1,532
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Particulate-Bound Polycyclic Aromatic Hydrocarbons (PAHs) and their Nitro- and Oxy-Derivative Compounds Collected Inside and Outside Occupied Homes in Southern Sweden

, , , &
Pages 7399-7415 | Received 02 Dec 2021, Accepted 04 Oct 2022, Published online: 27 Oct 2022

References

  • WHO. 2021. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. ISBN 978-92-4-003422-8 https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf (accessed October 25, 2021).
  • M. Gustafsson, J. Lindén, L. Tang, B. Forsberg, H. Orru, S. Åström, and K. Sjöberg, “Quantification of Population Exposure to NO2, PM2.5 and PM10 and Estimated Health Impacts,” (Report number C 317 ISBN 978-91-88787-60-6, 2015, Sweden).
  • D. W. Dockery, C. A. Pope, X. P. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris, and F. E. Speizer, “An Association between Air-Pollution and Mortality in 6 United-States Cities,” The New England Journal of Medicine 329, no. 24 (1993): 1753–9.
  • S. Johannesson, P. Gustafson, P. Molnar, L. Barregard, and G. Sällsten, “Exposure to Fine Particles (PM2.5 and PM1) and Black Smoke in the General Population: Personal, Indoor, and Outdoor Levels,” Journal of Exposure Science & Environmental Epidemiology 17, no. 7 (2007): 613–24.
  • C. A. Pope, R. T M. Ezzati, and D. W. Dockery, “Fine-Particulate Air Pollution and Life Expectancy in the United States,” The New England Journal of Medicine 360, no. 4 (2009): 376–86.
  • D. G. Karottki, M. Spilak, M. Frederiksen, L. Gunnarsen, E. V. Brauner, B. Kolarik, Z. Jovanovic Andersen, T. Sigsgaard, L. Barregard, B. Strandberg, et al, “An Indoor Air Filtration Study in Homes of Elderly: Cardiovascular and Respiratory Effects of Exposure to Particulate Matter,” Environmental Health: A Global Access Science Source 12 (2013): 116.
  • N. Li, M. Q. Hao, R. F. Phalen, W. C. Hinds, and A. E. Nel, “Particulate Air Pollutants and Asthma-a Paradigm for the Role of Oxidative Stress in PM-Induced Adverse Health Effects,” Clinical Immunology (Orlando, FL) 109, no. 3 (2003): 250–65.
  • A. Nemmar, and I. M. Inuwa, “Diesel Exhaust Particles in Blood Trigger Systemic and Pulmonary Morphological Alterations,” Toxicology Letters 176, no. 1 (2008): 20–30.
  • B. Walker, and C. P. Mouton, “Environmental Influences on Cardiovascular Health,” Journal of the National Medical Association 100, no. 1 (2008): 98–103.
  • E. Erlandsson, R. Lindgren, Å. Nääv, A. M. Krais, B. Strandberg, T. Lundh, C. Boman, C. Isaxon, S. R. Hansson, and E. Malmqvist, “Exposure to Wood Smoke Particles Leads to Inflammation, Disrupted Proliferation and Damage to Cellular Structures in Human First Trimester Trophoblast Cell Line,” Environmental Pollution (Barking, Essex : 1987) 264 (2020): 114790.
  • Å. Nääv, L. Erlandsson, C. Isaxon, E. Åsander Frostner, J. Ehinger, M. K. Sporre, A. M. Krais, B. Strandberg, T. Lundh, E. Elmer, et al, “Urban PM2.5 Induces Cellular Toxicity, Hormone Dysregulation, Oxidative Damage, Inflammation, and Mitochondrial Interference in the HRT8 Trophoblast Cell Line,” Frontiers in Endocrinology 11 (2020): 75.
  • “IARC Diesel and Gasoline Engine Exhausts and Some Nitroarenes,” IARC Monographs on the Evaluation of the Carcinogenic Risks to Humans 105 (2012): 1–703.
  • J. Dachs, and S. J. Eisenreich, “Asorption onto Aerosol Soot Carbon Dominates Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons,” Environmental Science & Technology 34, no. 17 (2000): 3690–7.
  • H. Wingfors, A. Sjodin, P. Haglund, and E. Brorstrom-Lundén, “Characteristation and Detemination of Profiles of Polycyclic Aromatic Hydrocarbons in a Traffic Tunnel in Gothenburg,” Atmospheric Environment 35, no. 36 (2001): 6361–9.
  • L. Kliucininkas, D. Martuzevicius, E. Krugly, T. Prasauskas, V. Kauneliene, P. Molnar, and B. Strandberg, “Indoor and Outdoor Concentrations of Fine Particles, Particle-Bound PAHs and Volatile Organic Compounds in Kaunas,” Journal of Environmental Monitoring 13, no. 1 (2011): 182–91.
  • S. Pongpiachan, M. Hattayanone, O. Suttinun, C. Khumsup, I. Kittikoon, P. Hirunyatrakul, and J. Cao, “Assessing Human Exposure to PM10-Bound Polycyclic Aromatic Hydrocarbons during Fireworks Displays,” Atmospheric Pollution Research 8, no. 5 (2017): 816–27.
  • J. Zhang, L. Yang, A. Mellouki, J. Chen, X. Chen, Y. Gao, P. Jiang, Y. Li, H. Yu, and W. Wang, “Diurnal Concentrations, Sources, and Cancer Risk Assessments of PM2.5-Bound PAHs, NPAHs, and OPAHs in Urban, Marine and Mountain Environments,” Chemosphere 209 (2018): 147–55.
  • J. Chang, J. Tao, C. Xu, Y. Li, N. Li, Z. Tang, Y. Yang, Z. Liu, Q. Wang, and D. Xu, “Pollution Characteristics of Ambient PM2.5-Bound Benzo(a)Pyrene and Its Cancer Risks in Beijing,” The Science of the Total Environment 654 (2019): 735–41.
  • Y. Li, H. Xu, J. Wang, S. Sai Hang Ho, K. He, Z. Shen, Z. Ning, J. Sun, L. Li, R. Lei, et al, “Personal Exposure to PM2.5-Bound Organic Species from Domestic Solid Fuel Combustion in Rural Guanzong Basin, Cina: Characteristics and Health Implication,” Chemosphere 227 (2019): 53–62.
  • C. ChooChuay, S. Pongpiachan, D. Tipmanee, O. Suttinun, W. Deelaman, Q. Wang, L. Xing, G. Li, Y. Han, J. Palakun, et al, “Impacts of PM2.5 Sources on Variations in Particulate Chemical Compounds in Ambient Air of Bangkok, Thailand,” Atmospheric Pollution Research 11, no. 9 (2020): 1657–67.
  • C. ChooChuay, S. Pongpiachan, D. Tipmanee, W. Deelaman, N. Iadtem, O. Suttinun, Q. Wang, L. Xing, G. Li, Y. Han, et al, “Effects of Agricultural Waste Burning on PM2.5-Bound Polycyclic Aromatichydrocarbons, Carbonaceous Compositions, and Water-Soluble Ionic Species in the Ambient Air of Chiang-Mai,” Polycyclic Aromatic Compounds 42, no. 3 (2022): 749–70.
  • M. J. Ehigbor, C. M. A. Iwegbue, O. I. Eguavoen, G. O. Tesi, and B. S. Martincigh, “Occurrence, Sources and Ecological and Human Health Risks of Polycyclic Aromatic Hydrocarbons in Soils from Some Functional Areas of the Nigerian Megacity,” Environmental Geochemistry and Health 42, no. 9 (2020): 2895–923.
  • T. Hu, Y. Mao, W. J. Liu, C. Cheng, M. M. Shi, Z. L. Chen, Q. Tian, J. Q. Zhang, S. H. Qi, and X. L. Xing, “Fate of PM2.5-Bound PAHs in Xiangyang, Central Chinaduring 2018 Chinese Spring Festival. Influence of Fireworks Burning and Air-Mass Transport,” Journal of Environmental Sciences (China) 97 (2020): 1–10.
  • B. Keshavarzi, H. S. Abbasi, F. Moore, H. Delshab, and N. Soltani, “Polycyclic Aromatic Hydrocarbons in Street Dust of Bushehr City, Iran: Status, Sources, and Human Health Risk Assessment,” Polycyclic Aromatic Compounds 40, no. 1 (2020): 61–75.
  • R. Ouyang, S. Yang, and L. Xu, “Analysis and Risk Assessment of PM2.5-Bound PAHs in a Comparison of Indoor and Outdoor Environments in a Middle School: A Case Study in Beijing, China,” Atmosphere 11, no. 9 (2020): 904.
  • S. R. Wild, and K. C. Jones, “Polynuclear Aromatic-Hydrocarbons in the United-Kingdom Environment-a Preliminary Source Inventory and Budget,” Environmental Pollution 88, no. 1 (1995): 91–108.
  • C. E. Boström, P. Gerde, A. Hanberg, B. Jernström, C. Johansson, T. Kyrklund, A. Rannug, M. Törnqvist, K. Victorin, and R. Westerholm, “Cancer Risk Assessment Indicators, and Guidelines for Polycyclic Aromatic Hydrocarbons in the Ambient Air,” Environmental Health Perspectives 110, no. s3 (2002): 451–89.
  • P. Gustafson, C. Östman, and G. Sällsten, “Indoor Levels of Polycyclic Aromatic Hydrocarbons in Homes with or without Wood Burning for Heating,” Environmental Science & Technology 42, no. 14 (2008): 5074–80.
  • R. Bramming Jorgensen, B. Strandberg, A.- K. Sjaastad, A. Johansen, and K. Svendsen, “Simulated Restaurant Cook Exposure to Emissions of PAHs, Mutagenic Aldehydes, and Particles from Frying Bacon,” Journal of Occupational and Environmental Hygiene 10, no. 3 (2013): 122–31.
  • I. C. Yadav, N. L. Devi, V. K. Singh, J. Li, and G. Zhang, “Concentrations, Sources and Health Risks of Nitrated- and Oxygenated- Polycyclic Aromatic Hydrocarbon in Urban Idoor Air and Dust from Four Cities of Nepal,” The Science of the Total Environment 643 (2018): 1013–23.
  • B. Strandberg, C. Österman, H. Koca Akdeva, J. Moldanová, and S. Langer, ” “The Use of Polyurethane Foam (PUF) Passive Air Samplers in Exposure Studies to PAHs in Swedish Seafarers,” Polycyclic Aromatic Compounds 42, no. 2 (2022): 448–59.
  • C. Andersen, Y. Omelekhina, B. Brøndum Rasmussen, M. Bennekov, S. Nielsen Skov, M. Køcks, K. Wang, B. Strandberg, F. Mattsson, M. Bilde, et al, “Emissions of Soot, PAHs, Ultrafine Particles, NOx, and Other Health Relevant Compounds from Stressed Burning of Candles in Indoor Air,” Indoor Air 31, no. 6 (2021): 2033–48.
  • J. Liu, J. Li, T. Lin, D. Liu, Y. Xu, C. Chaemfa, S. Qi, F. Liu, and G. Zhang, “Diurnal and Nocturnal Variations of PAHs in the Lhasa Atmosphere, Tibetan Plateau: Implication for Local Sources and the Impact of Atmospheric Degradation Processing,” Atmospheric Research 124 (2013): 34–43.
  • Q. Mu, M. Shiraiwa, M. Octaviani, N. Ma, A. Ding, H. Su, G. Lammel, U. Poschl, and Y. Cheng, “Temperature Effect on Phase State and Reactivity Controls Atmospheric Multiphase Chemistry and Transport of PAHs,” Science Advances 4, no. 3 (2018): 7314.
  • J. L. Durant, A. L. Lafleur, E. F. Plummer, K. Taghizadeh, W. F. Busby, and W. G. Thilly, “Human Lymphoblast Mutagens in Urban Airborne Particles,” Environmental Science & Technology 32, no. 13 (1998): 1894–906.
  • M. Y. Chung, R. A. Lazaro, D. Lim, J. Jackson, J. Lyon, D. Rendulic, and A. S. Hasson, “Aerosol-Borne Quinones and Reactive Oxygen Species Generation by Particulate Matter Extracts,” Environmental Science & Technology 40, no. 16 (2006): 4880–6.
  • A. Albinet, E. Leoz-Garziandia, H. Budzinski, and E. Viilenave, “Polycyclic Aromatic Hydrocarbons (PAHs), Nitrated PAHs and Oxygenated PAHs in Ambient Air of the Marseilles Area (South of France): Concentrations and Sources,” The Science of the Total Environment 384, no. 1–3 (2007): 280–92.
  • J. Ringuet, A. Albinet, E. Leoz-Garziandia, H. Budzinski, and E. Villenave, ” “Reactivity of Polycyclic Aromatic Compounds (PAHs, NPAHs and OPAHs) Adsorbed on Natural Aerosol Particles Exposed to Atmospheric Oxidants,” Atmospheric Environment 61 (2012): 15–22.
  • I. J. Keyte, A. Albinet, and R. M. Harrison, “On-Road Traffic Emissions of Polycyclic Aromatic Hydrocarbons and Their Oxy- and Nitro- Derivative Compounds Measured in Road Tunnel Environments,” The Science of the Total Environment 566–567 (2016): 1131–42.
  • A. Albinet, E. Leoz-Garziandia, H. Budzinski, E. Villenave, and J.-L. Jaffrezo, “Nitrated and Oxygenated Derivatives of Polycyclic Aromatic Hydrocarbons in the Ambient Air of Two French Alpine Valleys Part 1: Concentrations, Sources and Gas/Particle Partitioning,” Atmospheric Environment 42, no. 1 (2008): 43–54.
  • A. Albinet, E. Leoz-Garziandia, H. Budzinski, E. Villenave, and J.-L. Jaffrezo, “Nitrated and Oxygenated Derivatives of Polycyclic Aromatic Hydrocarbons in the Ambient Air of Two French Alpine Valleys Part 2: Particle Size Distribution,” Atmospheric Environment 42, no. 1 (2008): 55–64.
  • J. Ringuet, A. Albinet, E. Leoz-Garziandia, H. Budzinski, and E. Villenave, “Diurnal/Nocturnal Concentrations and Sources of Particulate-Bound PAHs, OPAHs and NPAHs at Traffic and Suburban Sites in the Region of Paris (France),” The Science of the Total Environment 437 (2012): 297–305.
  • F. Nalin, B. Golly, J.-L. Besombes, C. Pelletier, R. Aujay-Plouzeau, S. Verlhac, A. Dermigny, A. Fievet, N. Karoski, P. Dubois, et al, “Fast Oxidation Processes Fromemission to Ambient Air Introduction of Aerosol Emitted by Residential Log Wood Stoves,” Atmospheric Environment 143 (2016): 15–26.
  • S. Tomaz, P. Shahpoury, J. L. Jaffrezo, G. Lammel, e Perraudin, E. Villenave, and A. Albinet, “One-Year Study of Polycyclic Aromatic Compounds at an Urban Site in Grenoble (France): Seasonal Variations, Gas/Particle Partitioning and Cancer Risk Estimation,” The Science of the Total Environment 565 (2016): 1071–83.
  • J. A. Leech, W. C. Nelson, R. T. Burnett, S. Aaron, and M. E. Raizenne, “It’s about Time: A Comparison of Canadian and American Time–Activity Patterns,” Journal of Exposure Analysis and Environmental Epidemiology 12, no. 6 (2002): 427–32.
  • P. Bohlin, K. C. Jones, H. Tovalin, and B. Strandberg, “Observations on Persistent Organic Pollutants in Indoor and Outdoor Air Using Passive Polyurethane Foam Samplers,” Atmospheric Environment 42, no. 31 (2008): 7234–41.
  • A. Wierzbicka, Y. Omelekhina, A. T. Saber, E. Bloom, B. Strandberg, J. Pagels, and N. R. Jacobsen, “Are Airborne Particles inside Occupied Residences More Toxic than Outdoors? Results from 16 Residences in Sweden, 2019” (Proceedings of European Aerosol Conference, Gothenburg, Sweden, 2019).
  • Y. Omelekhina, A. Eriksson, F. Canonaco, A. S. Prevot, P. Nilsson, C. Isaxon, J. Pagels, and A. Wierzbicka, “Cooking and Electronic Cigarettes Leading to Large Differences between Indoor and Outdoor Particle Composition and Concentration Measured by Aerosol Mass Spectrometry,” Environmental Science: Processes & Impacts 22, no. 6 (2020): 1382–96.
  • Y. Omelekhina, B. Nordquist, G. Alce, H. Caltenco, P. Wallenten, J. Borell, and A. Wierzbicka, “Effect of Energy Renovation and Occupants’ Activities on Airborne Particle Concentrations in Swedish Rental Apartments,” Science of the Total Environment 806 (2022): 149995.
  • E. Pedersen, J. Borell, Y. Li, and K. Stålne, "Good indoor environmental quality (IEQ) and high energy efficiency in multifamily dwellings: How do tenants view the conditions needed to achieve both?" Building and Environment 191 (2021): 107581.
  • E. Pedersen, C. Gao, and A. Wierzbicka, “Tenant Perceptions of Post-Renovation Indoor Environmental Quality in Rental Housing: Improved for Some, but Not for Those Reporting Health-Related Symptoms,” Building and Environment 189 (2021): 107520.
  • L. Gren, V. B. Malmborg, N. R. Jacobsen, P. C. Shukla, K. M. Bendtsen, A. C. Eriksson, Y. J. Essig, A. M. Krais, K. Loeschner, S. Shamun, et al, “Effect of Renewable Fuels and Intake O2 Concentration on Diesel Engine Emission Characteristics and Reactive Oxygen Species (ROS) Formation,” Atmosphere 11, no. 6 (2020): 641.
  • S. Pongpiachan, S. Bualert, P. Sompongchaiyakul, and C. Kositanont, “Factors Affecting Sensitivity and Stability of Polycyclic Hydrocarbons Determined by Gas Chromatography Quadrupole Ion Trap Mass Spectrometer,” Analytical Letters 42, no. 13 (2009): 2106–30.
  • K. J. Koistinen, O. Hänninen, T. Rotko, R. D. Edwards, D. Moschandreas, and M. J. Jantunen, “Behavioral and Environmental Determinants of Personal Exposure to PM2.5 in EXPOLIS-Helsinki,” Atmospheric Environment 35, no. 14 (2001): 2473–81.
  • M. Sorensen, S. Loft, H. V. Andersen, O. Raaschou-Nielsen, L. T. Skovgaard, L. E. Knudsen, I. V. Nielsen, and O. Hertel, “Personal Exposure to PM2.5, Black Smoke and NO2 in Copenhagen: Relationship to Bedroom and Outdoor Concentrations Covering Seasonal Variation,” Journal of Exposure Analysis and Environmental Epidemiology 15 (2005): 413–22.
  • L. Oglesby, N. Künzli, M. Röösli, C. Braun-Fahrländer, P. Mathys, W. Stern, M. Jantunen, and A. Kousa, “Validity of Ambient Levels of Fine Particles as Surrogate for Personal Exposure to Outdoor Air Pollution-Results of the European EXPOLIS-EAS Study,” Journal of the Air & Waste Management Association (1995) 50, no. 7 (2000): 1251–61.
  • K. Saarnio, M. Sillanpaa, R. Hillamo, E. Sandell, A. S. Pennanen, and R. O. Salonen, “Polycyclic Aromatic Hydrocarbons in Size-Segregated Particulate Matter from Six Urban Sites in Europe,” Atmospheric Environment 42, no. 40 (2008): 9087–97.
  • M. S. Alam, I. J. Keyte, J. Yin, C. Stark, A. M. Jones, and R. M. Harrison, “Diurnal Variability of Polycyclic Aromatic Compounds (PAC) Concentrations: Relationship with Meteorological Conditions and Inferred Sources,” Atmospheric Environment 122 (2015): 427–38.
  • A. I. Barrado, S. Garcia, M. L. Sevillano, J. A. Rodriguez, and E. Barrado, “Vapor-Phase Concentrations of PAHs and Their Derivatives Determined in a Large City: Correlations with Their Atmospheric Aerosol Concentrations,” Chemosphere 93, no. 9 (2013): 1678–84.
  • M. P. Tsakas, I. E. Sitaras, and P. A. Siskos, “Nitro Polycyclic Aromatic Hydrocarbons in Atmospheric Particulate Matter of Athens, Greece,” Chemistry and Ecology 26, no. 4 (2010): 251–61.
  • G. Andreou, and S. Rapsomanikis, “Polycyclic Aromatic Hydrocarbons and Their Oxygenated Derivatives in the Urban Atmosphere of Athens,” Journal of Hazardous Materials 172, no. 1 (2009): 363–73.
  • T. Harner, K. Su, S. Genualdi, J. Karpowicz, L. Ahrens, C. Mihele, J. Schuster, J.- P. Charland, and J. Narayan, “Calibration and Application of PUF Disk Passive Samplers for Tracking Polycyclic Aromatic Compounds (PACs),” Atmospheric Environment 75 (2013): 123–8.
  • S. Hu, J. D. Herner, W. Robertson, R. Kobayashi, M. C. O. Chang, S. M. Huang, B. Zielinska, N. Kado, J. F. Collins, P. Rieger, et al, “Emissions of Polycyclic Aromatic Hydrocarbons (PAHs) and nitro-PAHs from Heavy-Duty Diesel Vehicles with DPF and SCR,” Journal of the Air & Waste Management Association (1995) 63, no. 8 (2013): 984–96.
  • G. Shen, S. Tao, S. Wei, Y. Chen, Y. Zhang, H. Shen, Y. Huang, D. Zhu, C. Yuan, H. Wang, et al, “Field Measurement of Emission Factors of PM, EC, OC, Parent, Nitro-, and Oxy-Polycyclic Aromatic Hydrocarbons for Residential Briquette, Coal Cake, and Wood in Rural Shanxi,” Environmental Science & Technology 47, no. 6 (2013): 2998–3005.
  • F. Reisen, and J. Arey, “Atmospheric Reactions Influence Seasonal PAH and nitro-PAH Concentrations in the Los Angeles Basin,” Environmental Science & Technology 39, no. 1 (2005): 64–73.
  • Y. Omelekhina, “Be Aware of the Indoor Air. Physicochemical Characterization of Airborne Fine Particles in Occupied Homes” (PhD thesis. Lund University, 2022). https://lucris.lub.lu.se/ws/portalfiles/portal/112558840/phd_thesis_151221_final.pdf.
  • H. Fromme, T. Lahrz, M. Piloty, H. Gebhardt, A. Oddoy, and H. Ruden, “Polycyclic Aromatic Hydrocarbons inside and outside of Apartments in an Urban Area,” Science of the Total Environment 326, no. 1–3 (2004): 143–9.
  • S. Vardoulakis, E. Giagloglou, S. Steinle, A. Davis, A. Sleeuwenhoek, K. S. Galea, K. Dixon, and J. O. Crawford, “Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review,” International Journal of Environmental Research and Public Health 17, no. 23 (2020): 8972.
  • A. Singh, N. K. Chandrasekharan, R. Kamal, V. Bihari, M. K. Gupta, M. K. R. Mudiam, G. N. V. Satyanarayana, A. Raj, I. Haq, N. K. Shukla, et al, “Assessing Hazardous Risks of Indoor Airborne Polycyclic Aromatic Hydrocarbons in the Kitchen and Its Association with Lung Functions and Urinary PAH Metabolites in Kitchen Workers,” Clinica Chimica Acta; International Journal of Clinical Chemistry 452 (2016): 204–13.
  • I. T. K. Nisbet, and P. K. LaGoy, “Toxic Equivalence Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs,” Regulatory Toxicology and Pharmacology 16, no. 3 (1992): 290–300.
  • OEHHA. Air Toxics Hot Spots Program Risk Assessment Guidelines. Part II: Technical Support Document for Describing Available Cancer Potency Factors (Sacramento, CA: Office of Environmental Health Hazard Assessment, 2002).
  • European Union (EU) Directive "For Nickel, Cadmium, Mercury, and PAHs in Ambient Air." European Union (EU) Directive 2004/107/EC; EU (Brussels, Belgium, 2004). http://eur-lex.europa.eu.
  • F. Marino, A. Cecinato, and P. A. Siskos, “Nitro-PAH in Ambient Particulate Matter in the Atmosphere of Athens,” Chemosphere 40, no. 5 (2000): 533–7.
  • K. Cwiklak, J. S. Pastuszka, and R. Rogula-Kozlowska, “Influence of Traffic on Particulate-Matter Polycyclic Aromatic Hydrocarbons in Urban Atmosphere of Zabrze, Poland,” Polish Journal of Environmental Studies 18 (2009): 579–85.
  • V. Mugica, S. Hernández, M. Torres, and R. García, “Seasonal Variation of Polycyclic Aromatic Hydrocarbon Exposure Levels in Mexico City,” Journal of the Air & Waste Management Association (1995) 60, no. 5 (2010): 548–55.