251
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Electronic Structure, UV–Vis, Wave Function, and Molecular Docking Studies of Schiff Base (Z)-N-(Thiazol-2-yl)-4-((Thiophene-2-ylmethylene)Amino)Benzenesulfonamide

, , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 8710-8728 | Received 18 Aug 2022, Accepted 17 Nov 2022, Published online: 01 Dec 2022

References

  • K. Brodowska, and E. Łodyga-Chruścińska, “Schiff Bases - Interesting Range of Applications in Various Fields of Science, Chemik 68 (2014): 129–34. doi: 10.34256/ioriip1982.
  • A.M. Mansour, “Selective Coordination Ability of Sulfamethazine Schiff-base Ligand towards Sopper(II): Molecular Structures, Spectral and SAR Study,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 123 (2014): 257–66. doi: 10.1016/j.saa.2013.12.066.
  • J.C. Valle-Quitana, G.F. Dominguez-Patiño, and J.G. Gonzalez-Rodriguez, “Corrosion Inhibition of Carbon Steel in 0.5 M H2SO4 by Phtalocyanine Blue,” ISRN Corrosion 2014 (2014): 945645. doi: 10.1155/2014/945645.
  • D.P. Patel, S.P. Prajapati, and P.S. Patel, “Gravimetric Determination of the Cu (II) with Schiff Bases Derived from Sulfa Drugs and 2-hydroxy, 1-napthaldehyde/benzoyl Acetone,” The Research Journal of Pharmaceutical, Biological and Chemical Sciences 3 (2012): 1–9.
  • M. Gümüş, Ş.N. Babacan, Y. Demir, Y. Sert, İ. Koca, and İ. Gülçin, “Discovery of Sulfadrug–Pyrrole Conjugates as Carbonic Anhydrase and Acetylcholinesterase Inhibitors,” Archiv der Pharmazie 355 (2022): 1–14. doi: 10.1002/ardp.202100242.
  • A.A. Balakit, S.Q. Makki, Y. Sert, F. Ucun, M.B. Alshammari, P. Thordarson, and G.A. El-Hiti, “Synthesis, Spectrophotometric and DFT Studies of New Triazole Schiff Bases as Selective Naked-Eye Sensors for Acetate Anion,” Supramolecular Chemistry 32 (2020): 519–26. doi: 10.1080/10610278.2020.1808217.
  • K. Krishnankutty, M.B. Ummathur, and P. Sayudevi, “Metal Complexes of Schiff Bases Derived from Dicinnamoylmethane and Aromatic Amines,” Journal of the Argentine Chemical Society 96 (2008): 13–21.
  • A. Prakash, and D. Adhikari, “Application of Schiff Bases and their Metal Complexes-A Review,” International Journal of ChemTech Research 3 (2011): 1891–96.
  • M.M.H. Khalil, E.H. Ismail, G.G. Mohamed, E.M. Zayed, and A. Badr, “Synthesis and Characterization of a Novel Schiff Base Metal Complexes and their Application in Determination of Iron in Different Types of Natural Water,” Open Journal of Inorganic Chemistry 02 (2012): 13–21. doi: 10.4236/ojic.2012.22003.
  • N. Elangovan, B. Gangadharappa, R. Thomas, and A. Irfan, “Synthesis of a Versatile Schiff Base 4-((2-hydroxy-3, 5-diiodobenzylidene) amino) Benzenesulfonamide from 3, 5-Diiodosalicylaldehyde and Sulfanilamide, Structure, Electronic Properties, Biological Activity Prediction and Experimental Antimicrobial Propert,” Journal of Molecular Structure 1250 (2022): 131700.
  • S. Sowrirajan, N. Elangovan, G. Ajithkumar, A. Sirajunnisa, B.R. Venkatraman, M.M. Ibrahim, G.A.M. Mersal, and R. Thomas, “Synthesis, Spectral, Structural Features, Electronic Properties, Biological Activities, Computational, Wave Function Properties, and Molecular Docking Studies of (E)-4-(((pentafluorophenyl) Methylene) Amino)-N-(pyrimidin2-yl)benzenesulfonamide,” Journal of Molecular Structure 1265 (2022): 133472. doi: 10.1016/j.molstruc.2022.133472.
  • N. Elangovan, R. Thomas, and S. Sowrirajan, “Synthesis of Schiff Base (E)-4-((2-hydroxy-3,5-diiodobenzylidene)amino)-N-thiazole-2-yl)Benzenesulfonamide with Antimicrobial Potential, Structural Features, Experimental Biological Screening and Quantum Mechanical Studies,” Journal of Molecular Structure 1250 (2022): 131762. doi: 10.1016/j.molstruc.2021.131762.
  • M.A.A.H. Allah, A.A. Balakit, H.I. Salman, A.A. Abdulridha, and Y. Sert, “New Heterocyclic Compound as Carbon Steel Corrosion Inhibitor in 1 M H2SO4, High Efficiency at Low Concentration: Experimental and Theoretical Studies,” Journal of Adhesion Science and Technology 0 (2022): 1–23. doi: 10.1080/01694243.2022.2034588.
  • J. Geethapriya, A. Shanthidevi, M. Arivazhagan, N. Elangovan, and R. Thomas, “Synthesis, Structural, DFT, Quantum Chemical Modeling and Molecular Docking Studies of (E)-4-(((5-methylfuran-2-yl)methylene)amino) Benzenesulfonamide from 5-methyl-2-furaldehyde and Sulfanilamide,” Journal of the Indian Chemical Society 99 (2022): 100418. doi: 10.1016/j.jics.2022.100418.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, J.B. Foresman, J. V Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision B.01, Gaussian 09, Revis. B.01 (Wallingford CT: Gaussian, Inc., 2009), 1–20.
  • C.L. Christenholz, D.A. Obenchain, R.A. Peebles, and S.A. Peebles, "Supporting Information for Rotational Spectroscopic Studies of C – H … F Interactions in the Vinyl Fluoride … Difluoromethane Complex," J. Phys. Chem. A 118, no. 9 (2014): 1610–1616. doi:10.1021/jp500312r.
  • T. Akram, M. Athar, A. Mahmood, E. Barboza, D. Lima, F. Perveen, M. Ashraf, I. Ahmad, and S. Goumri-said, “Synthesis, Molecular Structure, Spectroscopic Properties and Biological Evaluation of 4-substituted- N - (1 H -tetrazol-5-yl) Benzenesulfonamides: Combined Experimental, DFT and Docking Study,” Journal of Molecular Structure 1195 (2019): 119–30. doi: 10.1016/j.molstruc.2019.05.065.
  • R. Muthukumar, M. Karnan, N. Elangovan, M. Karunanidhi, and R. Thomas, “Synthesis, Spectral Analysis, Antibacterial Activity, Quantum Chemical Studies and Supporting Molecular Docking Sof Schiff Base (E)-4-((4-bromobenzylidene) Amino)benzenesulfonamide,” Journal of the Indian Chemical Society 99 (2022): 100405. doi: 10.1016/j.jics.2022.100405.
  • T. Lu, and F. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33 (2012): 580–92. doi: 10.1002/jcc.22885.
  • V. Tsirelson, and A. Stash, “Determination of the Electron Localization Function from Electron Density,” Chemical Physics Letters 351 (2002): 142–8. doi: 10.1016/S0009-2614(01)01361-6.
  • N. Elangovan, R. Thomas, S. Sowrirajan, K.P. Manoj, and A. Irfan, “Synthesis, Spectral Characterization, Electronic Structure and Biological Activity Screening of the Schiff Base 4-((4-Hydroxy-3-Methoxy-5-Nitrobenzylidene)Amino)-N-(Pyrimidin-2-yl)Benzene Sulfonamide from 5-Nitrovaniline and Sulphadiazene,” Polycyclic Aromatic Compounds 42 (2021): 6818–35. doi: 10.1080/10406638.2021.1991392.
  • M.N. Arshad, M.M. Hussain, A.M. Asiri, M. Khalid, A.A.C. Braga, and M.M. Rahman, “A Potent Synthesis and Supramolecular Synthon Hierarchy Percipience of (E)-N′-(Napthalen-1-yl-methylene)-benzenesulfonohydrazide and 1-Napthaldehyde: A Combined Experimental and DFT Studies,” Journal of Molecular Structure 1221 (2020): 128797. doi: 10.1016/j.molstruc.2020.128797.
  • S. Manivel, B. S Gangadharappa, N. Elangovan, R. Thomas, O.A. Abu Ali, and D.I. Saleh, “Schiff Base (Z)-4-((furan-2-ylmethylene)amino) Benzenesulfonamide: Synthesis, Solvent Interactions through Hydrogen Bond, Structural and Spectral Properties, Quantum Chemical Modeling and Biological Studies,” Journal of Molecular Liquids 350 (2022): 118531. doi: 10.1016/j.molliq.2022.118531.
  • Y. S. Mary, Y. Shyma Mary, M. Krátký, J. Vinsova, C. Baraldi, and M.C. Gamberini, “DFT, SERS-concentration and Solvent Dependent and Docking Studies of a Bioactive Benzenesulfonamide Derivative,” Journal of Molecular Structure 1228 (2021): 129680. doi: 10.1016/j.molstruc.2020.129680.
  • K. Periyasamy, P. Sakthivel, G. Venkatesh, P.M. Anbarasan, P. Vennila, Y. Sheena Mary, S. Kaya, and S. Erkan, “Synthesis, Photophysical, Electrochemical, and DFT Examinations of Two New Organic Dye Molecules Based on Phenothiazine and Dibenzofuran,” Journal of Molecular Modeling 28 (2022): 34. doi: 10.1007/s00894-022-05026-w.
  • D. M. Gil, F. F. Salomón, G. A. Echeverría, O. E. Piro, H. Pérez, and A. Ben Altabef, “A detailed exploration of intermolecular interactions in 4-(4-dimethylaminobenzylideneamino)-N-(5-methyl-3-isoxazolyl)benzenesulfonamide and related Schiff bases: Crystal structure, spectral studies, DFT methods, Pixel energies and Hirshfeld surface analysis,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 185 (2017): 286–297. doi: 10.1016/j.saa.2017.05.066
  • N. Elangovan, R. Thomas, S. Sowrirajan, and A. Irfan, “Synthesis, Spectral and Quantum Mechanical Studies and Molecular Docking Studies of Schiff Base (E) 2-hydroxy-5-(((4-(N-pyrimidin-2-yl) Sulfamoyl) phenyl) imino) Methyl Benzoic Acid from 5-formyl Salicylic Acid and Sulfadiazine,” Journal of the Indian Chemical Society 98 (2021): 100144.
  • B.A. Shainyan, N.N. Chipanina, T.N. Aksamentova, L.P. Oznobikhina, G.N. Rosentsveig, and I.B. Rosentsveig, “Intramolecular Hydrogen Bonds in the Sulfonamide Derivatives of Oxamide, Dithiooxamide, and Biuret. FT-IR and DFT Study, AIM and NBO Analysis,” Tetrahedron 66 (2010): 8551–6. doi: 10.1016/j.tet.2010.08.076.
  • G. Venkatesh, Y. Sixto-López, P. Vennila, Y.S. Mary, J. Correa-Basurto, Y.S. Mary, and A. Manikandan, “An Investigation on the Molecular Structure, Interaction with Metal Clusters, Anti-Covid-19 Ability of 2-deoxy-D-glucose: DFT Calculations, MD and Docking Simulations,” Journal of Molecular Structure 1258 (2022): 132678. doi: 10.1016/j.molstruc.2022.132678.
  • V.S. Kumar, Y.S. Mary, K. Pradhan, D. Brahman, Y.S. Mary, R. Thomas, M.S. and Roxy, C. Van Alsenoy, Synthesis, Spectral Properties, Chemical Descriptors and Light Harvesting Studies of a New Bioactive Azo Imidazole Compound,” Journal of Molecular Structure 1199 (2020): 127035. doi: 10.1016/j.molstruc.2019.127035.
  • Elkaeed, E. B., Mughal, E. U., Kausar, S., Al-ghulikah, H. A., Naeem, N., Altaf, A. A., and Sadiq, A. “Theoretical vibrational spectroscopy (FT-IR), PED and DFT calculations of chromones and thiochromones,” Journal of Molecular Structure 1270 (2022): 133972. doi: 10.1016/j.molstruc.2022.133972.
  • K. Subashini, and S. Periandy, “Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) Investigation, Molecular Docking and Molecular Simulation Dynamics on 1-Methyl-3-Phenylpiperazine,” Journal of Molecular Structure 1143 (2017): 328–43. doi: 10.1016/j.molstruc.2017.04.016.
  • S. Muthu, S. Aayisha, M. Suresh, A. Thamarai, and R.R. Muhamed, M. Raja, “Synthesis, Spectroscopic Elucidation (FT-IR, FT-Raman, UV – Vis), Electronic Properties and Biological Activities (Antimicrobial, Docking) of Semicarbazide Derivative,” Materials Today : Proceedings 50 ( 2020): 2847–52. doi: 10.1016/j.matpr.2020.09.569.
  • G. Raja, G. Venkatesh, J.S. Al-Otaibi, P. Vennila, Y.S. Mary, and Y. Sixto-López, “Synthesis, Characterization, Molecular Docking and Molecular Dynamics Simulations of Benzamide Derivatives as Potential Anti-ovarian Cancer Agents,” Journal of Molecular Structure 1269 (2022): 133785. doi: 10.1016/j.molstruc.2022.133785.
  • K. Venil, A. Lakshmi, V. Balachandran, B. Narayana, and V. V Salian, “FT-IR and FT-Raman Investigation, Quantum Chemical Analysis and Molecular Docking Studies of 5-(4-Propan-2-yl)benzylidene)-2-[3-(4-chlorophenyl)-5[4-(propan-2-yl)phenyl-4,5-dihydro-1H-pyrazol-1-yl]-1,3-thiazol-4(5H)-one,” Journal of Molecular Structure 1225 (2021): 129070. doi: 10.1016/j.molstruc.2020.129070.
  • G. Karpagakalyaani, J.D. Magdaline, T. Chithambarathanu, D. Aruldhas, and A.R. Anuf, “Spectroscopic (FT-IR, FT-Raman, NBO) Investigation and Molecular Docking Study of a Herbicide Compound Bifenox,” Chemical Data Collections 27 (2020): 100393. doi: 10.1016/j.cdc.2020.100393.
  • M. Muthukkumar, T. Bhuvaneswari, G. Venkatesh, C. Kamal, P. Vennila, S. Armaković, S.J. Armaković, Y. Sheena Mary, and C. Y. Panicker, Synthesis, Characterization and Computational Studies of Semicarbazide Derivative, Journal of Molecular Liquids 272 (2018): 481–95. doi: 10.1016/j.molliq.2018.09.123.
  • S. Sevvanthi, S. Muthu, S. Aayisha, P. Ramesh, and M. Raja, “Spectroscopic (FT-IR, FT-Raman and UV-Vis), Computational (ELF, LOL, NBO, HOMO-LUMO, Fukui, MEP) Studies and Molecular Docking on Benzodiazepine Derivatives- heterocyclic Organic Arenes,” Chemical Data Collections 30 (2020): 100574. doi: 10.1016/j.cdc.2020.100574.
  • B. Chandralekha, R. Hemamalini, S. Muthu, and S. Sevvanthi, “Spectroscopic (FT-IR, FT-RAMAN, NMR, UV e Vis) Investigations, Computational Analysis and Molecular Docking Study of 5-bromo-2- Hydroxy Pyrimidine,” Journal of Molecular Structure 1218 (2020): 128494. doi: 10.1016/j.molstruc.2020.128494.
  • P. Manjusha, J. C. S. Muthu, and B.F. Rizwana, “Spectroscopic Elucidation (FT-IR, FT-Raman and UV-visible) with NBO, NLO, ELF, LOL, Drug Likeness and Molecular Docking Analysis on 1- (2- ethylsulfonylethyl) -2-methyl-5-nitro-imidazole: An Antiprotozoal Agent,” Computational Biology and Chemistry 88 (2020): 107330. doi: 10.1016/j.compbiolchem.2020.107330.
  • N. Elangovan, and S. Sowrirajan, Heliyon Synthesis, Single Crystal (XRD), “Hirshfeld Surface Analysis, Computational Study (DFT) and Molecular Docking Studies of (E) -4- ( (2-hydroxy-3, 5-diio,” Heliyon 7 (2021): e07724. doi: 10.1016/j.heliyon.2021.e07724.
  • S. Sowrirajan, N. Elangovan, G. Ajithkumar, A. Sirajunnisa, B.R. Venkatraman, M.M. Ibrahim, G.A.M. Mersal, R. Thomas, “Synthesis, spectral, structural features, electronic properties, biological activities, computational, wave function properties, and molecular docking studies of (E)-4-(((pentafluorophenyl) methylene) amino)-N-(pyrimidin2-yl)benzenesulfonamide,” Journal of Molecular Structure 1265 (2022): 133472. doi:10.1016/j.molstruc.2022.133472.
  • O.A.A. Ali, N. Elangovan, S.F. Mahmoud, M.S. El-Gendey, H. Elbasheer, S.M. El-Bahy, and R. Thomas, “Synthesis, Characterization, Vibrational Analysis and Computational Studies of a New Schiff Base from Pentafluoro Benzaldehyde and Sulfanilamide,” Journal of Molecular Structure 1265 (2022): 133445. doi: 10.1016/j.molstruc.2022.133445.
  • O.A. Abu Ali, N. Elangovan, S.F. Mahmoud, S.M. El-Bahy, Z.M. El-Bahy, and R. Thomas, “Synthesis, Structural Features, Excited State Properties, Flouresence Spectra, and Quantum Chemical Modeling of (E)-2-hydroxy-5-(((4-sulfamoylphenyl)imino) Methyl)Benzoic Acid, Journal of Molecular Liquids 360 (2022): 119557. doi: 10.1016/j.molliq.2022.119557.
  • K.P. Manoj, N. Elangovan, and S. Chandrasekar, “Synthesis, XRD, Hirshfeld Surface Analysis, ESP, HOMO-LUMO, Quantum Chemical Modeling and Anticancer Activity of di(p-methyl benzyl)(dibromo)(1,10-phenanthroline) tin(IV) Complex,” Inorganic Chemistry Communications 139 (2022): 109324. doi: 10.1016/j.inoche.2022.109324.
  • A. Latha, N. Elangovan, K.P. Manoj, M. Keerthi, K. Balasubramani, and S. Sowrirajan, “XRD, Spectral, Structural, Quantum Mechanical and Anticancer Studies of di (p -chlorobenzyl) (dibromo) (1, 10-phenanthroline) tin (IV) Complex,” Journal of the Indian Chemical Society Synthesis 99 (2022): 100540. doi: 10.1016/j.jics.2022.100540.
  • R. Muthukumar, M. Karnan, N. Elangovan, M. Karunanidhi, and V. Sankarapandian, “Synthesis, Experimental Antimicrobial Activity, Theoretical Vibrational Analysis, Quantum Chemical Modeling and Molecular Docking Studies of (E) -4- (b enzylideneamino) b Enzenesulfonamide,” Journal of Molecular Structure 1263 (2022): 133187. doi: 10.1016/j.molstruc.2022.133187.
  • C. Quintana, G. Silva, A.H. Klahn, V. Artigas, M. Fuentealba, C. Biot, I. Halloum, L. Kremer, N. Novoa, and R. Arancibia, “New Cyrhetrenyl and Ferrocenyl Sulfonamides: Synthesis, Characterization, X-ray Crystallography, Theoretical Study and Anti-Mycobacterium Tuberculosis Activity, Polyhedron 134 (2017): 166–72. doi: 10.1016/j.poly.2017.06.015.
  • Y. Liu, Y. Peng, B. An, L. Li, and Y. Liu, “Effect of Molecular Structure on the Adsorption Affinity of Sulfonamides Onto CNTs: Batch Experiments and DFT Calculations,” Chemosphere 246 (2020): 125778. doi: 10.1016/j.chemosphere.2019.125778.
  • A. Thamarai, R. Vadamalar, M. Raja, S. Muthu, B. Narayana, and P. Ramesh, “Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Molecular Structure Interpretation, Spectroscopic (FT-IR, FT-Raman), Electronic Solvation (UV e Vis, HOMO-LUMO and NLO) Properties and Prop-2-en-1-one : Experimental and Computati,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 226 (2020): 117609. doi: 10.1016/j.saa.2019.117609.
  • A. Alsalme, T. Pooventhiran, N. Al-Zaqri, D.J. Rao, and R. Thomas, “Structural, Physico-chemical Landscapes, Ground State and Excited State Properties in Different Solvent Atmosphere of Avapritinib and its Ultrasensitive Detection Using SERS/GERS on Self-assembly Formation with Graphene Quantum Dots,” Journal of Molecular Liquids 322 (2020): 114555. doi: 10.1016/j.molliq.2020.114555.
  • E. Eroglu, and H. Türkmen, “A DFT-based Quantum Theoretic QSAR Study of Aromatic and Heterocyclic Sulfonamides as Carbonic Anhydrase Inhibitors Against Isozyme, CA-II,” Journal of Molecular Graphics and Modelling 26 (2007): 701–8. doi: 10.1016/j.jmgm.2007.03.015.
  • M. K. T. Karthick, B. D. P. Prajapati, M. Silmara, A. De Santana, A. P. V.S.J. Reeda, and P. Tandon, “Molecular Structure and Quantum Descriptors of Cefradine by Using Vibrational Spectroscopy (IR and Raman), NBO, AIM, Chemical Reactivity and Molecular Docking,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 246 (2021): 118976. doi: 10.1016/j.saa.2020.118976.
  • C. Sivakumar, B. Revathi, V. Balachandran, B. Narayana, V. V Salian, N. Shanmugapriya, and K. Vanasundari, “Molecular Structure, Spectroscopic, Quantum Chemical, Topological, Molecular Docking and Antimicrobial Activity of 3-(4-Chlorophenyl)-5-[4-propan-2-yl) Phenyl-4, 5-dihydro-1H-pyrazol-1-yl] (pyridin-4-yl) Methanone,” Journal of Molecular Structure 1224 (2021): 129286. doi: 10.1016/j.molstruc.2020.129286.
  • S. Soltani, P. Magri, M. Rogalski, and M. Kadri, “Charge-transfer complexes of hypoglycemic sulfonamide with π-acceptors: Experimental and DFT-TDDFT studies,” Journal of Molecular Structure 1175 (2019): 105–116. doi: 10.1016/j.molstruc.2018.07.074.
  • Z. Demircioğlu, F.A. Özdemir, O. Dayan, Z. Şerbetçi, and N. Özdemir, “Synthesis, X-ray Diffraction Method, Spectroscopic Characterization (FT-IR, 1H and 13C NMR), Antimicrobial Activity, Hirshfeld Surface Analysis and DFT Computations of Novel Sulfonamide Derivatives,” Journal of Molecular Structure 1161 (2018): 122–37. doi: 10.1016/j.molstruc.2018.02.063.
  • V.S. Kumar, Y.S. Mary, Y.S. Mary, G. Serdaro, A. S. M.S. Roxy, P.S. Manjula, and B.K. Sarojini, “Conformational Analysis and DFT Investigations of Two Triazole Derivatives and its Halogenated Substitution by Using Spectroscopy, AIM and Molecular Docking,” Chemical Data Collections 31 (2021): 100625. doi: 10.1016/j.cdc.2020.100625.
  • N. Elangovan, R. Sangeetha, S. Sowrirajan, S. Sarala, and S. Muthu, “Computational Investigation on Structural and Reactive Sites (HOMO-LUMO, MEP, NBO, NPA, ELF, LOL, RDG) Identification, Pharmacokinetic (ADME) Properties and Molecular Docking Investigation of (E)-4-((4-chlorobenzylidene) amino) Benzene Sulfonamide Compound,” Analytical Chemistry Letters 12 (2022): 58–76. doi: 10.1080/22297928.2021.1933588.
  • M.H. Rahuman, S. Muthu, B.R. Raajaraman, M. Raja, and H. Umamahesvari, Heliyon “Investigations on 2- (4-Cyanophenylamino) Acetic Acid by FT-IR, FT-Raman, NMR and UV-Vis Spectroscopy, DFT (NBO, HOMO-LUMO, MEP and Fukui function) and Molecular Docking Studies,” Heliyon 6 (2020): e04976. doi: 10.1016/j.heliyon.2020.e04976.
  • K. Karrouchi, S.A. Brandán, Y. Sert, H. El-marzouqi, S. Radi, M. Ferbinteanu, M. El, A. Faouzi, Y. Garcia, and M. Ansar, “Synthesis, X-ray Structure, Vibrational Spectroscopy, DFT, Biological Evaluation and Molecular Docking Studies of (E)-N’-(4-(dimethylamino)benzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide,” Journal of Molecular Structure 1219 (2020): 128541. doi: 10.1016/j.molstruc.2020.128541.
  • G. Prathiksha, T. Pooventhiran, M. Afroz Bakht, and R. Thomas, “Understanding the Solvation Dynamics of Metformin in Water Using Theoretical Tools,” Journal of Molecular Liquids 362 (2022): 119678. doi: 10.1016/j.molliq.2022.119678.
  • P. Surendar, T. Pooventhiran, S. Rajam, D.J. Rao, N. Manigandan, A. Irfan, and R. Thomas, “Organic Quasi-Liquid Schiff Bases from Biomolecules: Synthesis, Structure and Quantum Mechanical Studies” Biointerface Research in Applied Chemistry 13 (2023): 1–46.
  • T. Pooventhiran, N. Al-zaqri, A. Alsalme, U. Bhattacharyya, and R. Thomas, “Structural Aspects, Conformational Preference and Other Physico-chemical Properties of Artesunate and the Formation of Self-assembly with Graphene Quantum Dots: A First Principle Analysis and Surface Enhancement of Raman Activity Investigation,” Journal of Molecular Liquids 325 (2021): 114810. doi: 10.1016/j.molliq.2020.114810.
  • K. Sarojini, H. Krishnan, C.C. Kanakam, and S. Muthu, “Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Synthesis, X-ray Structural, Characterization, NBO and HOMO – LUMO Analysis Using DFT Study of 4-methyl- N - (naphthalene-1-yl) Benzene Sulfonamide,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 96 (2012): 657–67. doi: 10.1016/j.saa.2012.07.037.
  • M. Thirunavukkarasu, G. Balaji, S. Muthu, B.R. Raajaraman, and P. Ramesh, “Computational Spectroscopic Investigations on Structural Validation with IR and Raman Experimental Evidence, Projection of Ultraviolet-visible Excitations, Natural Bond Orbital Interpretations, and Molecular Docking Studies Under the Biological Investigation on N-Benzyloxycarbonyl-L-Aspartic Acid 1-Benzyl Ester,” Chemical Data Collections 31 (2021): 100622. doi: 10.1016/j.cdc.2020.100622.
  • I. Grib, M. Berredjem, K.O. Rachedi, S.E. Djouad, S. Bouacida, R. Bahadi, T.S. Ouk, M. Kadri, T. Ben Hadda, and B. Belhani, “Novel N-sulfonylphthalimides: Efficient Synthesis, X-ray Characterization, Spectral Investigations, POM Analyses, DFT Computations and Antibacterial Activity,” Journal of Molecular Structure 1217 (2020): 1–10. doi: 10.1016/j.molstruc.2020.128423.
  • P. Ge, H. Yu, J. Chen, J. Qu, and Y. Luo, “Photolysis Mechanism of Sulfonamide Moiety in Five-Membered Sulfonamides: A DFT Study,” Chemosphere 197 (2018): 569–75. doi: 10.1016/j.chemosphere.2018.01.041.
  • K. Sarojini, H. Krishnan, C.C. Kanakam, and S. Muthu, “Spectrochimica Acta Part A : Molecular and Biomolecular Spectroscopy Synthesis, Structural, Spectroscopic Studies, NBO Analysis, NLO and HOMO – LUMO of 4-methyl-N- (3-nitrophenyl) Benzene Sulfonamide with Experimental and Theoretical Approaches,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 108 (2013): 159–70. doi: 10.1016/j.saa.2013.01.060.
  • N. Elangovan, S. Sowrirajan, K.P. Manoj, and A.M. Kumar, “Synthesis, Structural Investigation, Computational Study, Antimicrobial Activity and Molecular Docking Studies of Novel Synthesized (E)-4-((pyridine-4-ylmethylene)amino)-N-(pyrimidin-2-yl)Benzenesulfonamide from Pyridine-4-Carboxaldehyde and Sulfadiazine,” Journal of Molecular Structure 1241 (2021): 130544. doi: 10.1016/j.molstruc.2021.130544.
  • W. Boufas, N. Dupont, M. Berredjem, K. Berrezag, I. Becheker, H. Berredjem, and N.-E. Aouf, “Synthesis and Antibacterial Activity of Sulfonamides. SAR and DFT Studies,” Journal of Molecular Structure 1074 (2014): 180–5. doi: 10.1016/j.molstruc.2014.05.066.
  • V. M. Sermoud, G. D. Barbosa, N. S. Vernin, A. G. Barreto Jr, and F. W. Tavares, “The impact of the adsorbent energy heterogeneities by multidimensional-multicomponent PC-SAFT-DFT,” Fluid Phase Equilibria 562 (2022): 113546. doi: 10.1016/j.fluid.2022.113546.
  • X. Meng and R. Yang, “How formaldehyde affects the thermo-oxidative and photo-oxidative mechanism of polypropylene: A DFT/TD-DFT study,” Polymer Degradation and Stability 205 (2022): 110131. doi: 10.1016/j.polymdegradstab.2022.110131.
  • A.M. John, J. Jose, R. Thomas, K.J. Thomas, and S.P. Balakrishnan, “Spectroscopic and TDDFT Investigation of Highly Selective Fluoride Sensors by Substituted Acyl Hydrazones,” Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 236 (2020): 118329. doi: 10.1016/j.saa.2020.118329.
  • M. Alizadeh, Z. Mirjafary, and H. Saeidian, “Straightforward Synthesis, Spectroscopic Characterizations and Comprehensive DFT Calculations of Novel 1-ester 4-sulfonamide-1,2,3-Triazole Scaffolds,” Journal of Molecular Structure 1203 (2020): 127405. doi: 10.1016/j.molstruc.2019.127405.
  • G. Velraj, S. Soundharam, and C. Sridevi, “Structure, Vibrational, Electronic, NBO and NMR Analyses of 3-methyl-2, 6-diphenylpiperidin-4-one (MDPO) by Experimental and Theoretical Approach,” Journal of Molecular Structure 1060 (2014): 156–65. doi: 10.1016/j.molstruc.2013.12.040.
  • M. A. B. Haddad, S. A. A. Paolone, D. Villemin, and S. Bresson, “Bidentate Cation-anion Coordination in the Ionic Liquid 1-ethyl-3- Methylimidazolium Hexa Fluorophosphate Supported by Vibrational Spectra and NBO,” AIM and SQMFF Calculations 1212 (2020): 1–14. doi: 10.1016/j.molstruc.2020.128104.
  • A.K. Frank, and Z. Demircio, “Spectroscopic, XRD, Hirshfeld Surface and DFT Approach (Chemical Activity, ECT, NBO, FFA, NLO, MEP, NPA & MPA) of (E) -4-bromo-2- [(4- Bromophenylimino) Methyl] -6-ethoxyphenol,” Journal of Molecular Structure 1191 (2019): 129–37. doi: 10.1016/j.molstruc.2019.03.060.
  • M.A. Mumit, T.K. Pal, M.A. Alam, M.A.-A.-A.-A. Islam, S. Paul, and M.C. Sheikh, “DFT Studies on Vibrational and Electronic Spectra, HOMO–LUMO, MEP, HOMA, NBO and Molecular Docking Analysis of Benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)Hydrazinecarbodithioate,” Journal of Molecular Structure 1220 (2020): 128715. doi: 10.1016/j.molstruc.2020.128715.
  • Ü. Ceylan, M. Durgun, and H. Türkmen, “Theoretical and Experimental Investigation of 4- [(2-hydroxy-3- Methylbenzylidene) Amino] Benzenesulfonamide: Structural and Spectroscopic Properties,” NBO, NLO and NPA Analysis 1089 (2015): 222–32. doi: 10.1016/j.molstruc.2015.02.042.
  • Z. Demircioğlu, Ç. Albayrak Kaştaş, and O. Büyükgüngör, “The spectroscopic (FT-IR, UV–vis), Fukui function, NLO, NBO, NPA and tautomerism effect analysis of (E)-2-[(2-hydroxy-6-methoxybenzylidene)amino]benzonitrile,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy139 (2015): 539–548. doi: 10.1016/j.saa.2014.11.078.
  • A. Prabakaran, V. Vijayakumar, R. Chidambaram, and S. Muthu, “Computational Analysis of Novel N, N -Dimethyl-, Polycycl,” Aromatic Compound 0 (2020)” 1–17. doi: 10.1080/10406638.2020.1756356.
  • P. Fuentealba, E. Chamorro, and J.C. Santos, “Understanding and Using the Electron Localization Function,” Theoretical and Computational Chemistry 19 (2007): 57–85.
  • M.H. Rahuman, S. Muthu, B.R. Raajaraman, and M. Raja, “Quantum Computational, Spectroscopic and Molecular Docking Studies on 2-acetylthiophene and its Bromination Derivative,” Journal of Molecular Structure 1212 (2020): 128129. doi: 10.1016/j.molstruc.2020.128129.
  • F. Fuster, A. Sevin, and B. Silvi, “Topological Analysis of the Electron Localization Function (ELF) Applied to the Electrophilic Aromatic Substitution,” The Journal of Physical Chemistry A 104 (2000): 852–8. doi: 10.1021/jp992783k.
  • G. V. Gibbs, D. F. Cox, M.B. Boisen Jr., R. T. Downs and N. L. Ross, “The Electron Localization Function: A Tool for Locating Favorable Proton Docking Sites in the Silica Polymorphs,” Physics and Chemistry of Minerals 30 (2003): 305–16. doi: 10.1007/s00269-003-0318-2.
  • T. Lu and Q. Chen, “van der Waals potential: an important complement to molecular electrostatic potential in studying intermolecular interactions,” Journal of Molecular Modeling 26, no. 11 (2020). doi: 10.1007/s00894-020-04577-0.
  • J. M. del Campo, J. L. Gázquez, R. J. Alvarez-Mendez, and A. Vela, “The Reduced Density Gradient in Atoms,” International Journal of Quantum Chemistry 128369 (2012): 1–5. doi: 10.1002/qua.24241.
  • H. Zhao, F. Ren, and Y. Wang, “Theoretical Insight into the BH 3 · HCN Adsorption on the Co (100) and Co (110) Surfaces as Hydrogen Storage,” Journal of Molecular Modeling 23 (2017): 126. doi: 10.1007/s00894-017-3298-8.
  • SangeethaMargreat, S., S. Ramalingam, Helmi Mohammed Al-Maqtari, Joazaizulfazli Jamalis, S. Sebastian, S. Periandy, and S. Xavier “Synthesis, spectroscopic, quantum computation, electronic, AIM, Wavefunction (ELF, LOL) and Molecular Docking investigation on (E)-1-(2,5-dichlorothiophen-3-yl)-3-(thiophen-2-yl)-2-propen-1-one,” Chemical Data Collections 33 (2021): 100701. doi: 10.1016/j.cdc.2021.100701.
  • V. Tsirelson, “Analyzing Experimental Electron Density with the Localized-Orbital Locator,” Acta Crystallographica Section B, Structural Science 58 (2002): 780–85.
  • S. Sevvanthi, S. Muthu, M. Raja, S. Aayisha, and S. Janani, “Heliyon PES, Molecular Structure, Spectroscopic (FT-IR, FT-Raman), Electronic (UV-Vis, HOMO-LUMO), Quantum Chemical and Biological (Docking) Studies on a Potent Membrane Permeable Inhibitor: Dibenzoxepine Derivative,” Heliyon 6 (2020): e04724. doi: 10.1016/j.heliyon.2020.e04724.
  • T. Lu, andQ. Chen, “A Simple Method of Identifying π Orbitals for Non-planar Systems and a Protocol of Studying π Electronic Structure,” Theoretical Chemistry Accounts 2 (2020): 25. doi: 10.1007/s00214-019-2541-z.
  • H.L. Schmider, andA.D. Becke, “Chemical Content of the Kinetic Energy Density,” Journal of Molecular Structure THEOCHEM 527 (2000): 51–61.
  • P. De Silva, and C. Corminboeuf, “Simultaneous Visualization of Covalent and Non-Covalent Interactions Using Regions of Density Overlap,” Journal of Chemical Theory and Computation 10 (2014): 3745–56. doi: 10.1021/ct500490b.
  • P.R. Nagar, N.D. Gajjar, andT.M. Dhameliya, “In Search of SARS CoV-2 Replication Inhibitors: Virtual Screening, Molecular Dynamics Simulations and ADMET Analysis,” Journal of Molecular Structure 1246 (2021): 131190. doi: 10.1016/j.molstruc.2021.131190.
  • M. Uzzaman, M.K. Hasan, S. Mahmud, A. Yousuf, S. Islam, M.N. Uddin, andA. Barua, “Physicochemical, Spectral, Molecular Docking and ADMET Studies of Bisphenol Analogues; A Computational Approach,” Informatics in Medicine Unlocked 25 (2021): 100706. doi: 10.1016/j.imu.2021.100706.
  • M. Aarjane, S. Slassi, A. Ghaleb, B. Tazi, and A. Amine, “Synthesis, Biological Evaluation, Molecular Docking and In Silico ADMET Screening Studies of Novel Isoxazoline Derivatives from Acridone,” The Arabian Journal of Chemistry 14 (2021): 103057. doi: 10.1016/j.arabjc.2021.103057.
  • N. Dege, H. Gökce, O. E. Doğan, G. Alpaslan, T. Ağar, S. Muthu, and Y. Sert, “Quantum Computational, Spectroscopic Investigations on N-(2-((2-chloro-4,5-dicyanophenyl)amino)ethyl)-4-Methylbenzenesulfonamide by DFT/TD-DFT with Different Solvents, Molecular Docking and Drug-likeness Researches,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 638 (2022): 128311. doi: 10.1016/j.colsurfa.2022.128311.
  • A.S. Achutha, V.L. Pushpa, K.B. Manoj, “Comparative Molecular Docking Studies of Phytochemicals as Jak2 Inhibitors Using Autodock and ArgusLab,” Materials Today: Proceedings 41 (2020): 711–6. doi: 10.1016/j.matpr.2020.05.661.
  • A.K. Oyebamiji, O.M. Josiah, S.A. Akintelu, M.D. Adeoye, B.O. Sabitu, D.F. Latona, A.O. Esan, E.A. Soetan, and B. Semire, “Dataset on Insightful Bio-evaluation of 2-(quinoline-4-yloxy)Acetamide Analogues as Potential Anti-Mycobacterium Tuberculosis Catalase-peroxidase Agents Via In Silico Mechanisms,” Data Brief 38 (2021): 107441. doi: 10.1016/j.dib.2021.107441.
  • D.K. Sriramulu, S. Wu, and S.G. Lee, “Effect of Ligand Torsion Number on the AutoDock Mediated Prediction of Protein-ligand Binding Affinity,” Journal of Industrial and Engineering Chemistry 83 (2020): 359–65. doi: 10.1016/j.jiec.2019.12.009.
  • R.M. Wadapurkar, M.D. Shilpa, A.K.S. Katti, and M.B. Sulochana, “In Silico Drug Design for Staphylococcus aureus and Development of Host-pathogen Interaction Network,” Informatics in Medicine Unlocked 10 (2018): 58–70. doi: 10.1016/j.imu.2017.11.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.