63
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Recyclization Reactions of 2-Methylchromone-3-Carbonitrile with Active Methylene Nucleophiles: Synthesis and Reactions of 4-Methylchromeno[2,3-b]Pyridines

ORCID Icon & ORCID Icon
Pages 9105-9117 | Received 07 Oct 2022, Accepted 08 Dec 2022, Published online: 28 Dec 2022

References

  • M. Fan, W. Yang, M. He, Y. Li, Z. Peng, and G. Wang, “Occurrence, Synthesis and Biological Activity of 2-(2-Phenyethyl)Chromones,” European Journal of Medicinal Chemistry 237 (2022): 114397. doi:10.1016/j.ejmech.2022.114397
  • S. Zhang, Y. Xie, L. Song, Y. Wang, H. Qiu, Y. Yang, C. Li, Z. Wang, Z. Han, and L. Yang, “Seven New 2-(2-Phenylethyl)Chromone Derivatives from Agarwood of Aquilaria Agallocha with Inhibitory Effects on Nitric Oxide Production,” Fitoterapia 159 (2022): 105177., doi:10.1016/j.fitote.2022.105177
  • V. M. Patil, N. Masand, S. Verma, and V. Masand, “Chromones: Privileged Scaffold in Anticancer Drug Discovery,” Chemical Biology & Drug Design 98, no. 5 (2021): 943–53, doi:10.1111/cbdd.13951
  • R. S. Keri, S. Budagumpi, R. K. Pai, and R. G. Balakrishna, “Chromones as a Privileged Scaffold in Drug Discovery: A Review,” European Journal of Medicinal Chemistry 78 (2014): 340–74. doi:10.1016/j.ejmech.2014.03.047
  • S. Khursheed, M. R. Wani, G. G. H. A. Shadab, S. Tabassum, and F. Arjmand, “Synthesis, Structure Elucidation by Multi-Spectroscopic Techniques and Single-Crystal X-Ray Diffraction of Promising Fluoro/Bromo-Substituted-Chromone(Bpy)Copper(II) Anticancer Drug Entities,” Inorganica Chimica Acta 538 (2022): 120967. doi:10.1016/j.ica.2022.120967
  • M. A. Ibrahim, and T. E. Ali, “Synthesis and Antimicrobial Activity of Chromone-Linked 2-Pyridone Fused with 1,2,4-Triazoles, 1,2,4-Triazines and 1,2,4-Triazepines Ring Systems,” Journal of the Brazilian Chemical Society 21, no. 6 (2010): 1007–16. doi:10.1590/S0103-50532010000600010
  • A. K. Narula, C. S. Azad, and L. M. Nainwal, “New Dimensions in the Field of Antimalarial Research against Malaria Resurgence,” European Journal of Medicinal Chemistry 181 (2019): 111353. doi:10.1016/j.ejmech.2019.05.043
  • V. Kumar, M. Gupta, S. G. Gandhi, S. S. Bharate, A. Kumar, R. A. Vishwakarma, and S. B. Bharate, “Anti-Inflammatory Chromone Alkaloids and Glycoside from Dysoxylum Binectariferum,” Tetrahedron Letters 58, no. 42 (2017): 3974–8. doi:10.1016/j.tetlet.2017.09.005
  • X. Ouyang, X. Li, W. Lu, X. Zhao, and D. Chen, “A Null B-Ring Improves the Antioxidant Levels of Flavonol: A Comparative Study between Galangin and 3,5,7-Trihydroxy Chromone,” Molecules 23, no. 12 (2018): 3083–95. doi:10.3390/molecules23123083
  • S. Abdpour, L. Baleh, H. Nadri, H. Forootanfar, S. Nasir, A. Bukhari, A. Ramazani, S. E. S. Ebrahimi, A. Foroumadi, and, and M. Khoobi, “Chromone Derivatives Bearing Pyridinium Moiety as Multi-Target-Directed Ligands against Alzheimer’s Disease,” Bioorganic Chemistry 110 (2021): 104750. doi:10.1016/j.bioorg.2021.104750
  • A. N. Mpitimpiti, J. P. Petzer, A. Petzer, J. H. L. Jordaan, and A. C. U. Lourens, “Synthesis and Evaluation of Chromone Derivatives as Inhibitors of Monoamine Oxidase,” Molecular Diversity 23, no. 4 (2019): 897–913. doi:10.1007/s11030-019-09917-8
  • R. Kouser, A. Rehman, S. M. A. Abidi, F. Arjmand, and S. Tabassum, “A Chromone-Based Colorimetric Fluorescence Sensor for Selective Detection of Cu2+Ions, and Its Application for in-Situ Imaging,” Journal of Molecular Structure 1256 (2022): 132533. doi:10.1016/j.molstruc.2022.132533
  • D. Ş. Gül, H. Ogutcu, and Z. Hayvalı, “Investigation of Photophysical Behaviors and Antimicrobial Activity of Novel Benzo-15-Crown-5-Substituted Coumarin and Chromone Derivatives,” Journal of Molecular Structure 1204 (2020): 127569. doi:10.1016/j.molstruc.2019.127569
  • A. A. M. Farag, N. Roushdy, S. Abdel Halim, N. M. El-Gohary, M. A. Ibrahim, and S. Said, “Synthesis, Molecular, Electronic Structure, Linear and Non-Linear Optical and Phototransient Properties of 8-Methyl-1,2-Dihydro-4H-Chromeno[2,3-b]Quinoline-4,6(3H)-Dione (MDCQD): Experimental and DFT Investigations,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 191 (2018): 478–90. doi:10.1016/j.saa.2017.10.014
  • M. A. Ibrahim, S. Abdel Halim, N. Roushdy, A. A. M. Farag, and N. M. El-Gohary, “Synthesis, DFT Band Structure Calculations, Optical and Photoelectrical Characterizations of the Novel 5-Hydroxy-4-Methoxy-7-Oxo-7H-Furo[3,2-g]Chromene-6-Carbonitrile (HMOFCC),” Optical Materials 73 (2017): 290–305. doi:10.1016/j.optmat.2017.08.017
  • S. H. Hashiem, M. A. Ibrahim, A. Badran, N. M. El-Gohary, and H. A. Allimony, “Synthetic Approaches for Heteroannulated Chromones Fused Various Heterocyclic Systems,” Heterocycles 102, no. 6 (2021): 1011–60. doi:10.3987/REV-20-940
  • V. Y. Sosnovskikh, “Synthesis and Reactivity of 3-(1-Alkynyl)Chromones,” Russian Chemical Reviews 90, no. 4 (2021): 511–27. doi:10.1070/RCR5008
  • V. Ya Sosnovskikh, “Synthesis and Chemical Properties of 3-Alkoxycarbonyl Chromones and 3-Alkoxalylchromones,” Chemistry of Heterocyclic Compounds 56, no. 9 (2020): 1111–24. doi:10.1007/s10593-020-02784-4
  • M. Y. Kornev, and V. Y. Sosnovskikh, “Synthesis and Chemical Properties of Chromone-3-Carboxylic Acid (Review),” Chemistry of Heterocyclic Compounds 52, no. 2 (2016): 71–83. doi:10.1007/s10593-016-1834-6
  • M. A. Ibrahim, and Y. A. Alnamer, “Ring Opening and Recyclization Reactions of 3-Nitrochromone with Some Nucleophilic Reagents,” Journal of Heterocyclic Chemistry 56, no. 9 (2019): 2341–6. doi:10.1002/jhet.3620
  • M. A. Ibrahim, M. El-Gohary, and S. Said, “Ring Opening Ring Closure Reactions with 3-Substituted Chromones under Nucleophilic Conditions,” Heterocycles 91, no. 10 (2015): 1863–903. doi:10.3987/REV-15-824
  • M. A. Ibrahim, “Studies on the Chemical Reactivity of 1H-Benzimidazol-2-Ylacetonitrile towards Some 3-Substituted Chromones: Synthesis of Some Novel Pyrido[1,2-a]Benzimidazoles,” Tetrahedron 69, no. 33 (2013): 6861–5. doi:10.1016/j.tet.2013.06.011
  • M. A. Ibrahim, “Chemical Reactivity of 1H-Benzimidazol-2-Ylacetonitrile and Dimedone toward Simple Condensates Derived from 3-Formylchromone,” Heterocycles 104, no. 3 (2022): 482–94. doi:10.3987/COM-21-14588
  • C. K. Ghosh, A. Chakraborty, and C. Bandyopadhyay, “Chemistry of 2-Amino-4-Oxo-4H-1-Benzopyran-3-Carboxaldehydes,” Arkivoc 2016, no. 1 (2016): 375–414. doi:10.3998/ark.5550190.p009.712
  • C. K. Ghosh, and A. Chakraborty, “Chemistry of 4-Oxo-4H-1-Benzopyran-3-Carbonitrile,” Arkivoc 2015, no. 6 (2015): 417–45. doi:10.3998/ark.5550190.p009.273
  • M. A. Ibrahim, and Y. A. Alnamer, “Synthetic Approaches for Construction of Novel 3-Heteroarylchromeno[2,3-b]Pyridines and Annulated Chromenopyridopyrazolo-Pyrimidines,” Heterocycles 102, no. 11 (2021): 2138–52. doi:10.3987/COM-21-14530
  • M. A. Ibrahim, and A. M. El-Kazak, “Ring Opening and Recyclization Reactions with Chromone-3-Carbonitrile,” Journal of Heterocyclic Chemistry 56, no. 3 (2019): 1075–85. doi:10.1002/jhet.3495
  • M. A. Ibrahim, A. Badran, N. M. El-Gohary, and S. H. Hashiem, “Studies on the Chemical Reactions of Some 3-Substituted-6,8-Dimethylchromones with Nucleophilic Reagents,” Journal of Heterocyclic Chemistry 55, no. 10 (2018): 2315–24. doi:10.1002/jhet.3291
  • M. A. Ibrahim, A. Badran, and S. H. Hashiem, “Heteroannulated Coumarins and Chromones from Chemical Transformations of 6,8-Dimethylchromone-3-Carbonitrile,” Journal of Heterocyclic Chemistry 55, no. 12 (2018): 2844–51. doi:10.1002/jhet.3354
  • K. S. Levchenko, I. S. Semenova, V. N. Yarovenko, P. S. Shmelin, and M. M. Krayushkin, “Facile Syntheses of 2-Substituted 3-Cyanochromones,” Tetrahedron Letters 53, no. 28 (2012): 3630–2. doi:10.1016/j.tetlet.2012.05.031
  • M. A. Ibrahim, N. M. El-Gohary, S. S. Ibrahim, and S. Said, “Synthesis of Some Novel Heteroannulated Chromones from Basic Rearrangement of 6-Methylchromone-3-Carbonitrile Chem,” Chemistry of Heterocyclic Compounds 50, no. 11 (2015): 1624–33. doi:10.1007/s10593-014-1632-y
  • M. A. Ibrahim, and N. M. El-Gohary, “Construction and Biological Evaluations of Some Novel Chromeno[2,3-b]Pyridines and Chromeno[2,3-b]Quinolines Using 6-Methylchromone-3-Carbonitrile,” Heterocycles 102, no. 3 (2021): 489–505. doi:10.3987/COM-20-14388
  • M. A. Ibrahim, S. A. Al-Harbi, and E. S. Allehyani, “Chemical Transformations with 4,9-Dimethoxy-5-Oxo-5H-Furo[3,2-g]Chromene-6-Carbonitrile: Construction and Antimicrobial Evaluation of the Novel Heteroannulated Furochromenopyridines,” Heterocycles 100, no. 8 (2020): 1172–88. doi:10.3987/COM-20-14273
  • M. A. Ibrahim, and A. Badran, “Novel Heteroannulated Chromeno[2,3-b]Pyridines and Related Compounds Using 6-Methylchromone-3-Carbonitrile,” Heterocycles 104, no. 4 (2022): 707–22. doi:10.3987/COM-21-14607
  • M. A. Ibrahim, S. A. Al-Harbi, and E. S. Allehyani, “Synthetic Approach for Building Heteroannulated Furo[3,2-g]Chromenes Using 4,9-Dimethoxy-5-Oxo-5H-Furo[3,2-g]Chromene-6-Carbonitrile and Cyclic Carbon Nucleophiles,” Heterocycles 100, no. 9 (2020): 1450–62. doi:10.3987/COM-20-14294

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.