431
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Design, Spectroscopic, and Crystal Structural Characterization of New Pyrazolone-Based Schiff Bases: Molecular Docking Investigations against SARS-Covid-19 Main Proteases (PDB Ids: 6LU7 and 7TLL)

, , , &
Pages 8933-8945 | Received 05 Oct 2022, Accepted 02 Dec 2022, Published online: 20 Dec 2022

References

  • A. S. Elsherbiny, and H. A. El‐Ghamry, “Synthesis, Characterization, and Catalytic Activity of New Cu (II) Complexes of Schiff Base: Effective Catalysts for Decolorization of Acid Red 37 Dye Solution,” International Journal of Chemical Kinetics 47, no. 3 (2015): 162–73. doi:10.1002/kin.20900
  • J. Rashtkhah, “A Comprehensive Review on the Synthesis, Characterization, and Catalytic Application of Transition-Metal Schiff-Base Complexes Immobilized on Magnetic Fe3O4 Nanoparticles,” Coordination Chemistry Reviews 467 (2022): 214614. doi:10.1016/j.ccr.2022.214614
  • N. H. Yarkandi, H. A. El-Ghamry, and M. Gaber, “Synthesis, Spectroscopic and DNA Binding Ability of CoII, NiII, CuII and ZnII Complexes of Schiff Base Ligand (E)-1-(((1H-Benzo [d] Imidazol-2-yl) Methylimino) Methyl) Naphthalen-2-ol. X-Ray Crystal Structure Determination of Cobalt (II) Complex,” Materials Science and Engineering: C 75 (2017): 1059–67. doi:10.1016/j.msec.2017.02.171
  • A. L. Berhanu, I. Mohiuddin, A. K. Malik, J. S. Aulakh, V. Kumar, and K. H. Kim Gaurav, “A Review of the Applications of Schiff Bases as Optical Chemical Sensors,” Trac Trends in Analytical Chemistry 116 (2019): 74–91. doi:10.1016/j.trac.2019.04.025
  • M. Gaber, H. A. El-Ghamry, S. K. Fathalla, and M. A. Mansour, “Synthesis, Spectroscopic, Thermal and Molecular Modeling Studies of Zn2+, Cd2+ and UO22+ Complexes of Schiff Bases Containing Triazole Moiety. Antimicrobial, Anticancer, Antioxidant and DNA Binding Studies,” Materials Science and Engineering: C 83 (2018): 78–89. doi:10.1016/j.msec.2017.11.004
  • B. D. Vanjare, Y. S. Eom, H. Raza, M. Hassan, K. Lee, and S. J. Kim, “Elastase Inhibitory Activity of Quinoline Analogues: Synthesis, Kinetic Mechanism, Cytotoxicity, Chemoinformatics and Molecular Docking Studies,” Bioorganic & Medicinal Chemistry 63 (2022): 116745. doi:10.1016/j.bmc.2022.116745
  • R. El-Sharkawy, and H. A. El-Ghamry, “Multi-Walled Carbon Nanotubes Decorated with Cu (II) Triazole Schiff Base Complex for Adsorptive Removal of Synthetic Dyes,” Journal of Molecular Liquids 282 (2019): 515–26. doi:10.1016/j.molliq.2019.02.137
  • X. Bao, X. Wang, J.-M. Tian, X. Ye, B. Wang, and H. Wang, “Recent Advances in the Applications of Pyrazolone Derivatives in Enantioselective Synthesis,” Organic & Biomolecular Chemistry 20, no. 12 (2022): 2370–86. doi:10.1039/D1OB02426D
  • M. Lutz, “Metamizole (Dipyrone) and the Liver: A Review of the Literature,” Journal of Clinical Pharmacology 59, no. 11 (2019): 1433–42. doi:10.1002/jcph.1512
  • H. A. Saad, N. A. Osman, and A. H. Moustafa, “Synthesis and Analgesic Activity of Some New Pyrazoles and Triazoles Bearing a 6, 8-Dibromo-2-Methylquinazoline Moiety,” Molecules (Basel, Switzerland) 16, no. 12 (2011): 10187–201. doi:10.3390/molecules161210187
  • İ. Koca, M. Yakan, İ. Çapan, E. Şahin, and Y. Sert, “Experimental and Computational Studies of 1,5-Diphenyl-Pyrazole-3-Carboxamide Compounds as Potential Cannabinoid Receptor Type 1,” Journal of Molecular Structure 1264 (2022): 133269. doi:10.1016/j.molstruc.2022.133269
  • K. Karrouchi, Y. Sert, M. Ansar, S. Radi, B. El Bali, R. Imad, A. Alam, R. Irshad, S. Wajid, and M. Altaf, “Synthesis, α-Glucosidase Inhibition, Anticancer, DFT and Molecular Docking Investigations of Pyrazole Hydrazone Derivatives,” Polycyclic Aromatic Compounds 1265 (2022): 1–20. doi:10.1080/10406638.2022.2097275
  • K. Karrouchi, I. Celik, S. Fettach, T. Karthick, K. Bougrin, S. Radi, M. E. A. Faouzi, M. Ansar, and R. Renjith,” “Synthesis and Investigations of Reactive Properties, Photophysical Properties and Biological Activities of a Pyrazole-Triazole Hybrid Molecule,” Journal of Molecular Structure 1265 (2022): 133363. doi:10.1016/j.molstruc.2022.133363
  • W. D. Jang, S. Jeon, S. Kim, and S. Y. Lee, “Drugs Repurposed for COVID-19 by Virtual Screening of 6,218 Drugs and Cell-Based Assay,” Proceedings of the National Academy of Sciences of the United States of America 118 (2021): e2024302118. doi:10.1073/pnas.2024302118
  • A. Gasmi, M. Peana, S. Noor, R. Lysiuk, A. Menzel, A. Gasmi Benahmed, and G. Bjørklund, “Chloroquine and Hydroxychloroquine in the Treatment of COVID-19: The Never-Ending Story,” Applied Microbiology and Biotechnology 105, no. 4 (2021): 1333–43. doi:10.1007/s00253-021-11094-4
  • P. H. Parikh, J. B. Timaniya, M. J. Patel, and K. P. Patel, “Microwave-Assisted Synthesis of Pyrano [2, 3-c]-Pyrazole Derivatives and Their anti-Microbial, anti-Malarial, anti-Tubercular, and anti-Cancer Activities,” Journal of Molecular Structure 1249 (2022): 131605. doi:10.1016/j.molstruc.2021.131605
  • M. Motiwale, N. S. Yadav, S. Kumar, T. Kushwaha, G. Choudhir, S. Sharma, and P. K. Singour, “Finding Potent Inhibitors for COVID-19 Main Protease (Mpro): An in Silico Approach Using SARS-CoV-3CL Protease Inhibitors for Combating CORONA,” Journal of Biomolecular Structure and Dynamics 40, no. 4 (2022): 1534–45. doi:10.1080/07391102.2020.1829501
  • J. He, L. Hu, X. Huang, C. Wang, Z. Zhang, Y. Wang, D. Zhang, and W. Ye, “Potential of Coronavirus 3C-like Protease Inhibitors for the Development of New anti-SARS-CoV-2 Drugs: Insights from Structures of Protease and Inhibitors,” International Journal of Antimicrobial Agents 56, no. 2 (2020): 106055. doi:10.1016/j.ijantimicag.2020.106055
  • E. B. Poormohammadi, M. Behzad, Z. Abbasi, and S. D. A. Astaneh, “Copper Complexes of Pyrazolone-Based Schiff Base Ligands: Synthesis, Crystal Structures and Antibacterial Properties,” Journal of Molecular Structure 1205 (2020): 127603. doi:10.1016/j.molstruc.2019.127603
  • L. Ghasemi, M. H. Esfahani, A. Abbasi, and M. Behzad, “Synthesis and Crystal Structures of New Mixed-Ligand Schiff Base Complexes Containing N-Donor Heterocyclic co-Ligands: Molecular Docking and Pharmacophore Modeling Studies on the Main Proteases of SARS-CoV-2 Virus (COVID-19 Disease),” Polyhedron 220 (2022): 115825. doi:10.1016/j.poly.2022.115825
  • E. A. Eno, J. I. Mbonu, H. Louis, F. S. Patrick-Inezi, T. E. Gber, T. O. Unimuke, E. E. D. Okon, I. Benjamin, and O. E. Offiong, “Antimicrobial Activities of 1-Phenyl-3-Methyl-4-Trichloroacetyl-Pyrazolone: Experimental, DFT Studies, and Molecular Docking Investigation,” Journal of the Indian Chemical Society 99, no. 7 (2022): 100524. doi:10.1016/j.jics.2022.100524
  • M. Messaad, I. Dhouib, M. Abdelhedi, and B. Khemakhem, “Synthesis, Bioassay and Molecular Docking of Novel Pyrazole and Pyrazolone Derivatives as Acetylcholinesterase Inhibitors,” Journal of Molecular Structure 1263 (2022): 133105. doi:10.1016/j.molstruc.2022.133105
  • B. S. Jemson, “The Synthesis of 1-Phenyl-3-Methyl-4-Acyl-pyrazolones5,” Acta Chemica Scandinavica 13 (1959): 1668–70.
  • M. Hasanzadeh Esfahani, N. Fallah, H. Iranmanesh, J. E. Beves, and M. Behzad, “Experimental and Computational Studies on Copper(II) Schiff Base Complex Derived from 4-Acetyl-3-Methyl-1-Phenyl-2-Pyrazolin-5-One,” Journal of Molecular Structure 1257 (2022): 132626. doi:10.1016/j.molstruc.2022.132626
  • F. Marchetti, C. Pettinari, C. D. Nicola, A. Tombesi, and R. Pettinari, “Coordination Chemistry of Pyrazolone-Based Ligands and Applications of Their Metal Complexes,” Coordination Chemistry Reviews 401 (2019): 213069. doi:10.1016/j.ccr.2019.213069
  • K. Karrouchi, S. A. Brandán, Y. Sert, H. El-Marzouqi, S. Radi, M. Ferbinteanu, M. E. A. Faouzi, Y. Garcia, and M. Ansar, “Synthesis, X-Ray Structure, Vibrational Spectroscopy, DFT, Biological Evaluation and Molecular Docking Studies of (E)-N’-(4-(Dimethylamino)Benzylidene)-5-Methyl-1H-Pyrazole-3-Carbohydrazide,” Journal of Molecular Structure 1219 (2020): 128541. doi:10.1016/j.molstruc.2020.128541
  • F. Marchetti, C. Pettinari, and R. Pettinari, “Acylpyrazolone Ligands: Synthesis, Structures, Metal Coordination Chemistry and Applications,” Coordination Chemistry Reviews 249, no. 24 (2005): 2909–45. doi:10.1016/j.ccr.2005.03.013
  • P. R. Shetty, G. Shivaraja, K. Pruthviraj, and V. C. Mohan, “Pyrazole Schiff Bases: Synthesis, Characterization, Biological Screening, in Silico ADME and Molecular Docking Studies”. Ind,” Journal of Heterocyclic Chemistry 30 (2020): 123–30. doi:10.3390/molecules26247435
  • H. Abd El-Mageed, D. A. Abdelrheem, S. A. Ahmed, A. A. Rahman, K. N. Elsayed, S. A. Ahmed, A. A. El-Bassuony, and H. S. Mohamed, “Combination and Tricombination Therapy to Destabilize the Structural Integrity of COVID-19 by Some Bioactive Compounds with Antiviral Drugs: insights from Molecular Docking Study,” Structural Chemistry 32, no. 4 (2021): 1415–30. doi:10.1007/s11224-020-01723-5
  • W. Shao, W. Zhang, X. Fang, D. Yu, and X. Wang, “Challenges of SARS-CoV-2 Omicron Variant and Appropriate Countermeasures,” Journal of Microbiology, Immunology and Infection 55 (2022): 387–94. doi:10.1016/j.jmii.2022.03.007
  • J. Roshni, R. Vaishali, K. Ganesh, N. Dharani, K. J. Alzahrani, H. J. Banjer, A. H. Alghamdi, A. Theyab, S. S. Ahmed, and S. Patil, ” “Multi-Target Potential of Indian Phytochemicals against SARS-CoV-2: A Docking, Molecular Dynamics and MM-GBSA Approach Extended to Omicron B. 1.1. 529,” J. Infect. Public Health 15 (2022): 662–9. doi:10.1016/j.jiph.2022.05.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.