266
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Indole Fused Benzimidazole Hybrids: A Promising Combination to Fulfill Pharmacological Significance

, & ORCID Icon
Pages 7783-7807 | Received 18 Aug 2022, Accepted 20 Oct 2022, Published online: 03 Nov 2022

References

  • K. J. Seung, S. Keshavjee, and M. L. Rich, “Multidrug-Resistant Tuberculosis and Extensively Drug-Resistant Tuberculosis,” Cold Spring Harbor Perspectives in Medicine 5, no. 9 (2015): a017863.
  • A. B. Patel, P. Patel, K. Patel, and K. Prajapati, “Synthesis of Fluorinated Piperazinyl Substituted Quinazolines as Potential Antibacterial Agents,” Asian Journal of Organic & Medicinal Chemistry 5, no. 3 (2020): 227–33.
  • S.-F. Zhou, and W.-Z. Zhong, “Drug Design and Discovery: Principles and Applications,” Molecules 22, no. 2 (2017): 279.
  • R. J. Obaid, E. U. Mughal, N. Naeem, M. M. Al-Rooqi, A. Sadiq, R. S. Jassas, Z. Moussa, and S. A. Ahmed, “Pharmacological Significance of Nitrogen-Containing Five and Six-Membered Heterocyclic Scaffolds as Potent Cholinesterase Inhibitors for Drug Discovery,” Process Biochemistry 120 (2022): 250–9.
  • A. B. Patel, and J. V. Rohit, “Development of 1,3,4-Thiadiazole and Piperazine Fused Hybrid Quinazoline Derivatives as Dynamic Antimycobacterial Agents,” Polycyclic Aromatic Compounds 42, no. 9 (2022): 5991–6002.
  • M. M. Heravi, and V. Zadsirjan, “Prescribed Drugs Containing Nitrogen Heterocycles: An Overview,” RSC Advances 10, no. 72 (2020): 44247–311.
  • N. Kerru, L. Gummidi, S. Maddila, K. K. Gangu, and S. B. Jonnalagadda, “A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications,” Molecules 25, no. 8 (2020): 1909.
  • N. Sahiba, P. Teli, D. K. Agrawal, and S. Agarwal, “Chapter 7 - Miscellaneous Biological Activity Profile of Imidazole-Based Compounds: An Aspirational Goal for Medicinal Chemistry,” in Imidazole-Based Drug Discovery, edited by S. Agrawal (Amsterdam: Elsevier, 2022), 291–322.
  • J. Soni, A. Sethiya, and S. Agarwal, “Chapter 1 - Imidazole and Its Derivatives: Introduction and Synthetic Aspects,” in Imidazole-Based Drug Discovery, edited by S. Agrawal (Amsterdam: Elsevier, 2022), 1–34.
  • A. B. Patel, P. Kumari, and K. H. Chikhalia, “One-Pot Synthesis of Novel Quinoline-Fused Azeto[1,2-a]Benzimidazole Analogs via Intramolecular Pd-Catalyzed C–N Coupling,” Catalysis Letters 144, no. 7 (2014): 1332–8.
  • P. Prajapat, M. Kumawat, G. L. Talesara, P. Kalal, S. Agarwal, and C. S. Kapoor, “Benzimidazole Scaffold as a Versatile Biophore in Drug Discovery: A Review,” Chemistry & Biology Interface 8, no. 1 (2018): 1–10.
  • K. Gullapelli, G. Brahmeshwari, M. Ravichander, and U. Kusuma, “Synthesis, Antibacterial and Molecular Docking Studies of New Benzimidazole Derivatives,” Egyptian Journal of Basic and Applied Sciences 4, no. 4 (2017): 303–9.
  • N. C. Desai, A. M. Dodiya, and N. R. Shihory, “A Search of Novel Antimicrobial Based on Benzimidazole and 2-Pyridone Heterocycles,” Medicinal Chemistry Research 21, no. 9 (2012): 2579–86.
  • N. Sahiba, A. Sethiya, and S. Agarwal, “Chapter 5 - Imidazole Heterocycles: Therapeutically Potent Lead Compounds as Antimicrobials,” in Imidazole-Based Drug Discovery, edited by S. Agrawal (Amsterdam: Elsevier, 2022), 195–261.
  • G. Chen, Z. Liu, Y. Zhang, X. Shan, L. Jiang, Y. Zhao, W. He, Z. Feng, S. Yang, and G. Liang, “Synthesis and anti-Inflammatory Evaluation of Novel Benzimidazole and Imidazopyridine Derivatives,” ACS Medicinal Chemistry Letters 4, no. 1 (2013): 69–74.
  • K. Vasantha, G. Basavarajaswamy, M. Vaishali Rai, P. Boja, V. R. Pai, N. Shruthi, and M. Bhat, “Rapid ‘One-Pot’ Synthesis of a Novel Benzimidazole-5-Carboxylate and Its Hydrazone Derivatives as Potential anti-Inflammatory and Antimicrobial Agents,” Bioorganic & Medicinal Chemistry Letters 25, no. 7 (2015): 1420–6.
  • R. Veerasamy, A. Roy, R. Karunakaran, and H. Rajak, “Structure–Activity Relationship Analysis of Benzimidazoles as Emerging anti-Inflammatory Agents: An Overview,” pharmaceuticals 14, no. 7 (2021): 663.
  • J. E. Cheong, M. Zaffagni, I. Chung, Y. Xu, Y. Wang, F. E. Jernigan, B. R. Zetter, and L. Sun, “Synthesis and Anticancer Activity of Novel Water Soluble Benzimidazole Carbamates,” European Journal of Medicinal Chemistry 144 (2018): 372–85.
  • H. B. El-Nassan, “Synthesis, Antitumor Activity and SAR Study of Novel [1,2,4]Triazino[4,5-a]Benzimidazole Derivatives,” European Journal of Medicinal Chemistry 53 (2012): 22–7.
  • A. Sethiya, J. Soni, N. Sahiba, P. Teli, D. K. Agrawal, and S. Agarwal, “Chapter 2 - Biological Profile of Imidazole-Based Compounds as Anticancer Agents,” in Imidazole-Based Drug Discovery, edited by S. Agrawal (Amsterdam: Elsevier, 2022), 35–131.
  • Y. K. Yoon, M. A. Ali, A. C. Wei, T. S. Choon, and R. Ismail, “Synthesis and Evaluation of Antimycobacterial Activity of New Benzimidazole Aminoesters,” European Journal of Medicinal Chemistry 93 (2015): 614–24.
  • D. Mantu, V. Antoci, C. Moldoveanu, G. Zbancioc, and I. I. Mangalagiu, “Hybrid Imidazole (Benzimidazole)/Pyridine (Quinoline) Derivatives and Evaluation of Their Anticancer and Antimycobacterial Activity,” Journal of Enzyme Inhibition and Medicinal Chemistry 31, no. sup2 (2016): 96–103.
  • D. K. Agrawal, J. Soni, A. Sethiya, N. Sahiba, P. Teli, and S. Agarwal, “Chapter 3 - Recent Advancements on Imidazole Containing Heterocycles as Antitubercular Agents,” in Imidazole-Based Drug Discovery, edited by S. Agrawal (Amsterdam: Elsevier, 2022), 133–6.
  • Asu Usta, Fatih Yılmaz, Gulbahar Kapucu, Nimet Baltas, and Emre Mente.Se, “Synthesis of Some New Benzimidazole Derivatives with Their Antioxidant Activities,” Letters in Organic Chemistry 12, no. 4 (2015): 227–32.
  • S. H. Nile, B. Kumar, and S. W. Park, “In Vitro Evaluation of Selected Benzimidazole Derivatives as an Antioxidant and Xanthine Oxidase Inhibitors,” Chemical Biology & Drug Design 82, no. 3 (2013): 290–5.
  • R. Başaran, G. Kilcigil, and B. Eke, “Evaluation of the Antioxidant Activity of Some Imines Containing 1H-Benzimidazoles,” Turkish Journal of Pharmaceutical Sciences 17, no. 6 (2020): 626–30.
  • V. Yele, B. K. R. Sanapalli, and A. A. Mohammed, “Imidazoles and Benzimidazoles as Putative Inhibitors of SARS-CoV-2 B.1.1.7 (Alpha) and P.1 (Gamma) Variant Spike Glycoproteins: A Computational Approach,” Chemicke Zvesti 76, no. 2 (2022): 1107–17.
  • P. K. Mudi, R. K. Mahato, H. Verma, S. J. Panda, C. S. Purohit, O. Silakari, and B. Biswas, “In Silico anti-SARS-CoV-2 Activities of Five-Membered Heterocycle-Substituted Benzimidazoles,” Journal of Molecular Structure 1261 (2022): 132869.
  • P. Teli, N. Sahiba, A. Sethiya, J. Soni, and S. Agarwal, “Chapter 4 - Imidazole Derivatives: Impact and Prospects in Antiviral Drug Discovery,” in Imidazole-Based Drug Discovery, edited by S. Agrawal (Amsterdam: Elsevier, 2022), 35–131.
  • H. Kandemir, C. Ma, S. K. Kutty, D. StC. Black, R. Griffith, P. J. Lewis, and N. Kumar, “Synthesis and Biological Evaluation of 2,5-di(7-Indolyl)-1,3,4-Oxadiazoles, and 2- and 7-Indolyl 2-(1,3,4-Thiadiazolyl)Ketones as Antimicrobials,” Bioorganic & Medicinal Chemistry 22, no. 5 (2014): 1672–9.
  • H. Behbehani, H. M. Ibrahim, S. Makhseed, and H. Mahmoud, “Applications of 2-Arylhydrazononitriles in Synthesis: Preparation of New Indole Containing 1,2,3-Triazole, Pyrazole and Pyrazolo[1,5-a]Pyrimidine Derivatives and Evaluation of Their Antimicrobial Activities,” European Journal of Medicinal Chemistry 46, no. 5 (2011): 1813–20.
  • S. Zeeli, T. Weill, E. Finkin-Groner, C. Bejar, M. Melamed, S. Furman, M. Zhenin, A. Nudelman, and M. Weinstock, “Synthesis and Biological Evaluation of Derivatives of Indoline as Highly Potent Antioxidant and anti-Inflammatory Agents,” Journal of Medicinal Chemistry 61, no. 9 (2018): 4004–19.
  • B. P. Bandgar, S. N. Kinkar, H. V. Chavan, S. S. Jalde, R. U. Shaikh, and R. N. Gacche, “Synthesis and Biological Evaluation of Asymmetric Indole Curcumin Analogs as Potential anti-Inflammatory and Antioxidant Agents,” Journal of Enzyme Inhibition and Medicinal Chemistry 29, no. 1 (2014): 7–11.
  • Vishali Garg, Rahul Kumar Maurya, Punniyakoti Veeraveedu Thanikachalam, Garima Bansal, and Vikramdeep Monga, “An Insight into the Medicinal Perspective of Synthetic Analogs of Indole: A Review,” European Journal of Medicinal Chemistry 180 (2019): 562–612.
  • X.-L. Bao, W.-B. Zhu, T.-L. Shan, Z. Wu, R.-J. Zhang, P.-Y. Liao, M.-Z. Zheng, H.-S. Tang, Y.-J. Yan, and Z.-L. Chen, “Design, Synthesis and Evaluation of Novel Angiotensin II Receptor 1 Antagonists with Antihypertensive Activities,” RSC Advances 7, no. 42 (2017): 26401–10.
  • A. Özdemir, M. D. Altıntop, G. Turan-Zitouni, G. A. Çiftçi, İ. Ertorun, Ö. Alataş, and Z. A. Kaplancıklı, “Synthesis and Evaluation of New Indole-Based Chalcones as Potential Antiinflammatory Agents,” European Journal of Medicinal Chemistry 89 (2015): 304–9.
  • Y. Huang, B. Zhang, J. Li, H. Liu, Y. Zhang, Z. Yang, and W. Liu, “Design, Synthesis, Biological Evaluation and Docking Study of Novel Indole-2-Amide as anti-Inflammatory Agents with Dual Inhibition of COX and 5-LOX,” European Journal of Medicinal Chemistry 180 (2019): 41–50.
  • M. T. MacDonough, T. E. Strecker, E. Hamel, J. J. Hall, D. J. Chaplin, M. L. Trawick, and K. G. Pinney, “Synthesis and Biological Evaluation of Indole-Based, anti-Cancer Agents Inspired by the Vascular Disrupting Agent 2-(3′-Hydroxy-4′-Methoxyphenyl)-3-(3″,4″,5″-Trimethoxybenzoyl)-6-Methoxyindole (OXi8006),” Bioorganic & Medicinal Chemistry 21, no. 21 (2013): 6831–43.
  • J. Ma, G. Bao, L. Wang, W. Li, B. Xu, B. Du, J. Lv, X. Zhai, and P. Gong, “Design, Synthesis, Biological Evaluation and Preliminary Mechanism Study of Novel Benzothiazole Derivatives Bearing Indole-Based Moiety as Potent Antitumor Agents,” European Journal of Medicinal Chemistry 96 (2015): 173–86.
  • N. C. Desai, H. Somani, A. Trivedi, K. Bhatt, L. Nawale, V. M. Khedkar, P. C. Jha, and D. Sarkar, “Synthesis, Biological Evaluation and Molecular Docking Study of Some Novel Indole and Pyridine Based 1,3,4-Oxadiazole Derivatives as Potential Antitubercular Agents,” Bioorganic & Medicinal Chemistry Letters 26, no. 7 (2016): 1776–83.
  • R. R. Kondreddi, J. Jiricek, S. P. S. Rao, S. B. Lakshminarayana, L. R. Camacho, R. Rao, M. Herve, P. Bifani, N. L. Ma, K. Kuhen, et al, “Design, Synthesis, and Biological Evaluation of Indole-2-Carboxamides: A Promising Class of Antituberculosis Agents,” Journal of Medicinal Chemistry 56, no. 21 (2013): 8849–59.
  • H. Shirinzadeh, B. Eren, H. Gurer-Orhan, S. Suzen, and S. Özden, “Novel Indole-Based Analogs of Melatonin: Synthesis and in Vitro Antioxidant Activity Studies,” Molecules (Basel, Switzerland) 15, no. 4 (2010): 2187–202.
  • M. S. Estevão, L. C. Carvalho, D. Ribeiro, D. Couto, M. Freitas, A. Gomes, L. M. Ferreira, E. Fernandes, and M. M. B. Marques, “Antioxidant Activity of Unexplored Indole Derivatives: Synthesis and Screening,” European Journal of Medicinal Chemistry 45, no. 11 (2010): 4869–78.
  • A. A. Elmaaty, K. M. Darwish, A. Chrouda, A. A. Boseila, M. A. Tantawy, S. S. Elhady, A. B. Shaik, M. Mustafa, and A. A. Al-Karmalawy, “In Silico and in Vitro Studies for Benzimidazole Anthelmintics Repurposing as VEGFR-2 Antagonists: Novel Mebendazole-Loaded Mixed Micelles with Enhanced Dissolution and Anticancer Activity,” ACS Omega 7, no. 1 (2022): 875–99.
  • E. B. Elkaeed, R. G. Yousef, H. Elkady, I. M. M. Gobaara, A. A. Alsfouk, D. Z. Husein, I. M. Ibrahim, A. M. Metwaly, and I. H. Eissa, “The Assessment of Anticancer and VEGFR-2 Inhibitory Activities of a New 1H-Indole Derivative: In Silico and in Vitro Approaches,” Processes 10, no. 7 (2022): 1391.
  • Z. M. Nofal, E. A. Soliman, S. S. A. El-Karim, M. I. El-Zahar, A. M. Srour, S. Sethumadhavan, and T. J. Maher, “Novel Benzimidazole Derivatives as Expected Anticancer Agents,” Acta Poloniae Pharmaceutica – Pharmaceutica 68, no. 4 (2011): 519–34.
  • Q. Guan, C. Han, D. Zuo, M. Zhai, Z. Li, Q. Zhang, Y. Zhai, X. Jiang, K. Bao, Y. Wu, et al, “Synthesis and Evaluation of Benzimidazole Carbamates Bearing Indole Moieties for Antiproliferative and Antitubulin Activities,” European Journal of Medicinal Chemistry 87 (2014): 306–15.
  • A. Kamal, B. Nagaseshadri, V. L. Nayak, V. Srinivasulu, M. Sathish, J. S. Kapure, and C. Suresh Reddy, “Synthesis and Biological Evaluation of Benzimidazole–Oxindole Conjugates as Microtubule-Targeting Agents,” Bioorganic Chemistry 63 (2015): 72–84.
  • Y.-T. Wang, Y.-J. Qin, N. Yang, Y.-L. Zhang, C.-H. Liu, and H.-L. Zhu, “Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel 1-Benzene Acyl-2-(1-Methylindol-3-yl)-Benzimidazole Derivatives as Potential Tubulin Polymerization Inhibitors,” European Journal of Medicinal Chemistry 99 (2015): 125–37.
  • H. Ebiike, N. Taka, M. Matsushita, M. Ohmori, K. Takami, I. Hyohdoh, M. Kohchi, T. Hayase, H. Nishii, K. Morikami, et al, “Discovery of [5-Amino-1-(2-Methyl-3 H -Benzimidazol-5-yl)Pyrazol-4-yl]-(1 H -Indol-2-yl)Methanone (CH5183284/Debio 1347), an Orally Available and Selective Fibroblast Growth Factor Receptor (FGFR) Inhibitor,” Journal of Medicinal Chemistry 59, no. 23 (2016): 10586–600.
  • C. Zhang, D. Xu, J. Wang, and C. Kang, “Efficient Synthesis and Biological Activity of Novel Indole Derivatives as VEGFR-2 Tyrosine Kinase Inhibitors,” Russian Journal of General Chemistry 87, no. 12 (2017): 3006–16.
  • K. Mullagiri, V. L. Nayak, S. Sunkari, G. S. Mani, S. D. Guggilapu, B. Nagaraju, A. Alarifi, and A. Kamal, “New (3-(1 H -Benzo [d] Imidazol-2-yl))/(3-(3 H -Imidazo[4,5- b] Pyridin-2-yl))-(1 H -Indol-5-yl)(3,4,5-Trimethoxyphenyl)Methanone Conjugates as Tubulin Polymerization Inhibitors,” MedChemComm 9, no. 2 (2018): 275–81.
  • R. Singla, K. B. Gupta, S. Upadhyay, M. Dhiman, and V. Jaitak, “Design, Synthesis and Biological Evaluation of Novel Indole-Benzimidazole Hybrids Targeting Estrogen Receptor Alpha (ER-α),” European Journal of Medicinal Chemistry 146 (2018): 206–19.
  • M. Wang, Y. Wu, C. Xu, R. Zhao, Y. Huang, X. Zeng, and T. Chen, “Design and Synthesis of 2‐(5‐Phenylindol‐3‐yl)Benzimidazole Derivatives with Antiproliferative Effects towards Triple‐Negative Breast Cancer Cells by Activation of ROS‐Mediated Mitochondria Dysfunction,” Chemistry, an Asian Journal 14, no. 15 (2019): 2648–55. no
  • Y. Ding, K. Liu, X. Zhao, Y. Lv, R. Yu, and C. Kang, “Design, Synthesis, and Antitumor Activity of Novel Benzoheterocycle Derivatives as Inhibitors of Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase,” Journal of Chemical Research 44, no. 5-6 (2020): 286–94.
  • F. Z. Karadayi, M. Yaman, M. M. Kisla, A. G. Keskus, O. Konu, and Z. Ates-Alagoz, “Design, Synthesis and Anticancer/Antiestrogenic Activities of Novel Indole-Benzimidazoles,” Bioorganic Chemistry 100 (2020): 103929.
  • F. Z. Karadayi, M. Yaman, M. M. Kisla, O. Konu, and Z. Ates-Alagoz, “Design, Synthesis, Anticancer Activity, Molecular Docking and ADME Studies of Novel Methylsulfonyl Indole-Benzimidazoles in Comparison with Ethylsulfonyl Counterparts,” New Journal of Chemistry 45, no. 20 (2021): 9010–9.
  • A. Pathak, V. Pandey, Y. Raj. Pokharel, V. Devaraji, A. Ali, K. Haider, S. Saad, R. P. Dewangan, N. Siddiqui, and M. Shahar Yar, “Pharmacophore Based Drug Design and Synthesis of Oxindole Bearing Hybrid as Anticancer Agents,” Bioorganic Chemistry 116 (2021): 105358.
  • N. Perin, L. Hok, A. Beč, L. Persoons, E. Vanstreels, D. Daelemans, R. Vianello, and M. Hranjec, “N-Substituted Benzimidazole Acrylonitriles as in Vitro Tubulin Polymerization Inhibitors: Synthesis, Biological Activity and Computational Analysis,” European Journal of Medicinal Chemistry 211 (2021): 113003.
  • Y. Ren, Y. Wang, G. Li, Z. Zhang, L. Ma, B. Cheng, and J. Chen, “Discovery of Novel Benzimidazole and Indazole Analogues as Tubulin Polymerization Inhibitors with Potent Anticancer Activities,” Journal of Medicinal Chemistry 64, no. 8 (2021): 4498–515.
  • P. N. Kishore Babu, B. Ramadevi, Y. Poornachandra, and C. Ganesh Kumar, “Synthesis, Antimicrobial, and Anticancer Evaluation of Novel 2-(3-Methylindolyl)Benzimidazole Derivatives,” Medicinal Chemistry Research 23, no. 9 (2014): 3970–8.
  • N. Perin, K. Starčević, M. Perić, H. Čipčić Paljetak, M. Matijašić, V. Stepanić, D. Verbanac, G. Karminski-Zamola, and M. Hranjec, “Synthesis and SAR Study of Novel Amidino 2-Substituted Benzimidazoles as Potential Antibacterial Agents,” Croatica Chemica Acta 90, no. 2 (2017): 145–54.
  • R. Abraham, P. Prakash, K. Mahendran, and M. Ramanathan, “A Novel Series of N-Acyl Substituted Indole-Linked Benzimidazoles and Naphthoimidazoles as Potential anti Inflammatory, anti Biofilm and anti Microbial Agents,” Microbial Pathogenesis 114 (2018): 409–13.
  • R. Kumar, G. M. V. N. A. R  , and T. Arumugam, “Manganese(III) Acetate Mediated Synthesis of 3-Arylsulfenylindoles and Evaluation of Their Antibacterial Activity,” Oriental Journal of Chemistry 34, no. 1 (2018): 457–66.
  • G. K. Dasari, S. Sunkara, and P. C. R. Gadupudi, “Green and Ecofriendly Synthesis of Indole‐Condensed Benzimidazole Chalcones in Water and Their Antimicrobial Evaluations,” Journal of Heterocyclic Chemistry 57, no. 3 (2020): 1201–10.
  • T. Prashanth, V. L. Ranganatha, R. Ramu, S. P. Mandal, C. Mallikarjunaswamy, and S. A. Khanum, “Synthesis, Characterization, Docking Study and Antimicrobial Activity of 2-(4-Benzoylphenoxy)-1-[2-(1-Methyl-1H-Indol-3-yl)Methyl)-1H-Benzo[d]Imidazol-1-yl] Ethanone Derivatives,” Journal of the Iranian Chemical Society 18, no. 10 (2021): 2741–56.
  • A. S. Rathod, and J. S. Biradar, “Green Approach to the Synthesis of New Indole and Benzimidazole Analogs and Their Biological Evaluation,” Russian Journal of Organic Chemistry 57, no. 9 (2021): 1540–51.
  • H. G. Kathrotiya, and M. P. Patel, “An Efficient Synthesis of 3′-Indolyl Substituted Pyrido[1,2-a]Benzimidazoles as Potential Antimicrobial and Antioxidant Agents,” Journal of Chemical Sciences 125, no. 5 (2013): 993–1001.
  • D. Ashok, S. Gundu, V. K. Aamate, and M. G. Devulapally, “Conventional and Microwave-Assisted Synthesis of New Indole-Tethered Benzimidazole-Based 1,2,3-Triazoles and Evaluation of Their Antimycobacterial, Antioxidant and Antimicrobial Activities,” Molecular Diversity 22, no. 4 (2018): 769–78.
  • S. Singhal, P. Khanna, and L. Khanna, “Synthesis, Comparative in Vitro Antibacterial, Antioxidant and UV Fluorescence Studies of Bis Indole Schiff Bases and Molecular Docking with ct‐DNA and SARS‐CoV‐2 M Pro,” Luminescence : The Journal of Biological and Chemical Luminescence 36, no. 6 (2021): 1531–43.
  • W. Zhu, Y. Da, D. Wu, H. Zheng, L. Zhu, L. Wang, Y. Yan, and Z. Chen, “Design, Synthesis and Biological Evaluation of New 5-Nitro Benzimidazole Derivatives as AT1 Antagonists with anti-Hypertension Activities,” Bioorganic & Medicinal Chemistry 22, no. 7 (2014): 2294–302.
  • W. Zhu, X. Bao, H. Ren, Y. Da, D. Wu, F. Li, Y. Yan, L. Wang, and Z. Chen, “N-Phenyl Indole Derivatives as AT1 Antagonists with anti-Hypertension Activities: Design, Synthesis and Biological Evaluation,” European Journal of Medicinal Chemistry 115 (2016): 161–78.
  • Z. Wu, X.-L. Bao, W.-B. Zhu, Y.-H. Wang, N. T. Phuong Anh, X.-F. Wu, Y.-J. Yan, and Z.-L. Chen, “Design, Synthesis, and Biological Evaluation of 6-Benzoxazole Benzimidazole Derivatives with Antihypertension Activities,” ACS Medicinal Chemistry Letters 10, no. 1 (2019): 40–3.
  • Z. Wu, N. T. P. Anh, Y.-J. Yan, M.-B. Xia, Y.-H. Wang, Y. Qiu, and Z.-L. Chen, “Design, Synthesis and Biological Evaluation of AT1 Receptor Blockers Derived from 6-Substituted Aminocarbonyl Benzimidazoles,” European Journal of Medicinal Chemistry 181 (2019): 111553.
  • P. K. Mudi, A. K. Mahanty, M. Kotakonda, S. Prasad, S. Bhattacharyya, and B. Biswas, “A Benzimidazole Scaffold as a Promising Inhibitor against SARS-CoV-2,” Journal of Biomolecular Structure and Dynamics (2022). doi:10.1080/07391102.2021.2024448.
  • K. M. J. Nagesh, T. Prashanth, H. A. Khamees, and S. A. Khanum, “Synthesis, Analgesic, anti-Inflammatory, COX/5-LOX Inhibition, Ulcerogenic Evaluation, and Docking Study of Benzimidazole Bearing Indole and Benzophenone Analogs,” Journal of Molecular Structure 1259 (2022): 132741.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.