80
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Nano Rice Husk Ash Modified with Acidic Ionic Liquid Bridge: An Efficient Promoter for the Synthesis of 1,2,4-Triazolo Quinazolinones

& ORCID Icon
Pages 8171-8185 | Received 19 May 2022, Accepted 04 Nov 2022, Published online: 26 Nov 2022

References

  • S. Allameh, A. Davoodnia, and A. Khojastehnezhad, “An Efficient and Eco-Friendly Synthesis of 14-Aryl-14H-Dibenzo [a,j] Xanthenes Using H4 [SiW12O40] as a Heterogeneous and Reusable Catalyst under Solvent-Free Conditions,” Chinese Chemical Letters 23, no. 1 (2012): 17–20.
  • F. Moeinpour, and A. Khojastehnezhad, “An Efficient One-Pot Synthesis of 1,8-Dioxodecahydroacridines Using Silica-Supported Polyphosphoric Acid (PPA-SiO2) under Solvent-Free Conditions,” E-Journal of Chemistry 9, no. 2 (2012): 504–9.
  • N. Gumrukcuoglu, M. Serdar, E. Celik, A. Sevim, and N. Demirbas, “Synthesis and Antimicrobial Activities of Some New 1,2,4-Triazole Derivatives,” Turkish Journal of Chemistry 31 (2007): 335–48.
  • M. G. Bhovi and G. S. Gadaginamath, “1,3-Dipolar Cycloaddition Reactions: Synthesis and Antimicrobial Activity of Novel 1-Triazolylethylindole and 1-Triazolylethylbenz [g] Indole Derivatives,” Indian Journal of Chemistry 44 (2005): 1068–73.
  • Y. Zhang, G. L. Damu, S.-F. Cui, J.-L. Mi, V. K. R. Tangadanchu, and C.-H. Zhou, “Discovery of Potential Antifungal Triazoles: Design, Synthesis, Biological Evaluation, and Preliminary Antifungal Mechanism Exploration,” Medicinal Chemistry Communications 8, no. 8 (2017): 1631–9.
  • E. N. da Silva Júnior, M. A. B. F. de Moura, Antonio V. Pinto, M. do C. F. R. Pinto, M. C. B. V. de Souza, A. J. Araújo, C. Pessoa, L. V. Costa-Lotufo, R. C. Montenegro, M. O. de Moraes, et al, “Cytotoxic, Trypanocidal Activities and Physicochemical Parameters of nor-β-Lapachone-Based 1,2,3-Triazoles,” Journal of the Brazilian Chemical Society 20, no. 4 (2009): 635–43.
  • V. Alagarsamy, K. Kavitha, M. Rupeshkumar, V. R. Solomon, J. Kumar, D. Sathesh Kumar, and H. K. Sharma, “Synthesis and Pharmacological Investigation of Novel 4-(3-Ethylphenyl)-1-Substituted-4H-[1,2,4] Triazolo [4,3-a] Quinazolin-5-Ones as a New Class of H1-Antihistaminic Agents,” Acta Pharmaceutica 59, no. 1 (2009): 97–106.
  • O. Bekircan, B. Kahveci, and M. Küçük, “Synthesis and Anticancer Evaluation of Some New Unsymmetrical 3,5-Diaryl-4H-1,2,4-Triazole Derivatives,” Turkish Journal of Chemistry 30 (2006): 29–40.
  • G. Srinivasulu, K. J. Satyanarayana, P. P. Reddy, P. Hegde, and R. Chakrabarti, “Synthesis, Characterization and Biological Activity of Triazole Derivatives of Cinitapride,” Indian Journal of Chemistry. Section B: Organic Chemistry, Including Medical Chemistry 45 (2006): 2123–7.
  • F. H. Havaldar and A. R. Patil, “Syntheses of 1,2,4 Triazole Derivatives and Their Biological Activity,” E-Journal of Chemistry 5, no. 2 (2008): 347–54.
  • M. Wujec, M. Pitucha, M. Dobosz, U. Kosikowska, and A. Malm, “Synthesis and Potential Antimycotic Activity of 4-Substituted-3-(Thiophene-2-yl-Methyl)-1,2,4-Triazoline-5-Thiones,” Acta Pharmaceutica 54, no. 3 (2004): 251–60.
  • P. K. Goyal, A. Bhandari, A. Rana, and C. Jain, “Synthesis of Some 3-Substituted-4H-1, 2, 4-Triazole Derivatives with Potent anti-Inflammatory Activity,” Asian Journal of Pharmaceutical and Clinical Research 3 (2010): 244–6.
  • B. Tozkoparan, G. Aktay, and E. Yeşilada, “Synthesis of Some 1,2,4-Triazolo [3,2-b]-1, 3-Thiazine-7-Ones with Potential Analgesic and Antiinflammatory Activities,” Farmaco 57, no. 2 (2002): 145–52.
  • D. Catarzi, V. Colotta, F. Varano, G. Filacchioni, C. Martini, L. Trincavelli, and A. Lucacchini, “1,2,4-Triazolo [1,5-a] Quinoxaline Derivatives: Synthesis and Biological Evaluation as Adenosine Receptor Antagonists,” Farmaco 59, no. 2 (2004): 71–81.
  • A. P. Chaudhary, A. K. Shukla, J. Pandey, and P. Kant, “Study of Developments of Biologically Active Quinazolinones Derivatives: A Review,” Chemistry & Biology Interface 8 (2018): 62–83.
  • G. Krishnamurthy and K. Jagannath, “Microwave-Assisted Silica-Promoted Solvent-Free Synthesis of Triazoloquinazolinone and Benzimidazoquinazolinones,” Journal of Chemical Sciences 125, no. 4 (2013): 807–11.
  • R. G. Puligoundla, S. Karnakanti, R. Bantu, K. Nagaiah, S. B. Kondra, and L. Nagarapu, “A Simple, Convenient One-Pot Synthesis of [1,2,4] Triazolo/Benzimidazolo Quinazolinone Derivatives by Using Molecular Iodine,” Tetrahedron Letters 54, no. 20 (2013): 2480–3.
  • M. M. Heravi, L. Ranjbar, F. Derikvand, B. Alimadadi, H. A. Oskooie, and F. F. Bamoharram, “A Three Component One-Pot Procedure for the Synthesis of [1,2,4] Triazolo/Benzimidazolo-Quinazolinone Derivatives in the Presence of H6 P2W18O62.18H2O as a Green and Reusable Catalyst,” Molecular Diversity 12, no. 3–4 (2008): 181–5.
  • H. Sharghi, J. Aboonajmi, M. Aberi, and P. Shiri, “Heterogeneous AlPO4 (SO3H) Nanosheets: Novel Catalyst for the Multi-Component Synthesis of Quinazolinones and Highly Functionalized Piperidines,” Journal of the Iranian Chemical Society 15, no. 5 (2018): 1107–18.
  • M. M. Heravi, F. Derikvand, and L. Ranjbar, “Sulfamic Acid-Catalyzed, Three-Component, One-Pot Synthesis of [1,2,4] Triazolo/Benzimidazolo Quinazolinone Derivatives,” Synthetic Communications 40, no. 5 (2010): 677–85.
  • A. Shaabani, E. Farhangi, and S. Shaabani, “A Rapid Combinatorial Library Synthesis of Benzazolo [2,1-b] Quinazolinones and Triazolo [2,1-b] Quinazolinones,” Iranian Journal of Chemistry and Chemical Engineering 32 (2013): 3–10.
  • G. M. Ziarani, A. Badiei, Z. Aslani, and N. Lashgari, “Application of Sulfonic Acid Functionalized Nanoporous Silica (SBA-Pr-SO3H) in the Green One-Pot Synthesis of Triazoloquinazolinones and Benzimidazoquinazolinones,” Arabian Journal of Chemistry 8, no. 1 (2015): 54–61.
  • M. R. Mousavi and M. T. Maghsoodlou, “Catalytic Systems Containing p-Toluenesulfonic Acid Monohydrate Catalyzed the Synthesis of Triazoloquinazolinone and Benzimidazoquinazolinone Derivatives,” Monatshefte Für Chemie—Chemical Monthly 145, no. 12 (2014): 1967–73.
  • M. Mazloumi, F. Shirini, O. Goli-Jolodar, and M. Seddighi, “Nanoporous TiO2 Containing an Ionic Liquid Bridge as an Efficient and Reusable Catalyst for the Synthesis of N,N′-Diarylformamidines, Benzoxazoles, Benzothiazoles and Benzimidazoles,” New Journal of Chemistry 42, no. 8 (2018): 5742–52.
  • R. Karimi-Chayjani, N. Daneshvar, F. Shirini, and H. Tajik, “New Magnetic Nanocatalyst Containing a Bis-Dicationic Ionic Liquid Framework for Knoevenagel Condensation Reaction,” Research on Chemical Intermediates 45, no. 4 (2019): 2471–88.
  • F. Shirini, M. Mazloumi, and M. Seddighi, “Acidic Ionic Liquid Immobilized on Nanoporous Na+-Montmorillonite as an Efficient and Reusable Catalyst for the Formylation of Amines and Alcohols,” Research on Chemical Intermediates 42, no. 3 (2016): 1759–76.
  • F. Shirini, M. Seddighi, M. Mazloumi, M. Makhsous, and M. Abedini, “One-Pot Synthesis of 4,4′-(Arylmethylene)-Bis-(3-Methyl-1-Phenyl-1H-Pyrazol-5-Ols) Catalyzed by Brönsted Acidic Ionic Liquid Supported on Nanoporous Na+-Montmorillonite,” Journal of Molecular Liquids 208 (2015): 291–7.
  • M. M. Abolghasemi, B. Karimi, and V. Yousefi, “Periodic Mesoporous Organosilica with Ionic Liquid Framework as a Novel Fiber Coating for Headspace Solid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons,” Analytica Chimica Acta 804 (2013): 280–6.
  • D. Elhamifar, S. Kazempoor, and B. Karimi, “Amine-Functionalized Ionic Liquid-Based Mesoporous Organosilica as a Highly Efficient Nanocatalyst for the Knoevenagel Condensation,” Catalysis Science & Technology 6, no. 12 (2016): 4318–26.
  • B. Garg and Y.-C. Ling, “Highly Efficient Synthesis of N-Confused Meso-Tetraspirocyclohexyl Calix[4]Pyrrole Using Brønsted Acidic Ionic Liquids as Catalysts,” Tetrahedron Letters 53, no. 42 (2012): 5674–7.
  • M. J. Islam, A. Kumer, S. Paul, and M. Sarker, “The Activity of Alkyl Groups in Morpholinium Cation on Chemical Reactivity, and Biological Properties of Morpholinium Tetrafluroborate Ionic Liquid Using the DFT Method,” Chemical Methodologies 4 (2020): 130–42.
  • S. Sajjadifar, I. Amini, S. Habibzadeh, G. Mansouri, and E. Ebadi, “Acidic Ionic Liquid Based Silica-Coated Fe3O4 Nanoparticles as a New Nanomagnetic Catalyst for Preparation of Aryl and Heteroaryl Thiocyanates,” Chemical Methodologies 4 (2020): 623–34.
  • A. Moghaddam, H. A. Zamani, and H. Karimi-Maleh, “A New Sensing Strategy for Determination of Tamoxifen Using Fe3O4/Graphene-Ionic Liquid Nanocomposite Amplified Paste Electrode,” Chemical Methodologies 5 (2021): 373–80.
  • M. Aflatoonian, S. Tajik, B. Aflatoonian, I. S. Shoaie, M. Sheikhshoaie, and H. Beitollahi, “Copper Oxide, Ionic Liquid and Mn(III) Salen Modified Carbon Paste Electrode as Selective Electrochemical Sensor for Determination of Droxidopa in the Presence of Carbidopa,” Eurasian Chemical Communication 2 (2020): 387–97.
  • D. An, Y. Guo, Y. Zhu, and Z. Wang, “A Green Route to Preparation of Silica Powders with Rice Husk Ash and Waste Gas,” Chemical Engineering Journal 162, no. 2 (2010): 509–14.
  • N. Yalçin, and V. Sevinç, “Studies on Silica Obtained from Rice Husk,” Ceramics International 27, no. 2 (2001): 219–24.
  • F. Shirini, S. Akbari-Dadamahaleh, and A. Mohammad-Khah, “Rice Husk Ash Supported FeCl2· 2H2O: A Mild and Highly Efficient Heterogeneous Catalyst for the Synthesis of Polysubstituted Quinolines by Friedländer Heteroannulation,” Chinese Journal of Catalysis 34, no. 12 (2013): 2200–8.
  • M. Seddighi, F. Shirini, and M. Mamaghani, “Brønsted Acidic Ionic Liquid Supported on Rice Husk Ash (RHA-[pmim] HSO4): A Highly Efficient and Reusable Catalyst for the Synthesis of 1-(Benzothiazolylamino) Phenylmethyl-2-Naphthols,” Comptes Rendus Chimie 18, no. 5 (2015): 573–80.
  • F. Shirini, M. Mamaghani, and M. Seddighi, “Sulfonated Rice Husk Ash (RHA-SO3H): A Highly Powerful and Efficient Solid Acid Catalyst for the Chemoselective Preparation and Deprotection of 1,1-Diacetates,” Catalysis Communications 36 (2013): 31–7.
  • F. Shirini, S. Akbari-Dadamahaleh, A. Mohammad-Khah, and A.-R. Aliakbar, “Rice Husk: A Mild, Efficient, Green and Recyclable Catalyst for the Synthesis of 12-Aryl-8,9,10,12-Tetrahydro [a] Xanthene-11-Ones and Quinoxaline Derivatives,” Comptes Rendus Chimie 16, no. 3 (2013): 207–16.
  • N. Daneshvar, F. Shirini, M. S. N. Langarudi, and R. Karimi-Chayjani, “Taurine as a Green Bio-Organic Catalyst for the Preparation of Bio-Active Barbituric and Thiobarbituric Acid Derivatives in Water Media,” Bioorganic Chemistry 77 (2018): 68–73.
  • M. R. Yousefi, O. Goli-Jolodar, and F. Shirini, “Piperazine: An Excellent Catalyst for the Synthesis of 2-Amino-3-Cyano-4H-Pyrans Derivatives in Aqueous Medium,” Bioorganic Chemistry 81 (2018): 326–33.
  • N. Safari, F. Shirini, and H. Tajik, “Verjuice as a Green and Bio-Degradable Solvent/Catalyst for Facile and Eco-Friendly Synthesis of 5-Arylmethylenepyrimidine-2,4,6-Trione, Pyrano [2,3-d] Pyrimidinone and Pyrimido [4,5-d] Pyrimidinone Derivatives,” Journal of the Iranian Chemical Society 16, no. 4 (2019): 887–97.
  • T. N. Tran, T. V. Anh Pham, M. L. Phung Le, T. P. Thoa Nguyen, and V. M. Tran, “Synthesis of Amorphous Silica and Sulfonic Acid Functionalized Silica Used as Reinforced Phase for Polymer Electrolyte Membrane,” Advances in Natural Sciences: Nanoscience and Nanotechnology 4, no. 4 (2013): 045007.
  • S. Safaei, I. Mohammadpoor-Baltork, A. R. Khosropour, M. Moghadam, S. Tangestaninejad, and V. Mirkhani, “Nano-Silica Supported Acidic Ionic Liquid as an Efficient Catalyst for the Multi-Component Synthesis of Indazolophthalazine-Triones and Bis-Indazolophthalazine-Triones,” Catalysis Science & Technology 3, no. 10 (2013): 2717–22.
  • Y. Shao, H. Wan, J. Miao, and G. Guan, “Synthesis of an Immobilized Brønsted Acidic Ionic Liquid Catalyst on Chloromethyl Polystyrene Grafted Silica Gel for Esterification,” Reaction Kinetics, Mechanisms and Catalysis 109, no. 1 (2013): 149–58.
  • G. A. Habeeb and H. B. Mahmud, “Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material,” Materials Research 13, no. 2 (2010): 185–90.
  • N. Seyyedi, F. Shirini, M. S. Nikoo, and S. Jashnani, “A Simple and Convenient Synthesis of [1,2,4] Triazolo/Benzimidazolo Quinazolinone and [1,2,4] Triazolo [1,5-a] Pyrimidine Derivatives Catalyzed by DABCO-Based Ionic Liquids,” Journal of the Iranian Chemical Society 14, no. 9 (2017): 1859–67.
  • A. Shaabani, E. Farhangi, and A. Rahmati, “Synthesis of Tetrahydrobenzimidazo [1,2-b] Quinazolin-1 (2H)-One and Tetrahydro-1,2,4-Triazolo [5,1-b] Quinazolin-8 (4H)-One Ring Systems under Solvent-Free Conditions,” Combinatorial Chemistry & High Throughput Screening 9, no. 10 (2006): 771–6.
  • O. Goli-Jolodar and F. Shirini, “An Efficient and Practical Synthesis of Benzazolo [2,1-b] Quinazolinones and Triazolo [2,1-b] Quinazolinones Catalyzed by Nano-Sized NS-C4 (DABCO-SO3H)2)·4Cl,” Journal of the Iranian Chemical Society 14, no. 11 (2017): 2275–86.
  • R. Karimi-Chayjani, N. Daneshvar, M. S. N. Langarudi, F. Shirini, and H. Tajik, “Silica-Coated Magnetic Nanoparticles Containing Bis Dicationic Bridge for the Synthesis of 1,2,4-Triazolo Pyrimidine/Quinazolinone Derivatives,” Journal of Molecular Structure 1199 (2020): 126891.
  • R. Sompalle, P. Arunachalam, and S. M. Roopan, “Conventional Spectroscopic Identification of N-Alkylated Triazolo-Quinazolinones and Its Antioxidant, Solvatochromism Studies,” Journal of Molecular Liquids 224 (2016): 1348–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.