83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Diastereoselective Synthesis of Trans-1H-Chromeno[2,3-d]Pyrimidine-2,4,6(3H)-Trione Derivatives by KF/Stilbite Zeolite NPs as a Novel Heterogeneous Nanocatalyst and Evaluation of Their Antimicrobial and Antioxidant Activity

, , , ORCID Icon &
Pages 9087-9104 | Received 14 Aug 2022, Accepted 08 Dec 2022, Published online: 23 Dec 2022

References

  • G. M. Ziarani, F. Aleali, and N. Lashgari, “Recent Applications of Barbituric Acid in Multicomponent Reactions,” RSC Advances 56 (2016): 50373–1484.
  • J. G. Hrdman, L. E. Limird, and A. G. Gilman, Godman & Gilman’s the Pharmacological Basis of the Rapiutics, 10th ed. (New York, NY: Mcgraw-Hill, 2001).
  • S.-H. Kim, A. T. Pudzianowski, K. J. Leavitt, J. Barbosa, P. A. McDonnell, W. J. Metzler, B. M. Rankin, R. Liu, W. Vaccaro, and W. Pitts, “Structure-Based Design of Potent and Selective Inhibitors of Collagenase-3 (MMP-13),” Bioorganic & Medicinal Chemistry Letters 15, no. 4 (2005): 1101–6. doi:10.1016/j.bmcl.2004.12.016
  • A. R. Daniewski, W. Liu, and M. Okabe, “An Improved Synthesis of the Selective Matrix Metalloproteinase Inhibitor, Ro 28-2653,” Organic Process Research & Development 8, no. 3 (2004): 411–4. doi:10.1021/op049965j
  • E Maquoi, N. E. Sounni, L. Devy, F. Olivier, F. Frankenne, H.-W. Krell, F. Grams, J.-M. Foidart, and A. Noël, “Anti-Invasive, Antitumoral, and Antiangiogenic Efficacy of a Pyrimidine-2,4,6-Trione Derivative, an Orally Active and Selective Matrix Metalloproteinases Inhibitor,” Clinical Cancer Research 10, no. 12 (2004): 4038–47. doi:10.1158/1078-0432.CCR-04-0125
  • W. G. Brouwer, E. E. Felauerand, and A. R. Bell, "US Patent, 779, 982, 1990," In Chemical Abstracts 114 (1991): 185539.
  • A. Esanu and B. E. Patent, “902, 232,” In Chemical Abstracts 104 (1986): 130223.
  • A. Padmaja, T. Payani, G. D. Reddy, and V. Padmavathi, “Synthesis, Antimicrobial and Antioxidant Activities of Substituted Pyrazoles, Isoxazoles, Pyrimidine and Thioxopyrimidine Derivative,” European Journal of Medicinal Chemistry 44, no. 11 (2009): 4557–66. doi:10.1016/j.ejmech.2009.06.024
  • J. S. Biradar, B. S. Sasidhar, and R. Parveen, “Synthesis, Antioxidant and DNA Cleavage Activities of Novel Indole Derivatives,” European Journal of Medicinal Chemistry 45, no. 9 (2010): 4074–8. doi:10.1016/j.ejmech.2010.05.067
  • H. A. Shonle, and A. Moment, “Some New Hypnotics of the Barbituric Acid Series,” Journal of the American Chemical Society 45, no. 1 (1923): 243–9. doi:10.1021/ja01654a033
  • C. Nielsen, J. A. Higgins, and H. C. Spruth, “A Comparative Study on Hypnotics of the Barbituric Acid Series,” Journal of Pharmacology and Experimental Therapeutics 26, no. 5 (1925): 371–83.
  • C. L. Kliethermes, P. Metten, J. K. Belknap, K. J. Buck, and J. C. Crabbe, “Selection for Pentobarbital Withdrawal Severity: Correlated Differences in Withdrawal from Other Sedative Drugs,” Brain Research 1009, no. 1–2 (2004): 17–25. doi:10.1016/j.brainres.2004.02.040
  • P. R. Andrews, G. P. Jones, and D. Lodge, “Convulsant, Anticonvulsant and Anaesthetic Barbiturates. 5-Ethyl-5-(3′-Methyl-But-2′-Enyl)-Barbituric Acid and Related Compounds,” European Journal of Pharmacology 55, no. 2 (1979): 115–20. doi:10.1016/0014-2999(79)90382-0
  • V. K. Srivastava, and A. Kumar, “Synthesis of Some Newer Derivatives of Substituted Quinazolinonyl-2-Oxo/Thiobarbituric Acid as Potent Anticonvulsant Agents,” Bioorganic & Medicinal Chemistry 12, no. 5 (2004): 1257–64. doi:10.1016/j.bmc.2003.08.035
  • B. D. Dhorajiya, B. Z. Dholakiya, and R. M. Mohareb, “Hybrid Probes of Aromatic Amine and Barbituric Acid: Highly Promising Leads for anti-Bacterial, anti-Fungal and anti-Cancer Activities,” Medicinal Chemistry Research 23, no. 9 (2014): 3941–52. doi:10.1007/s00044-014-0973-5
  • F. Sandberg, “Anaesthetic Properties of Some New N-Substituted and N,N'- Disubstituted Derivatives of 5,5-Diallyl-Barbituric Acid,” Acta Physiologica Scandinavica 24, no. 1 (1951): 7–26. doi:10.1111/j.1748-1716.1951.tb00823.x
  • P. Singh, M. Kaur, and P. Verma, “Design, Synthesis and Anticancer Activities of Hybrids of Indole and Barbituric Acids-Identification of Highly Promising Leads,” Bioorganic & Medicinal Chemistry Letters 19, no. 11 (2009): 3054–8. doi:10.1016/j.bmcl.2009.04.014
  • O. M. Ashour, F. N. M. Naguib, M. M. A. Khalifa, M. H. Abdel-Raheem, R. P. Panzica, and M. H. el Kouni, “Enhancement of 5-Fluoro-2′-Deoxyuridine Antitumor Efficacy by the Uridine Phosphorylase Inhibitor 5-(Benzyloxybenzyl)Barbituric Acid Acyclonucleoside,” Cancer Research 55, no. 5 (1995): 1092–8.
  • C. Heidelberger, Pyrimidine and Pyrimidine Antimetabolites in Cancer Medicine, edited by J. F. Holland and E. Frei. (1984): 801.
  • A. M. El-Agrody, A. M. Fouda, and A. A. M. Al-Dies, “Studies on the Synthesis in Vitro Antitumor Activity of 4H-Benzo[h]Chromene, 7H-Benzo[h]Chromene[2,3-d]Pyrimidine Derivatives and Structure-Activity Relationships of the 2,3- and 2,3-Positions,” Medicinal Chemistry Research 23, no. 6 (2014): 3187–99. doi:10.1007/s00044-013-0904-x
  • A. M. El-Agrody, A. H. Halawa, A. M. Fouda, and M. A. D. Al-Anood, “The anti-Proliferative Activity of Novel 4H-Benzo[h]Chromenes, 7H-Benzo[h]-Chromeno[2,3-d]Pyrimidines and the Structure–Activity Relationships of the 2-, 3-Positions and Fused Rings at the 2, 3-Positions,” Journal of Saudi Chemical Society 21, no. 1 (2017): 82–90. doi:10.1016/j.jscs.2016.03.002
  • (a) K. Yalagala, S. B. Jonnalagadda, S. Maddila, S. Maddila, S. Rana, and S. N. Maddila, “Novel Chromeno[2,3-d]pyrimidines-Design, Synthesis and Antioxidant Activity,” Letters in Drug Design & Discovery 14, no. 7 (2017): 763–72. (b) N. Ahmadi, S. Z. Sayyed-Alangi, and A. Varasteh-Moradi, “Cu@KF/Clinoptilolite Nanoparticles Promoted Green Synthesis of Pyrimidine Derivatives: Study of Antioxidant Activity,” Polycyclic Aromatic Compounds 42, no. 7 (2022): 4019–33. (c) N. Ahmadi, S. Z. Sayyed‐Alangi, and A. Varasteh‐Moradi, “Synthesis and Evaluation of Antioxidant and Antimicrobial Activity of New Spiropyridine Derivatives Using Ag/TiO2/Fe3O4@MWCNTs MNCs as Efficient Organometallic Nanocatalyst,” Applied Organometallic Chemistry 35, no. 12 (2021): e6372. doi:10.2174/1570180814666161123143637
  • M. M. Khafagy, A. H. F. A. El-Wahab, F. A. Eid, and A. M. El-Agrody, “Synthesis of Halogen Derivatives of Benzo[h]Chromene and Benzo[a]Anthracene with Promising Antimicrobial Activities,” Farmaco 57, no. 9 (2002): 715–22. doi:10.1016/S0014-827X(02)01263-6
  • R. M. Okasha, F. F. Albalawi, T. H. Afifi, A. M. Fouda, A. A. M. Al-Dies, and A. M. El-Agrody, “Structural Characterization and Antimicrobial Activities of 7H-Benzo[h]Chromeno[2,3-d]Pyrimidine and 14H-Benzo[h]Chromeno[3,2-e][1,2,4]Triazolo[1,5-c] Pyrimidine Derivatives,” Molecules 21, no. 11 (2016): 1450. doi:10.3390/molecules21111450
  • D. O. Moon, Y. H. Choi, N. D. Kim, Y. M. Park, and G. Y. Kim, “Anti-Inflammatory Effects of β-Lapachone in Lipopolysaccharide-Stimulated BV2 Microglia,” International Immunopharmacology 7, no. 4 (2007): 506–14. doi:10.1016/j.intimp.2006.12.006
  • G. A. Engwa, "Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. Phytochemicals: Source of Antioxidants and Role in Disease Prevention." BoD–Books on Demand 7 (2018):49-74. doi: 10.5772/intechopen.76719.
  • E. Soleimani, S. Ghorbani, and H. R. Ghasempour, “Novel Isocyanide-Based Three-Component Reaction: A Facile Synthesis of Substituted 1H-Chromeno[2,3-d]Pyrimidine-5-Carboxamides,” Tetrahedron 69, no. 39 (2013): 8511–5. doi:10.1016/j.tet.2013.06.080
  • P. Rai, H. Sagir, A. Kumar, V. B. Yadav, and I. R. Siddiqui, “Organocatalyzed Synthesis of Medicinally Important Chromeno[2,3-d]Pyrimidine-Triones in Biodegradable Reaction Medium,” ChemistrySelect 3, no. 9 (2018): 2565–70. doi:10.1002/slct.201702483
  • R. Kumar, K. Raghuvanshi, R. K. Verma, and M. S. Singh, “Application of Cyclic-1,3-Diketones in Domino and Multicomponent Reactions: Facile Route to Highly Functionalized Chromeno[2,3-d]Pyrimidinones and Diazabenzo[b]Fluorenones under Solvent-Free Conditions,” Tetrahedron Letters 51, no. 45 (2010): 5933–6. doi:10.1016/j.tetlet.2010.09.017
  • (a) R. Ghahremanzadeh, F. Fereshtehnejad, and A. Bazgir, “Chromeno[2,3-d]Pyrimidine-Triones Synthesis by a Three-Component Coupling Reaction,” Chemical and Pharmaceutical Bulletin 58, no. 4 (2010): 516–20. (b) G. C. Nandi, S. Samai, R. Kumar, and M. S. Singh, “An Afficient One-Pot Synthesis of Tetrahydrobenzo[a]Xanthene-11-One and Diazabenzo[a]Anthracene-9,11-Dione Derivatives under Solvent Free Condition,” Tetrahedron 65, no. 34 (2009): 7129–34.
  • (a) M. Khashaei, L. Kafi-Ahmadi, S. Khademinia, A. P. Marjani, and E. Nozad, “A Facile Hydrothermal Synthesis of High-Efficient NiO Nanocatalyst for Preparation of 3,4-Dihydropyrimidin-2(1H)-Ones,” Scientific Reports 121, no. 2022 (2021): 1–5. (b) L. Kafi‐Ahmadi, A. Poursattar, and E. Marjani, “Nozad Ultrasonic‐Assisted Preparation of Co3O4 and Eu‐Doped Co3O4 Nanocatalysts and Their Application for Solvent‐Free Synthesis of 2‐Amino‐4H‐Benzochromenes under Microwave Irradiation,” Applied Organometallic Chemistry 35, no. 8 (2021): e6271.
  • S. Bhatia, Zeolite Catalysis: Principles and Applications, 1st ed. (Boca Raton, FL: CRC Press, 1990).
  • (a) R. N. Sukheswala, R. K. Avasia, and M. Gangopadhyay, “Zeolites and Associated Secondary Minerals in the Deccan Traps of Western India,” Mineralogical Magazine 39, no. 306 (1974): 658–71. (b) L. Gadekar, S. Katkar, and K. Vidhate, “Synthesis of Benzimidazole Derivatives Using Ni Nps/Stilbite Zeolite,” Journal of Biological and Chemical Chronicles 5, no. 3 (2019)83–7. doi:10.1180/minmag.1974.039.306.04
  • L. Gómez-Hortigüela, A. B. Pinar, J. Pérez-Pariente, T. Sani, Y. Chebude, and I. Díaz, “Ion-Exchange in Natural Zeolite Stilbite and Significance in Defluoridation Ability,” Microporous and Mesoporous Materials 193, no. 3 (2014): 93–102. doi:10.1016/j.micromeso.2014.03.014
  • W. H. Baur, D. Kassner, C. H. Kim, and N. H. W. Sieber, “Flexibility and Distortion of the Framework of Natrolite: Crystal Structures of Ion-Exchanged Natrolites,” European Journal of Mineralogy 2, no. 6 (1990): 761–70. doi:10.1127/ejm/2/6/0761
  • H. B. Slama, A. Chenari Bouket, Z. Pourhassan, F. N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova, P. Golińska, and L. Belbahri, “Diversity of Synthetic Dyes from Textile Industries, Discharge Impacts and Treatment Methods,” Applied Sciences 11, no. 14 (2021): 6255–75. doi:10.3390/app11146255
  • S. Madhav, A. Ahamad, P. Singh, and P. K. Mishra, “A Review of Textile Industry: Wet Processing, Environmental Impacts, and Effluent Treatment Methods,” Environmental Quality Management 27, no. 3 (2018): 31–41. doi:10.1002/tqem.21538
  • H. Sajjadi-Ghotbabadi, S. Javanshir, F. Rostami-Charati, and S. Z. Sayyed-Alangi, “Eco-Compatible Synthesis of Novel 3-Hydroxyflavones Catalyzed by KF-Impregnated Mesoporous Natural Zeolite Clinoptilolit,” Chemistry of Heterocyclic Compounds 54, no. 5 (2018): 508–13. doi:10.1007/s10593-018-2297-8
  • F. Rostami-Charati, R. Hajinasiri, S. Z. S. Alangi, and S. A. S. Abad, “ZnO-Nanorods as Economical Catalyst for Synthesis of 4-Amino-2-Iminodithiole Derivatives Using Tetramethyl Thiourea in Water,” Chemical Papers 70, no. 7 (2016): 907–12. doi:10.1515/chempap-2016-0030
  • Z. Hossaini, F. Sh. Farahani, S. Soltani, S. Z. Sayyed-Alangi, and H. Sajjadi-Ghotabadi, “ZnO Nanoparticles as a Highly Efficient Heterogeneous Catalyst for the Synthesis of Various Chromene and Pyrano[4,3-b]Pyran Derivatives under Solvent-Free Conditions,” Chemistry of Heterocyclic Compounds 51, no. 1 (2015): 26–30. doi:10.1007/s10593-015-1654-0
  • Z. Mirjafary, H. Saeidian, A. Sadeghi, and F. M. Moghaddam, “ZnO Nanoparticles: An Efficient Nanocatalyst for the Synthesis of β-Acetamido Ketones/Esters via a Multi-Component Reaction,” Catalysis Communications 9, no. 2 (2008): 299–306. doi:10.1016/j.catcom.2007.06.018
  • D. Beydoun, R. Amal, G. Low, and S. McEvoy, “Role of Nanoparticles in Photocatalysis,” Journal of Nanoparticle Research 1, no. 4 (1999): 439–58. doi:10.1023/A:1010044830871
  • A. Noushin, S. Z. Sayyed-Alangi, A. Varasteh-Moradi, Z. Hossaini, and S. Arshadi, “KF Impregnated Natrolite Zeolite as a New Heterogeneous Nanocatalyst Promoted One-Pot Synthesis of Benzo[1,4]-Diazepin-5-One Derivatives,” Polycyclic Aromatic Compounds 42, no. 10 (2022): 7430–45. doi:10.1080/10406638.2021.2002377
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–8. doi:10.1021/jf00018a005
  • G. C. Yen, and P. D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–32. doi:10.1021/jf00039a005
  • A. Yildirım, A. Mavi, and A. A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex crispus L. Extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–9. doi:10.1021/jf0103572
  • M. Slaughter, “Crystal Structure of Stilbite,” American Mineralogist 55 (1970): 387–97.
  • S. E. McNeil (ed.), Characterization of Nanoparticles Intended for Drug Delivery (New York, NY: Springer, 2011).
  • B. Lee, S. Yoon, J. W. Lee, Y. Kim, J. Chang, J. Yun, J. C. Ro, J. S. Lee, and J. S. Lee, “Statistical Characterization of the Morphologies of Nanoparticles through Machine Learning Based Electron Microscopy Image Analysis,” ACS Nano 14, no. 12 (2020): 17125–33. doi:10.1021/acsnano.0c06809
  • A. Barakat, A. M. Al-Majid, A. M. Al-Ghamdi, Y. N. Mabkhot, M. R. H. Siddiqui, H. A. Ghabbour, and H. K. Fun, “Tandem Aldol-Michael Reactions in Aqueous Diethylamine Medium: A Greener and Efficient Approach to Dimedone-Barbituric Acid Derivatives,” Chemistry Central Journal 8, no. 1 (2014): 9. doi:10.1186/1752-153X-8-9
  • A. Khalafi-Nezhad, and F. Panah, “Synthesis of New Dihydropyrimido[4,5-b]Quinolinetrione Derivatives Using a Four-Component Coupling Reaction,” Synthesis 2011, no. 06 (2011): 984–92. doi:10.1055/s-0030-1258446
  • C. Schorn, B. F. Taylor, and B. J. Taylor, NMR-Spectroscopy: Data Acquisition, 2nd ed. (Weinheim, Germany: WILEY-VCH Verlag GmbH and Co. KGa, 2004).
  • C. Liu, C. Chen, H. Ma, E. Yuan, and Q. Li, “Characterization and DPPH Radical Scavenging Activity of Gallic Acid-Lecithin Complex,” Tropical Journal of Pharmaceutical Research 13, no. 8 (2014): 1333–8. doi:10.4314/tjpr.v13i8.19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.