y. H. Zhao, M. H. Abraham, J. Le, A. Hersey, C. N. Luscombe, G. Beck, B. Sherborne, and I. Cooper, “Rate-limited Steps of Human Oral Absorption and QSAR Studies,” Pharmaceutical Research 19, no. 10 (2002): 1446–1457.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.