291
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Multicomponent Synthesis of Tetrahydrobenzo[b]Pyrans, Pyrano[2,3-d]Pyrimidines, and Dihydropyrano[3,2-c]Chromenes Catalyzed by Sodium Benzoate

& ORCID Icon
Pages 9318-9337 | Received 12 May 2022, Accepted 19 Dec 2022, Published online: 29 Dec 2022

References

  • L. Reguera, and D. G. Rivera, “Multicomponent Reaction Toolbox for Peptide Macrocyclization and Stapling,” Chemical Reviews 119, no. 17 (2019): 9836–60. doi:10.1021/acs.chemrev.8b00744
  • S. Kamalifar, and H. Kiyani, “Facile and Efficient Synthesis of 9-Aryl-1,8-Dioxo-Octahydroxanthenes Catalyzed by Sulfacetamide,” Polycyclic Aromatic Compounds 42, no. 6 (2022): 3675–93. doi:10.1080/10406638.2021.1872656
  • Z. Faramarzi, and H. Kiyani, “Steglich’s Base Catalyzed Three-Component Synthesis of Isoxazol-5-Ones,” Polycyclic Aromatic Compounds (2022): 1–23. doi:10.1080/10406638.2022.2061533
  • H. Kiyani, “Recent Advances in Three-Component Cyclocondensation of Dimedone with Aldehydes and Malononitrile for Construction of Tetrahydrobenzo[b]Pyrans Using Organocatalysts,” Current Organic Synthesis 15, no. 8 (2018): 1043–72. doi:10.2174/1570179415666181031124459
  • F. M. Abdelrazek, P. Metz, and E. K. Farrag, “Synthesis and Molluscicidal Activity of 5-Oxo-5,6,7,8-Tetrahydro-4H-Chromene Derivatives,” Archiv Der Pharmazie 337, no. 9 (2004): 482–5. doi:10.1002/ardp.200400881
  • A. Thakur, G. Pereira, C. Patel, V. Chauhan, R. K. Dhaked, and A. Sharma, “Design, One-Pot Green Synthesis and Antimicrobial Evaluation of Novel Imidazopyridine Bearing Pyran Bis-Heterocycles,” Journal of Molecular Structure 1206 (2020): 127686. doi:10.1016/j.molstruc.2020.127686
  • R. M. Mohareb, N. S. Abbas, and M. A. Abdelaziz, “Heterocyclic Ring Extension of Androstenedione: Synthesis and Cytotoxicity of Fused Pyran, Pyrimidine and Thiazole Derivatives,” Steroids 86 (2014): 45–55. doi:10.1016/j.steroids.2014.04.011
  • T. H. V. Huynh, I. Shim, H. Bohr, B. Abrahamsen, B. Nielsen, A. A. Jensen, and L. Bunch, “Structure–Activity Relationship Study of Selective Excitatory Amino Acid Transporter Subtype 1 (EAAT1) Inhibitor 2-Amino-4-(4-Methoxyphenyl)-7-(Naphthalen-1-yl)-5-Oxo-5,6,7,8-Tetrahydro-4H-Chromene-3-Carbonitrile (UCPH-101) and Absolute Configurational Assignment Using Infrared and Vibrational Circular Dichroism Spectroscopy in Combination with ab Initio Hartree–Fock Calculations,” Journal of Medicinal Chemistry 55, no. 11 (2012): 5403–12. doi:10.1021/jm300345z
  • P. Chavan, D. Pansare, R. Shelke, S. Shejul, and P. Bhoir, “Ultrasound-Assisted Synthesis and Biological Significance of Substituted 4H-Chromene-3-Carbonitrile Using Greenery Approaches,” Current Chemistry Letters 10, no. 1 (2021): 43–52. doi:10.5267/j.ccl.2020.7.003
  • S. Sankpal, P. Choudhari, S. Kumbhar, S. Phalle, and M. Deshmukh, “One Pot Synthesis and Docking Study of Some Tetrahydrobenzo[b]Pyran Derivatives as Extended Spectrum Class Lactamase Inhibitors for Urinary Tract Infection,” Thai Journal of Pharmaceutical Sciences 40, no. 4 (2016): 190–3.
  • G. Brahmachari, Green Synthetic Approaches for Biologically Relevant Heterocycles (Amsterdam, The Netherlands: Elsevier, 2015).
  • A. R. Bhat, R. S. Dongre, F. A. Almalki, M. Berredjem, M. Aissaoui, R. Touzani, T. B. Hadda, and M. S. Akhter, “Synthesis, Biological Activity and POM/DFT/Docking Analyses of Annulated Pyrano[2,3-d]Pyrimidine Derivatives: Identification of Antibacterial and Antitumor Pharmacophore Sites,” Bioorganic Chemistry 106 (2021): 104480. doi:10.1016/j.bioorg.2020.104480
  • A. Ataie, A. Davoodnia, and A. Khojastehnezhad, “Graphene Oxide Functionalized Organic-Inorganic Hybrid (GO–Si–NH2–PMo): an Efficient and Green Catalyst for the Synthesis of Tetrahydrobenzo[b]Pyran Derivatives,” Polycyclic Aromatic Compounds 41, no. 4 (2021): 781–94. doi:10.1080/10406638.2019.1622137
  • R. Ramesh, S. Maheswari, J. G. Malecki, and A. Lalitha, “NaN3 Catalyzed Highly Convenient Access to Functionalized 4H-Chromenes: A Green One-Pot Approach for Diversity Amplification,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1581–94. doi:10.1080/10406638.2018.1564678
  • M. Tazari, and H. Kiyani, “Expeditious Synthesis of 2-Amino-4H-Chromenes and 2-Amino-4H-Pyran-3- Carboxylates Promoted by Sodium Malonate,” Current Organic Synthesis 16, no. 5 (2019): 793–800. doi:10.2174/1570179416666190415105818
  • H. Kiyani, and M. S. Jalali, “Facile and Efficient Access to Tetrahydrobenzo[b]Pyrans Catalyzed by N,N-Dimethylbenzylamine,” Heterocycles 92, no. 1 (2016): 75–85. doi:10.3987/COM-15–13360
  • H. Kiyani, and F. Ghorbani, “Potassium Phthalimide Promoted Green Multicomponent Tandem Synthesis of 2-Amino-4H-Chromenes and 6-Amino-4H-Pyran-3-Carboxylates,” Journal of Saudi Chemical Society 18, no. 5 (2014): 689–701. doi:10.1016/j.jscs.2014.02.004
  • H. Kiyani, and F. Ghorbani, “Efficient Tandem Synthesis of a Variety of Pyran-Annulated Heterocycles, 3,4-Disubstituted Isoxazol-5(4H)-Ones, and α,β-Unsaturated Nitriles Catalyzed by Potassium Hydrogen Phthalate in Water,” Research on Chemical Intermediates 41, no. 10 (2015): 7847–82. doi:10.1007/s11164–014–1863–7
  • T. L. Lambat, “Microwave Assisted Scolecite as Heterogeneous Catalyst for Multicomponent One-Pot Synthesis of Novel Chromene Scaffolds with Quantitative Yields,” Journal of the Chinese Advanced Materials Society 6, no. 2 (2018): 134–44. doi:10.1080/22243682.2018.1426040
  • H. Sharma, and S. Srivastava, “Anion–Cation co-Operative Catalysis by Artificial Sweetener Saccharine-Based Ionic Liquid for Sustainable Synthesis of 3,4-Dihydropyrano[c]Chromenes, 4,5-Dihydropyrano[4,3-b]Pyran and Tetrahydrobenzo[b]Pyrans in Aqueous Medium,” RSC Advances 8, no. 68 (2018): 38974–9. doi:10.1039/c8ra06889e
  • P. Patil, S. Kadam, D. Patil, and P. More, “An Eco-Friendly Innovative Halide and Metal-Free Basic Ionic Liquid Catalyzed Synthesis of Tetrahydrobenzo[b]Pyran Derivatives in Aqueous Media: A Sustainable Protocol,” Journal of Molecular Liquids 345 (2022): 117867. doi:10.1016/j.molliq.2021.117867
  • A. P. Katariya, A. R. Yadav, O. B. Pawar, P. M. Pisal, J. N. Sangshetti, M. V. Katariya, and S. U. Deshmukh, “An Efficient and Green Synthesis of Tetrahydrobenzo[b]Pyran Derivatives Using [(EMIM)Ac] at Room Temperature,” ChemistrySelect 7, no. 15 (2022): e202104184. doi:10.1002/slct.202104184
  • J. C. Xu, W. M. Li, H. Zheng, Y. F. Lai, and P. F. Zhang, “One-Pot Synthesis of Tetrahydrochromene Derivatives Catalyzed by Lipase,” Tetrahedron 67, no. 49 (2011): 9582–7. doi:10.1016/j.tet.2011.09.137
  • J. Malviya, S. Kala, L. K. Sharma, and R. K. P. Singh, “Efficient Three-Component One-Pot Synthesis of 4H-Pyrans,” Russian Journal of Organic Chemistry 55, no. 5 (2019): 686–93. doi:10.1134/S1070428019050178
  • A. Dutta, N. Rahman, J. E. Kumar, J. Rabha, T. Phukan, and R. Nongkhlaw, “Catalyst-Free UV365-Assisted Synthesis of Pyran Annulated Heterocyclic Scaffolds and Evaluation of Their Antibacterial Activities,” Synthetic Communications 51, no. 2 (2021): 263–78. doi:10.1080/00397911.2020.1825741
  • C. W. Lu, J. J. Wang, F. Li, S. J. Yu, and Y. An, “Efficient Synthesis of 2-Amino-3-Cyano-4H-Pyran Derivatives via a Non-Catalytic One-Pot Three-Component Reaction,” Research on Chemical Intermediates 44, no. 2 (2018): 1035–43. doi:10.1007/s11164-017-3151-9
  • A. R. Bhat, A. H. Shalla, and R. S. Dongre, “Dibutylamine (DBA): a Highly Efficient Catalyst for the Synthesis of Pyrano[2,3-d]Pyrimidine Derivatives in Aqueous Media,” Journal of Taibah University for Science 10, no. 1 (2016): 9–18. doi:10.1016/j.jtusci.2015.03.004
  • J. Zhang, H. Song, R. Cui, C. Deng, and Q. A. Yousif, “SCMNPs@Urea/Py-CuCl2: A Recyclable Catalyst for the Synthesis of Pyrano[2,3-d]Pyrimidinone and Pyrano[2,3-d]Pyrimidine-2,4,7-Trione Derivatives,” Journal of Coordination Chemistry 73, no. 4 (2020): 558–78. doi:10.1080/00958972.2020.1737681
  • O. S. Aremu, P. Singh, M. Singh, C. Mocktar, and N. A. Koorbanally, “Synthesis of Chloro, Fluoro, and Nitro Derivatives of 7‐Amino‐5‐Aryl‐6‐Cyano‐5H‐Pyrano Pyrimidin‐2,4‐Diones Using Organic Catalysts and Their Antimicrobial and Anticancer Activities,” Journal of Heterocyclic Chemistry 56, no. 11 (2019): 3008–16. doi:10.1002/jhet.3695
  • A. A. Yelwande, and M. K. Lande, “An Efficient One‑Pot Three‑Component Synthesis of 7‑Amino‑2,4‑Dioxo‑5‑Aryl‑1,3,4,5‑Tetrahydro‑2H‑Pyrano[2,3‑d]Pyrimidine‑6‑Carbonitriles Catalyzed by SnO2/SiO2 Nanocomposite,” Research on Chemical Intermediates 46, no. 12 (2020): 5479–98. doi:10.1007/s11164-020-04273-x
  • F. Mohamadpour, “Solvent-Free Synthesis of Pyrano[2,3-d]Pyrimidine Scaffolds Using per-6-NH2-β-CD as a Reusable Supramolecular Host,” Organic Preparations and Procedures International 54, no. 3 (2022): 277–83. doi:10.1080/00304948.2022.2034460
  • (a) N. G. Shabalala, N. P. Hadebe, N. Kerru, S. Maddila, W. E. van Zyl, and S. B. Jonnalagadda, “An Efficient and Sustainable Protocol for the Synthesis of Poly-Functionalized-Pyran Derivatives under Ultrasound Irradiation,” Polycyclic Aromatic Compounds 42, no. 2 (2022): 505–16. doi:10.1080/10406638.2020.1743331 (b)M. Bararjanian, S. Balalaie, B. Movassag, and A. M. Amani, “One-Pot Synthesis of Pyrano[2,3-d]Pyrimidinone Derivatives Catalyzed by L-Proline in Aqueous Media,” Polycyclic Aromatic Compounds 6, no. 2 (2009): 436–42.
  • H. Kiyani, and M. S. Jalali, “Facial and Efficient Access to Dihydropyrano[3,2-c]Chromenes via Three-Component Reaction Using N,N-Dimethylbenzylamine as a New Organocatalyst,” Combinatorial Chemistry & High Throughput Screening 19, no. 4 (2016): 275–82. doi:10.2174/1386207319666160310144315
  • A. El. Hallaoui, S. Chehab, T. Ghailane, B. Malek, O. Zimou, S. Boukhriss, A. Souizi, and R. Ghailane, “Application of Phosphate Fertilizer Modified by Zinc as a Reusable Efficient Heterogeneous Catalyst for the Synthesis of Biscoumarins and Dihydropyrano[3,2-c]Chromene-3-Carbonitriles under Green Conditions,” Polycyclic Aromatic Compounds 41, no. 10 (2021): 2083–102. doi:10.1080/10406638.2019.1710853
  • S. S. Mansoor, K. Logaiya, K. Aswin, and P. N. Sudhan, “An Appropriate One-Pot Synthesis of 3,4-Dihydropyrano[c]Chromenes and 6-Amino-5-Cyano-4-Aryl-2-Methyl-4H-Pyrans with Thiourea Dioxide as an Efficient, Reusable Organic Catalyst in Aqueous Medium,” Journal of Taibah University for Science 9, no. 2 (2015): 213–26. doi:10.1016/j.jtusci.2014.09.008
  • H. Kiyani, and F. Ghorbani, “Potassium Phthalimide: An Efficient and Simple Organocatalyst for the One-Pot Synthesis of Dihydropyrano[3,2-c]Chromenes in Aqueous Media,” Research on Chemical Intermediates 41, no. 6 (2015): 4031–46. doi:10.1007/s11164-013-1508-2
  • H. Kiyani, and M. Tazari, “Aqua One-Pot, Three-Component Synthesis of Dihydropyrano[3,2-c]Chromenes and Aminobenzochromenes Catalyzed by Sodium Malonate,” Research on Chemical Intermediates 43, no. 11 (2017): 6639–50. doi:10.1007/s11164-017-3011-7
  • N. Noroozi Pesyan, G. Rezanejade Bardajee, E. Kashani, M. Mohammadi, and H. Batmani, “Ni(II)-Schiff Base/SBA-15: A Nanostructure and Reusable Catalyst for One-Pot Three-Component Green Synthesis of 3,4-Dihydropyrano[3,2-c]Chromene Derivatives,” Research on Chemical Intermediates 46, no. 1 (2020): 347–67. doi:10.1007/s11164-019-03954-6
  • ŁJ. Walczak-Nowicka, a, and M. Herbet, “Sodium Benzoate-Harmfulness and Potential Use in Therapies for Disorders Related to the Nervous System: A Review,” Nutrients 14, no. 7 (2022): 1497. doi:10.3390/nu14071497
  • A. Klamrak, J. Nabnueangsap, and N. Nualkaew, “Biotransformation of Benzoate to 2,4,6-Trihydroxybenzophenone by Engineered Escherichia coli,” Molecules 26, no. 9 (2021): 2779. doi:10.3390/molecules26092779
  • V. S. Konkala, and P. K. Dubey, “One-Pot Synthesis of 3-Phenyl-4-Pyrazolylmethylene-Isoxazol-(5H)-Ones Catalyzed by Sodium Benzoate in Aqueous Media under the Influence of Ultrasound Waves: A Green Chemistry Approach,” Journal of Heterocyclic Chemistry 54, no. 4 (2017): 2483–92. doi:10.1002/jhet.2848
  • A. Ahad, and M. Farooqui, “Pot, Atom and Step Economic (PASE) Synthesis of 2-Amino-3,5-Dicarbonitrile-6-Thio-Pyridines in Aqueous PEG-400 Promoted by Sodium Benzoate,” International Journal of Chemical Sciences 14, no. 3 (2016): 1789–96.
  • H. Kiyani, H. A. Samimi, F. Ghorbani, and S. Esmaieli, “One-Pot, Four-Component Synthesis of Pyrano[2,3-c]Pyrazoles Catalyzed by Sodium Benzoate in Aqueous Medium,” Current Chemistry Letters 2, no. 4 (2013): 197–206. doi:10.5267/j.ccl.2013.07.002
  • C. M. Moorhoff, and D. F. Schneider, “Sodium Benzoate as a Mild Base Catalyst for the Tandem Michael-Aldol Self-Condensation of γδ-Unsaturated β-Ketoesters,” Monatshefte Fuer Chemie/Chemical Monthly 129, no. 4 (1998): 409–17. doi:10.1007/PL00000097
  • Q. Liu, and H. M. Ai, “Sodium Benzoate as a Green, Efficient, and Recyclable Catalyst for Knoevenagel Condensation,” Synthetic Communications 42, no. 20 (2012): 3004–10. doi:10.1080/00397911.2011.574245
  • D. Shi, J. Mou, Q. Zhu, and X. Wang, “One-Pot Synthesis of 2-Amino-4-Aryl-5-Oxo-5,6,7,8-Tetrahydro-4H-1-Benzopyran-3-Carbonitriles in Aqueous Media,” Journal of Chemical Research 2004, no. 12 (2004): 821–3. doi:10.3184/0308234043431294
  • S. Balalaie, M. Sheikh-Ahmadi, and M. Bararjanian, “Tetra-Methyl Ammonium Hydroxide: An Efficient and Versatile Catalyst for the One-Pot Synthesis of Tetrahydrobenzo[b]Pyran Derivatives in Aqueous Media,” Catalysis Communications 8, no. 11 (2007): 1724–8. doi:10.1016/j.catcom.2007.01.034
  • J. M. Khurana, and K. Vij, “Nickel Nanoparticles as Semiheterogeneous Catalyst for One-Pot, Three-Component Synthesis of 2-Amino-4H-Pyrans and Pyran Annulated Heterocyclic Moieties,” Synthetic Communications 43, no. 17 (2013): 2294–304. doi:10.1080/00397911.2012.700474
  • V. Bhaskar, R. Chowdary, and S. R. Dixit, and S. D. Joshi, “Synthesis, Molecular Modeling and BACE-1 Inhibitory Study of Tetrahydrobenzo[b]Pyran Derivatives,” Bioorganic Chemistry 84 (2019): 202–10. doi:10.1016/j.bioorg.2018.11.023
  • B. Maleki, O. Reiser, E. Esmaeilnezhad, and H. J. Choi, “SO3H-Dendrimer Functionalized Magnetic Nanoparticles (Fe3O4@DANHA (CH2)4ASO3H): Synthesis, Characterization and Its Application as a Novel and Heterogeneous Catalyst for the One-Pot Synthesis of Polyfunctionalized Pyrans and Polyhydroquinolines,” Polyhedron 162 (2019): 129–41. doi:10.1016/j.poly.2019.01.055

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.