343
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Electronic Spectra (Experimental and Simulated), and DFT Investigation of NLO, FMO, NBO, and MESP Characteristics of Some Biphenylcarboxaldehydes

, , ORCID Icon &
Pages 7200-7213 | Received 01 Jul 2022, Accepted 25 Sep 2022, Published online: 11 Oct 2022

References

  • P. J. Collings, and M. Hird, Introduction to Liquid Crystals Chemistry and Physics (London: Taylor & Francis, 1997), 314. doi: 10.1201/9781315272801.
  • A. A. Patchett, and R. P. Nargund, “Chapter 26. Privileged Structures — an Update,” Annual Reports in Medicinal Chemistry 35 (2000): 289–98.
  • H. Ji, M. Leung, Y. Zhang, K. J. Catt, and K. Sandberg, “Differential Structural Requirements for Specific Binding of Nonpeptide and Peptide Antagonists to the AT1 Angiotensin Receptor. Identification of Amino Acid Residues That Determine Binding of the Antihypertensive Drug Losartan,” Journal of Biological Chemistry 269, no. 24 (1994): 16533–6.
  • W. J. Trotter, “Confirming Low Levels of Hexabromobiphenyl by Gasliquidchromatographyof Photolysis Products,” Bulletin of Environmental Contamination and Toxicology 18, no. 6 (1977): 726–33.
  • R. Noyori, “Asymmetric Catalysis by Chiral Metal Complexes,” Chemtech (American Chemical Society) 22, no. 6 (1992): 360–7.
  • C. Rosini, L. Franzini, A. Raffaelli, and P. Salvadori, “Synthesis and Applications of Binaphthylic C2-Symmetry Derivatives as Chiral Auxiliaries in Enantioselective Reactions,” Synthesis 1992, no. 06 (1992): 503–17.
  • R. Schmid, J. Foricher, M. Cereghetti, and P. Schönholzer, “Axially Dissymmetric Diphosphines in the Biphenyl Series: Synthesis of (6,6′-Dimethoxybiphenyl-2,2′-Diyl)Bis(Diphenylphosphine)(‘MeO-BIPHEP’) and Analogues via an ortho-Lithiation/Iodination Ullmann-Reaction Approach,” Helvetica Chimica Acta 74, no. 2 (1991): 370–89.
  • F. P. GerhardBringmann, “Chapter 4 the Naphthylisoquinoline Alkaloids,” The Alkaloids: Chemistry and Pharmacology 46 (1995): 127–271. doi: 10.1016/S0099-9598(08)60288-6.
  • D. H. Williams, and B. Bardsley, “The Vancomycin Group of Antibiotics and the Fight against Resistant Bacteria,” Angewandte Chemie International Edition 38, no. 9 (1999): 1172–93. doi: 10.1002/(SICI)1521-3773(19990503)38:9 < 1172::AID-ANIE1172 > 3.0.CO;2-C.
  • P. J. Wagner, and B. J. Scheve, “Triplet Energy Transfer. 11. Steric Effects in the Singlet-Triplet Transitions of Methyl- and Chlorobiphenyls,” Journal of the American Chemical Society 99, no. 9 (1977): 2888–92.
  • R. J. Pulham, and D. Steele, “Vibrational Spectra of 4, 4′-Difluorobiphenyl-d8 and the Structure of Biphenyls in Solution,” Journal of Raman Spectroscopy 15, no. 4 (1984): 217–23. doi: 10.1002/jrs.1250150403.
  • X. Zhang, R. Xi, J. Liu, J. Jiang, G. Wang, and Q. Zeng, “ “Molecular and Electronic Structures as Well as Vibrational Spectra Assignment of Biphenyl, 2,2′- and 4,4′-Dichlorobiphenyl from Density Functional Calculations,” Journal of Molecular Structure: Theochem 763, no. 1–3 (2006): 67–73. doi: 10.1016/j.theochem.2006.01.025.
  • Y. Takei, T. Yamaguchi, Y. Osamura, K. Fuke, and K. Kaya, “Electronic Spectra and Molecular Structure of Biphenyl and Para-Substituted Biphenyls in a Supersonic Jet,” The Journal of Physical Chemistry 92, no. 3 (1988): 577–81. doi: 10.1021/j100314a003.
  • C. W. Lee, D. Pan, L. C. T. Shoute, and D. Lee Phillips, “Transient Resonance Raman Spectroscopic and ab Initio MO Investigation of Substituent Effects on the T1 Triplet States of Halobiphenyls,” Journal of Raman Spectroscopy 32, no. 6–7 (2001): 461–70. doi: 10.1002/jrs.720.
  • M. K. Subramanian, P. M. Anbarasan, V. Ilangovan, and N. Sundaraganesan, “FT-IR, FT-Raman Spectra and DFT Vibrational Analysis of 2-Aminobiphenyl,” Molecular Simulation 34, no. 3 (2008): 277–87. doi: 10.1080/08927020701829856.
  • K. Merkel, R. W. Rzalik, and A. Kocot, “Calculation of Vibrational Spectra for Cyanobiphenyl Liquid Crystals,” Journal of Molecular Structure 563–564 (2001): 477–90. doi: 10.1016/S0022-2860(00)00891-7.
  • K. Srishailam, B. V. Reddy, and G. R. Rao, “Investigation of Torsional Potentials, Hindered Rotation, Molecular Structure and Vibrational Properties of Some Biphenyl Carboxaldehydes Using Spectroscopic Techniques and Density Functional Formalism,” Journal of Molecular Structure 1196 (2019): 139–61. doi: 10.1016/j.molstruc.2019.06.064.
  • K. Srishailam, K. Ramaiah, K. Laxma Reddy, B. V. Reddy, and G. R. Rao, “Synthesis and Evaluation of Molecular Structure from Torsional Scans, Study of Molecular Characteristics Using Spectroscopic and DFT Methods of Some Thiosemicarbazones, and Investigation of their Anticancer Activity,” Chemical Papers 75, no. 7 (2021): 3635–47. doi: 10.1016/j.molstruc.2008.06.031.
  • H. Gökce, S. Ceylan, N. Öztürk, and Y. Sert, “Tautomeric, Spectroscopic, Electronic and NLO Analyses of Purpald (4-Amino-3-Hydrazino-5-Mercapto-1,2,4-Triazole,” Materials Today Communications 32 (2022): 103862. doi: 10.1016/j.mtcomm.2022.103862.
  • G. A. El-Hitih, S. Q. Makki, Y. Sert, F. Ucun, M. B. Alshammari, P. Thordarson, and G. A. El-Hiti, “Synthesis, Spectrophotometric and DFT Studies of New Triazole Schiff Bases as Selective Naked-Eye Sensors for Acetate Anion,” Supramolecular Chemistry 32 (2020): 519–26. doi: 10.1080/10610278.2020.1808217.
  • N. Dege, H. Gökce, O. E. Doğan, G. Alpaslan, T. Ağar, S. Muthu, and Y. Sert, “Quantum Computational, Spectroscopic Investigations on N-(2-((2-Chloro-4,5-Dicyanophenyl)Amino)Ethyl)-4-Methylbenzenesulfonamideby DFT/TD-DFT with Different Solvents, Molecular Docking and Drug-Likeness Researches,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 638 (2022): 128311. doi: 10.1016/j.colsurfa.2022.128311.
  • H. Gökce, Y. Sert, G. Alpaslan, A. S. El-Azab, M. M. Alanazi, M. H. M. Al-Agamy, and A. A.-M. Abdel-Aziz, “Hirshfeld Surface, Molecular Docking Study, Spectroscopic Characterization and NLO Profile of 2-Methoxy-4,6-Diphenylnicotinonitrile,” ChemistrySelect 4 (2019): 9857–70. doi: 10.1002/slct.201902391.
  • M. J. Frisch, Gaussian 09 Revision B.01 (Wallingford CT: Gaussian, Inc, 2010).
  • A. D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” The Journal of Chemical Physics 98, no. 7 (1993): 5648–52.
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–9.
  • D. Jacquemin, E. A. Perpète, I. Ciofini, and C. Adamo, “Accurate Simulation of Optical Properties in Dyes,” Accounts of Chemical Research 42, no. 2 (2009): 326–34.
  • D. Jacquemin, J. Preat, V. Wathelet, M. Fontaine, and E. A. Perpète, “Thioindigo Dyes: Highly Accurate Visible Spectra with TD-DFT,” Journal of the American Chemical Society 128, no. 6 (2006): 2072–83.
  • I. Ciofini, and C. Adamo, “Accurate Evaluation of Valence and Low-Lying Rydberg States with Standard Time-Dependent Density Functional Theory,” The Journal of Physical Chemistry A 111, no. 25 (2007): 5549–56.
  • G. Gece, “The Use of Quantum Chemical Methods in Corrosion Inhibitor Studies,” Corrosion Science 50, no. 11 (2008): 2981–92. doi: 10.1016/j.corsci.2008.08.043.
  • K. Fukui, “Role of Frontier Orbitals in Chemical Reactions,” Science (New York, NY) 218, no. 4574 (1982): 747–54.
  • R. G. Parr, L. V. Szentpály, and S. Liu, “Electrophilicity Index,” Journal of the American Chemical Society 121, no. 9 (1999): 1922–4.
  • A. D. Buckingham, “Permanent and Induced Molecular Momentsand Long-Range Intermolecular Forces,” Advances in Chemical Physics 12 (1967): 107–40. doi: 10.1002/9780470143582.ch2.
  • E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1 (Madison, WI: University of Wisconsin, 1998).
  • P. Politzer, P. R. Laurence, and K. Jayasuriya, “Structure-Activity Correlation in Mechanism Studies and Predictive Toxicology,” Environmental Health Perspectives 61 (1985): 191–202.
  • C. Ho Choi, and M. Kertesz, “Conformational Information from Vibrational Spectra of Styrene, trans-Stilbene, and cis-Stilbene,” The Journal of Physical Chemistry A 101, no. 20 (1997): 3823–31. no
  • R. G. Pearson, “Absolute Electronegativity and Hardness: Applications to Organic Chemistry,” The Journal of Organic Chemistry 54, no. 6 (1989): 1423–30.
  • R. G. Parr, and R. G. Pearson, “Absolute Hardness: Companion Parameter to Absolute Electronegativity,” Journal of the American Chemical Society 105, no. 26 (1983): 7512–6.
  • P. Geerlings, F. De. Proft, and W. Langenaeker, “Conceptual Density Functional Theory,” Chemical Reviews 103, no. 5 (2003): 1793–8731873.
  • C. G. Zhan, J. A. Nichols, and D. A. Dixon, “Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies,” The Journal of Physical Chemistry A 107, no. 20 (2003): 4184–95.
  • R. M. Parrish, E. G. Hohenstein, P. L. McMahon, and T. J. Martínez, “Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver,” Physical Review Letters 122, no. 23 (2019): 230401.
  • D. Jacquemin, and E. A. Perpète, “Ab Initio Calculations of the Colour of Closed-Ring Diarylethenes: TD-DFT Estimates for Molecular Switches,” Chemical Physics Letters 429, no. 1–3 (2006): 147–52. doi: 10.1016/j.cplett.2006.08.028.
  • J. Preat, C. Michaux, A. Lewalle, E. A. Perpète, and D. Jacquemin, “Delocalisation in Conjugated Triazene Chromophores: Insights from Theory,” Chemical Physics Letters 451, no. 1–3 (2008): 37–42. doi: 10.1016/j.cplett.2007.11.056.
  • D. Maric, and J. P. Burrows, “Application of a Gaussian Distribution Function to Describe Molecular UV-Visible Absorption Continua.1. Theory,” The Journal of Physical Chemistry 100, no. 21 (1996): 8645–59.
  • D. Marić, J. N. Crowley, and J. P. Burrows, “Application of a Gaussian Distribution Function to Describe Molecular UV − Visible Absorption Continua. 2. The UV Spectra of RO2• Radicals,” The Journal of Physical Chemistry A 101, no. 14 (1997): 2561–7.
  • É. A. G. Brémond, J. Kieffer, and C. Adamo, “A Reliable Method for Fitting TD-DFT Transitions to Experimental UV–Visible Spectra,” Journal of Molecular Structure: Theochem 954, no. 1–3 (2010): 52–6. doi: 10.1016/j.theochem.2010.04.038.
  • G. Scalmani, and M. J. Frisch, “Continuous Surface Charge Polarizable Continuum Models of Solvation. I. General Formalism,” The Journal of Chemical Physics 132, no. 11 (2010): 114110.
  • L. Sinha, O. Prasad, V. Narayan, and S. R. Shukla, “Raman, FT-IR Spectroscopic Analysis and First-Order Hyperpolarisability of 3-Benzoyl-5-Chlorouracil by First Principles,” Molecular Simulation 37, no. 2 (2011): 153–63. doi: 10.1080/08927022.2010.533273.
  • D. F. V. Lewis, C. Ioannides, and D. V. Parke, “Interaction of a Series of Nitriles with the Alcohol-Inducible Isoform of P450: Computer Analysis of Structure—Activity Relationships,” Xenobiotica 24, no. 5 (1994): 401–408.
  • B. Kosar, and C. Albayrak, “Spectroscopic Investigations and Quantum Chemical Computational Study of (E)-4-Methoxy-2-[(p-Tolylimino)Methyl]Phenol,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 78, no. 1 (2011): 160–7.
  • M. Nakano, H. Fujita, M. Takahata, and K. Yamaguchi, “Theoretical Study on Second Hyperpolarizabilities of Phenylacetylene Dendrimer: Toward an Understanding of Structure − Property Relation in NLO Responses of Fractal Antenna Dendrimers,” Journal of the American Chemical Society 124, no. 32 (2002): 9648–55.
  • Y. X. Sun, Q. L. Hao, W. X. Wei, Z. X. Yu, L. D. Lu, X. Wang, and Y. S. Wang, “Experimental and Density Functional Studies on 4-(3,4-Dihydroxybenzylideneamino)Antipyrine,and 4-(2,3,4-Trihydroxybenzylideneamino) Antipyrine,” Journal of Molecular Structure: Theochem 904, no. 1–3 (2009): 74–82. doi: 10.1016/j.theochem.2009.02.036.
  • Y. X. Sun, Q. L. Hao, W. X. Wei, Z. XueYu, L. D. Lu, X. Wang, and Y. S. Wang, “Experimental and Density Functional Studies on 4-(4-Cyanobenzylideneamino)Antipyrine,” Molecular Physics 107, no. 3 (2009): 223–35.
  • C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, and A. Collet, “Theoretical and Experimental Investigations of the Nonlinear Optical Properties of Vanillin, Polyenovanillin, and Bisvanillin Derivatives,” Journal of the American Chemical Society 116, no. 5 (1994): 2094–102. no
  • V. M. Geskin, C. Lambert, and J. L. Brédas, “Origin of High Second- and Third-Order Nonlinear Optical Response in Ammonio/Borato Diphenylpolyene Zwitterions: The Remarkable Role of Polarized Aromatic Groups,” Journal of the American Chemical Society 125, no. 50 (2003): 15651–8.
  • D. Sajan, H. Joe, V. S. Jayakumar, and J. Zaleski, “Structural and Electronic Contributions to Hyperpolarizability in Methyl p-Hydroxy Benzoate,” Journal of Molecular Structure 785, no. 1–3 (2006): 43–53. doi: 10.1016/j.molstruc.2005.09.041.
  • H. S. Nalwa, and S. Miyata, Nonlinear Optics of Organic Molecules andPolymers (Boca Raton, FL: CRC Press, 1997).
  • A. B. Ahmed, H. Feki, Y. Abid, H. Boughzala, C. Minot, and A. Mlayah, “Crystal Structure, Vibrational Spectra and Theoretical Studies of L-Histidinium Dihydrogen Phosphate-Phosphoric Acid,” Journal of Molecular Structure 920, no. 1–3 (2009): 1–7.
  • J. P. Abraham, D. Sajan, V. Shettigar, S. M. Dharmaprakash, I. Němec, I. Hubert Joe, and V. S. Jayakumar, “Efficient π-Electron Conjugated Push-Pull Nonlinear Optical Chromophore 1-(4-Methoxyphenyl)-3-(3,4-Dimethoxyphenyl)-2-Propen-1-One: A Vibrational Spectral Study,” Journal of Molecular Structure 917, no. 1 (2009): 27–36. doi: 10.1016/j.molstruc.2008.06.031.
  • S. G. Sagdinc, and A. Esme, “Theoretical and Vibrational Studies of 4,5-Diphenyl-2-2 Oxazole Propionic Acid (Oxaprozin),” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 75, no. 4 (2010): 1370–6. no
  • A. Ben Ahmed, H. Feki, Y. Abid, H. Boughzala, and C. Minot, “Crystal Studies, Vibrational Spectra and Non-Linear Optical Properties of l-Histidine Chloride Monohydrate,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 75, no. 1 (2010): 293–8.
  • F. Wienhold, and C. R. Landis, Valency and Bonding-A Natural Bond Orbital Donor-Acceptor Perspective (New York, NY: Cambridge University Press, 2005).
  • P. Politzer, and J. S. Murray, “The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules,” Theoretical Chemistry Accounts 108, no. 3 (2002): 134–42.
  • L. F. Javier, L. J. Maria, and M. Orozco, “Electrostatic Interactions of a Solute with a Continuum. A Direct Utilization of ab Initio Molecular Potentials for the Prevision of Solvent Effects,” Theoretical Chemistry Accounts 103 (2000): 343–5. doi: 10.1007/s002149900013.
  • I. V. Kochikov, Yu I. Tarasov, V. P. Spiridonov, G. M. Kuramshina, D. W. H. Rankin, A. S. Saakjan, and A. G. Yagola, “The Equilibrium Structure of Thiophene by the Combined Use of Electron Diffraction, Vibrational Spectroscopy and Microwave Spectroscopy Guided by Theoretical Calculations,” Journal of Molecular Structure 567–568 (2001): 29–40.
  • J. Bentley, “Determination of Electronic Energies from Experimental Electron Densities,” The Journal of Chemical Physics 70, no. 1 (1979): 159.
  • M. Fink, and R. A. Bonhan, “Electrostatic Potential of Free Molecules Derived from Electron Diffraction Results,” Chemical Applications of Atomic and Molecular Potentials (1981): 93–122.
  • R. G. Pearson, “Absolute Electronegativity and Hardness Correlated with Molecular Orbital Theory,” Proceedings of the National Academy of Sciences of the United States of America 83, no. 22 (1986): 8440–1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.