117
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Four Component One Pot Synthesis of Benzyl Pyrazolyl Coumarin Derivatives Catalyzed by Metal-Free, Heterogeneous Chitosan Supported Ionic Liquid Carbon Nanotubes

, , , &
Pages 8861-8872 | Received 15 Sep 2022, Accepted 26 Nov 2022, Published online: 12 Jan 2023

References

  • (a) A. Domling, W. Wang, and K. Wang, “Chemistry and Biology of Multicomponent Reactions,” Chemical Reviews 112, no. 6 (2012): 3083–135. doi:10.1021/cr100233r, (b) B. Maleki, M. Baghayeri, S. Sheikh, S. Babaee, and S. Farhadi, “One-Pot Synthesis of Some 2-Amino-4H-Chromene Derivatives Using Triethanolamine as a Novel Reusable Organocatalyst under Solvent-Free Conditions and Its Application in Electrosynthesis of Silver Nanoparticles,” Russian Journal of General Chemistry 87, no. 5 (2017): 1064–72. doi:10.1134/S1070363217050280, (c) B. Maleki, “Solvent-Free Synthesis of 2,4,6-Triarylpyridine Derivatives Promoted by 1,3-Dibromo-5,5dimethylhydantoin,” Organic Preparations and Procedures International 47, no. 2 (2015): 173–8. doi:10.1080/00304948.2015.1005990, (d) Behrooz Maleki, Hengameh Atharifar, Oliver Reiser, and Reihaneh Sabbaghzadeh, “Glutathione-Coated Magnetic Nanoparticles for One-Pot Synthesis of 1,4-Dihydropyridine Derivatives,” Polycyclic Aromatic Compounds 41, no. 4 (2021): 721–34. doi:10.1080/10406638.2019.1614639, (e) B. Maleki, M. Gholizadeh, and Z. Sepehr, “1,3,5-Trichloro-2,4,6-Triazinetrion: A Versatile Heterocycle for the One-Pot Synthesis of 14-Aryl- or Alkyl-14H-Dibenzo[a,j]Xanthene, 1,8-Dioxooctahydroxanthene and 12-Aryl-8,9,10,12-Tetrahydrobenzo[a]Xanthene-11-One Derivatives under Solvent-Free Conditions,” Bulletin of the Korean Chemical Society 32, no. 5 (2011): 1697–702. doi:10.5012/bkcs.2011.32.5.1697, (f) B. Maleki, S. Barzegar, Z. Sepehr, M. Kermanian, and R. Tayebee, “A Novel Polymeric Catalyst for the One-Pot Synthesis of Xanthene Derivatives under Solvent Free Conditions,” Journal of the Iranian Chemical Society 9, no. 5 (2012): 757–65. doi:10.1007/s13738-012-0092-5
  • (a) W. R. Vaughan, “The Chemistry of the Phthalazines,” Chemical Reviews 43, no. 3 (1948): 447–508. doi:10.1021/cr60136a003, (b) R. A. Clement, “The Oxidation of 2,3-Dihydrophthalazine-1,4-Dione with Lead Tetraacetate. Phthalazine-1,4-Dione and 1,4-Dihydropyridazino[1,2-b]Phthalazine-6,11-Dione,” Journal of Organic Chemistry 25, no. 10 (1960): 1724–7. doi:10.1021/jo01080a011
  • (a) F. Al-Assar, K. N. Zelenin, E. E. Lesiovskaya, I. P. Bezhan, and B. A. Chakchir, “Synthesis and Pharmacological Activity of 1-Hydroxy-, 1-Amino-, and 1-Hydrazino-Substituted 2,3-Dihydro-1H-Pyrazolo[1,2-a]Pyridazine-5,8-Diones and 2,3-Dihydro-1H-Pyrazolo[1,2-b]Phthalazine-5,10-Diones,” Pharmaceutical Chemistry Journal 36, no. 11 (2002): 598–603. doi:10.1023/A:1022665331722
  • S. Hesse, and G. Kirsch, “A Rapid Access to Coumarin Derivatives Using Vilsmeier-Haack and Suzuki Cross-Coupling Reactions,” Tetrahedron Letters 43, no. 7 (2002): 1213–5. doi:10.1016/S0040-4039(01)02373-5
  • B. H. Lee, M. F. Clothier, F. E. Dutton, G. A. Conder, and S. S. Johnson, “Anthelmintic β-Hydroxyketoamides (BKAs),” Bioorganic & Medicinal Chemistry Letters 8, no. 23 (1998): 3317–20. doi:10.1016/S0960-894X(98)00588-5
  • J.-C. Jung, Y.-J. Jung, and O.-S. Park, “A Convenient One-Pot Synthesis of 4-Hydroxycoumarin, 4-Hydroxythiocoumarin and 4-Hydroxyquinoline-2(1H)-One,” Synthetic Communications 31, no. 8 (2001): 1195–200. doi:10.1081/SCC-100104003
  • G. Melagraki, A. Afantitis, O. Igglessi-Markopoulou, A. Detsi, M. Koufaki, C. Kontogiorgis, and D. J. Hadjipavlou-Litina, “Synthesis and Evaluation of the Antioxidant and anti-Inflammatory Activity of Novel Coumarin-3-Aminoamides and Their Alpha-Lipoic Acid Adducts,” European Journal of Medicinal Chemistry 44, no. 7 (2009): 3020–6. doi:10.1016/j.ejmech.2008.12.027
  • J.-C. Jung, J.-H. Lee, S. Oh, J.-G. Lee, and O.-S. Park, “Synthesis and Antitumor Activity of 4-Hydroxycoumarin Derivatives,” Bioorganic & Medicinal Chemistry Letters 14, no. 22 (2004): 5527–31. doi:10.1016/j.bmcl.2004.09.009
  • M. Himly, B. Jahn-Schmid, K. Pittertschatscher, B. Bohle, K. Grubmayr, F. Ferreira, H. Ebner, and C. Ebner, “IgE-Mediated Immediate-Type Hypersensitivity to the Pyrazolone Drug Propyphenazone,” Journal of Allergy and Clinical Immunology 111, no. 4 (2003): 882–8. doi:10.1067/mai.2003.163
  • (a) T. Watanabe, S. Yuki, M. Egawa, and H. Nishi, “Protective Effects of MCI-186 on Cerebral Ischemia: Possible Involvement of Free Radical Scavenging and Antioxidant Actions,” Journal of Pharmacology and Experimental Therapeutics 268, no. 3 (1994): 1597–604., (b) H. Kawai, H. Nakai, M. Suga, S. Yuki, T. Watanabe, and K. I. Saito, “Effects of a Novel Free Radical Scavenger, MCl-186, on Ischemic Brain Damage in the Rat Distal Middle Cerebral Artery Occlusion Model,” Journal of Pharmacology and Experimental Therapeutics 281 (1997): 921–7.
  • T. W. Wu, L. H. Zeng, J. Wu, and K. P. Fung, “Myocardial Protection of MCI-186 in Rabbit Ischemia-Reperfusion,” Life Sciences 71, no. 19 (2002): 2249–55. doi:10.1016/S0024-3205(02)01965-3
  • M. A. Al-Haiza, S. A. El-Assiery, and G. H. Sayed, “Synthesis and Potential Antimicrobial Activity of Some New Compounds Containing the Pyrazol-3-One Moiety,” Acta Pharmaceutica 51 (2001): 251–61.
  • (a) D. Castagnolo, F. Manetti, M. Radi, B. Bechi, M. Pagano, A. De Logu, R. Meleddu, M. Saddi, and M. Botta, “Synthesis, Biological Evaluation, and SAR Study of Novel Pyrazole Analogues as Inhibitors of Mycobacterium Tuberculosis: Part 2. Synthesis of Rigid Pyrazolones,” Bioorganic & Medicinal Chemistry 17, no. 15 (2009): 5716–21. doi:10.1016/j.bmc.2009.05.058, (b) Marco Radi, Vincenzo Bernardo, Beatrice Bechi, Daniele Castagnolo, Mafalda Pagano, and Maurizio Botta, “Highly Stereoselective Synthesis of 6-Perfluoroalkyl-6-Fluoroalka-2,3,5-(Z)-Trienols through Carbometallation-Elimination of 5-Perfluoroalkyl-Substituted-4(E)-Alken-2-Ynols with Grignard Reagents,” Tetrahedron Letters 50, no. 47 (2009): 6572–5. doi:10.1016/j.tetlet.2009.09.047
  • F. Moreau, N. Desroy, J. M. Genevard, V. Vongsouthi, V. Gerusz, G. Le. Fralliec, C. Oliveira, S. Floquet, A. Denis, S. Escaich, et al, “Discovery of New Gram-Negative Antivirulence Drugs: Structure and Properties of Novel E. Coli WaaC Inhibitors,” Bioorganic and Medicinal Chemistry Letters 18, no. 14 (2008): 4022–6. doi:10.1016/j.bmcl.2008.05.117
  • E. A. M. Badawey, and I. M. El-Ashmawey, “Nonsteroidal Antiinflammatory Agents – Part 1: Antiinflammatory, Analgesic and an Activity of Some New 1-(Pyrimidin-2-yl)-3-Pyrazolin-5-Ones and 2-(Pyrimidin-2-yl)-1, Hexahydro-3H-Indazol-3-Ones,” European Journal of Medicinal Chemistry 33, no. 5 (1998): 349–61. doi:10.1016/S0223-5234(98)80002-0
  • F. A. Pasha, M. Muddassar, M. M. Neaz, and S. J. Cho, “Pharmacophore and Docking-Based Combined In-Silico Study of KDR Inhibitors,” Journal of Molecular Graphics and Modelling 28, no. 1 (2009): 54–61. doi:10.1016/j.jmgm.2009.04.006
  • C. E. Rosiere, and M. I. Grossman, “An Analog of Histamine That Stimulates Gastric Acid Secretion without Other Actions of Histamine,” Science 113, no. 2945 (1951): 651. doi:10.1126/science.113.2945.651
  • Denis M. Bailey, Philip E. Hansen, Allan G. Hlavac, Eugene R. Baizman, Jack Pearl, Albert F. DeFelice, and Martin E. Feigenson, “3,4-Diphenyl-1H-Pyrazole-1-Propanamine Antidepressants,” Journal of Medicinal Chemistry 28, no. 2 (1985): 256–60. doi:10.1021/jm00380a020
  • P. M. S. Chauhan, S. Singh, and R. K. Chatterjee, “Antifilarial Profile of Substituted Pyrazoles: A New Class of Antifilarial Agents,” Indian Journal of Chemistry – Section B 32 (1993): 858–61.
  • P. Gunasekaran, S. Perumal, P. Yogeeswari, and D. Sriram, “A Facile Four-Component Sequential Protocol in the Expedient Synthesis of Novel 2-Aryl-5-Methyl-2,3-Dihydro-1H-3-Pyrazolones in Water and Their Antitubercular Evaluation,” European Journal of Medicinal Chemistry 46, no. 9 (2011): 4530–6. doi:10.1016/j.ejmech.2011.07.029
  • J. Tharun, Y. Hwang, R. Roshan, S. Ahn, A. C. Kathalikkattil, and D. W. Park, “A Novel Approach of Utilizing Quaternized Chitosan as a Catalyst for the Eco-Friendly Cycloaddition of Epoxides with CO2,” Catalysis Science & Technology 2, no. 8 (2012): 1674–80. doi:10.1039/c2cy20137b
  • M. Zeng, X. Zhang, L. Shao, C. Qi, and X. M. Zhang, “Highly Porous Chitosan Microspheres Supported Palladium Catalyst for Coupling Reactions in Organic and Aqueous Solutions,” Journal of Organometallic Chemistry 704 (2012): 29–37. doi:10.1016/j.jorganchem.2012.01.003
  • N. V. Kramareva, A. Y. Stakheev, O. P. Tkachenko, K. V. Klementiev, W. Grünert, E. D. Finashina, and L. M. Kustov, “Heterogenized Palladium Chitosan Complexes as Potential Catalysts in Oxidation Reactions: Study of the Structure,” Journal of Molecular Catalysis A: Chemical 209, no. 1–2 (2004): 97–106. doi:10.1016/j.molcata.2003.08.004
  • S. Puvaneswary, S. Talebian, H. B. Raghavendran, M. R. Murali, M. Mehrali, A. M. Afifi, N. H. Kasim, and T. Kamarul, “Fabrication and In Vitro Biological Activity of ΒTCP Chitosan-Fucoidan Composite for Bone Tissue Engineering,” Carbohydrate Polymers 134 (2015): 799–807. doi:10.1016/j.carbpol.2015.07.098
  • (a) M. Rinaudo, “Chitin and Chitosan: Properties and Applications,” Progress in Polymer Science 31, no. 7 (2006): 603–32. doi:10.1016/j.progpolymsci.2006.06.001, (b) H. Azizi, A. Khorshidi, and K. Tabatabaeian, “Ag Nanoparticles Decorated Fe3O4/Chitosan Nanocomposite: Synthesis, Characterization and Application toward Electrochemical Sensing of Hydrogen Peroxide,” Journal of the Iranian Chemical Society 15 (2018): 1015–22.
  • (a) A. D. Sawant, D. G. Raut, N. B. Darvatkar, and M. M. Salunkhe, “Recent Developments of Task-Specific Ionic Liquids in Organic Synthesis,” Green Chemistry Letters and Reviews 4, no. 1 (2011): 41–54. doi:10.1080/17518253.2010.500622, (b) D. Han, and K. H. Row, “Recent Applications of Ionic Liquids in Separation Technology,” Molecules 15, no. 4 (2010): 2405–26. doi:10.3390/molecules15042405, (c) H. Alinezhad, M. Tajbakhsh, B. Maleki, and F. P. Oushibi, “Acidic Ionic Liquid [H-NP]HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b]Pyridines and Polysubstituted Imidazoles,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1485–500. doi:10.1080/10406638.2018.1557707, (d) A. Moghaddam, H. A. Zamani, and H. Karimi-Maleh, “A New Sensing Strategy for Determination of Tamoxifen Using Fe3O4/Graphene-Ionic Liquid Nanocomposite Amplified Paste Electrode,” Chemical Methodologies 5 (2021): 373–80., (e) A. Jamshidi, F. M. Zonoz, and B. Maleki, “Synthesis and Characterization of a New Nano Ionic Liquid Based on Dawson-Type Polyoxometalate and Its Application in the Synthesis of Symmetrical N,N′-Alkylidene Bisamides,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 875–88. doi:10.1080/10406638.2018.1504094
  • M. Antonietti, D. Kuang, B. Smarsly, and Y. Zhou, “Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures,” Angewandte Chemie 43, no. 38 (2004): 4988–92. doi:10.1002/anie.200460091
  • (a) D. Zhao, M. Wu, Y. Kou, and E. Min, “Ionic Liquids: Applications in Catalysis,” Catalysis Today 74, no. 1–2 (2002): 157–89. doi:10.1016/S0920-5861(01)00541-7, (b) T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis,” Chemical Reviews 99, no. 8 (1999): 2071–84. doi:10.1021/cr980032t
  • M. C. Buzzeo, R. G. Evans, and R. G. Compton, “Non-Haloaluminate Room-Temperature Ionic Liquids in Electrochemistry – A Review,” Chemphyschem 5, no. 8 (2004): 1106–20. doi:10.1002/cphc.200301017
  • (a) A. G. Fadeev, and M. M. Meagher, “Opportunities for Ionic Liquids in Recovery of Biofuels,” Chemical Communications 3 (2001): 295–6., (b) G. W. Meindersma, A. J. G. Podt, and A. B. De Haan, “Ternary Liquid–Liquid Equilibria for Mixtures of Toluene+n-Heptane + an Ionic Liquid,” Fluid Phase Equilibria 247, no. 1–2 (2006): 158–68. doi:10.1016/j.fluid.2006.07.002
  • M. A. Zolfigol, A. Khazaei, A. R. Moosavi-Zare, A. Zare, Z. Asgari, V. Khakyzadeh, and A. Hasaninejad, “Design of Ionic Liquid 1,3-Disulfonic Acid Imidazolium Hydrogen Sulfate as a Dual-Catalyst for the One-Pot Multi-Component Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles,” Journal of Industrial and Engineering Chemistry 19, no. 3 (2013): 721–6. doi:10.1016/j.jiec.2012.10.014
  • A. C. Cole, J. L. Jensen, I. Ntai, K. L. T. Tran, K. J. Weaver, D. C. Forbes, and J. H. Davis, “Novel Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts,” Journal of the American Chemical Society 124, no. 21 (2002): 5962–3. doi:10.1021/ja026290w
  • M. H. Valkenberg, C. deCastro, and W. F. Hölderich, “Immobilisation of Ionic Liquids on Solid Supports,” Green Chemistry 4, no. 2 (2002): 88–93. doi:10.1039/b107946h
  • Q. Zhao, M. B. Nardelli, and J. Bernholc, “Ultimate Strength of Carbon Nanotubes: A Theoretical Study,” Physical Review B 65, no. 14 (2002): 144105–10. doi:10.1103/PhysRevB.65.144105
  • R. E. Smalley, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, “Carbon Nanotubes Synthesis, Structure, Properties, and Applications,” Springer Science & Business Media 80 (2003): 27–30. (d) F. Adibian, A. R. Pourali, B. Maleki, M. Baghayeri, and A. Amiri, “One‐Pot Synthesis of Dihydro-1H-Indeno[1,2-b] Pyridines and Tetrahydrobenzo[b] Pyran Derivatives Using a New and Efficient Nanocomposite Catalyst Based on N‐Butylsulfonate‐Functionalized MMWCNTs-D-NH2,” Polyhedron 175 (2020) : 114179. doi:10.1016/j.poly.2019.114179
  • V. Selvaraj, M. Alagar, and K. S. Kumar, “Synthesis and Characterization of Metal Nanoparticles-Decorated PPY-CNT Composite and Their Electrocatalytic Oxidation of Formic Acid and Formaldehyde for Fuel Cell Applications,” Applied Catalysis B: Environmental 75, no. 1–2 (2007): 129–38. doi:10.1016/j.apcatb.2007.03.012
  • N. I. Andersen, A. Serov, and P. Atanassov, “Metal Oxides/CNT Nano-Composite Catalysts for Oxygen Reduction/Oxygen Evolution in Alkaline Media,” Applied Catalysis B: Environmental 163 (2015): 623–7. doi:10.1016/j.apcatb.2014.08.033
  • Z. Zhou, C. He, J. Xiu, L. Yang, and C. Duan, “Metal-Organic Polymers Containing Discrete Single-Walled Nanotube as a Heterogeneous Catalyst for the Cycloaddition of Carbon Dioxide to Epoxides,” Journal of the American Chemical Society 137, no. 48 (2015): 15066–9. doi:10.1021/jacs.5b07925
  • J. Safaei-Ghomi, F. Eshteghal, and H. Shahbazi-Alavi, “Novel Ionic Liquid Supported on Fe3O4 Nanoparticles as an Efficient Catalyst for the Synthesis of New Chromenes,” Applied Organometallic Chemistry 32, no. 1 (2018): e3987. doi:10.1002/aoc.3987
  • A. Kumbhar, S. Jadhav, R. Shejwal, G. Rashinkar, and R. Salunkhe, “Application of Novel Multi-Cationic Ionic Liquids in Microwave Assisted 2-Amino-4H-Chromene Synthesis,” RSC Advances 6, no. 23 (2016): 19612–9. doi:10.1039/C6RA01062H
  • Temitope O. Olomola, Rosalyn Klein, Nicodemus Mautsa, Yasien Sayed, and Perry T. Kaye, “Synthesis and Evaluation of Coumarin Derivatives as Potential Dual-Action HIV-1 Protease and Reverse Transcriptase Inhibitors,” Bioorganic & Medicinal Chemistry 21, no. 7 (2013): 1964–71. doi:10.1016/j.bmc.2013.01.025
  • S. Anvar, I. Mohammadpoor-Baltork, S. Tangestaninejad, M. Moghadam, V. Mirkhani, A. R. Khosropour, A. Landarani. Isfahani, and R. Kia, “New Pyridinium-Based Ionic Liquid as an Excellent Solvent–Catalyst System for the One-Pot Three-Component Synthesis of 2,3-Disubstituted Quinolines,” ACS Combinatorial Science 16, no. 3 (2014): 93–100. doi:10.1021/co400144b
  • N. Isambert, M. D. M. S. Duque, J.-C. Plaquevent, Y. Genisson, J. Rodriguez, and T. Constantieux, “Multicomponent Reactions and Ionic Liquids: A Perfect Synergy for Eco-Compatible Heterocyclic Synthesis,” Chemical Society Reviews 40, no. 3 (2011): 1347–57. doi:10.1039/c0cs00013b
  • H. Singh, J. Sindhu, J. M. Khurana, C. Sharma, and K. Aneja, “Ultrasound Promoted One Pot Synthesis of Novel Fluorescent Triazolyl Spirocyclic Oxindoles Using DBU Based Task Specific Ionic Liquids and Their Antimicrobial Activity,” European Journal of Medicinal Chemistry 77 (2014): 145–54. doi:10.1016/j.ejmech.2014.03.016
  • B. K. Billing, P. Dhar, N. Singh, and P. K. Agnihotri, “Augmenting Static and Dynamic Mechanical Strength of Carbon Nanotube/Epoxy Soft Nanocomposites via Modulation of Purification and Functionalization Routes,” Soft Matter 14, no. 2 (2018): 291–300. doi:10.1039/c7sm01768e
  • Beant Kaur Billing, Prabhat K. Agnihotri, Navneet Kaur, Narinder Singh, and Doo Ok Jang, “Ionic Liquid-Coated Carbon Nanotubes as Efficient Metal Free Catalysts for the Synthesis of Chromene Derivatives,” ACS Sustainable Chemistry & Engineering 6, no. 3 (2018): 3714–22. doi:10.1021/acssuschemeng.7b04048
  • S. Yaragorla, A. Pareek, and R. Dada, “Ca(II)-Catalyzed, One-Pot Four Component Synthesis of Functionally Embellished Benzylpyrazolyl Coumarins in Water,” Tetrahedron Letters 56, no. 33 (2015): 4770–4. doi:10.1016/j.tetlet.2015.06.049

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.