125
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Ag/CdO/Fe3O4@MWCNTs Promoted Green Synthesis of Novel Triazinopyrrolothiazepine: Investigation of Antioxidant and Antimicrobial Activity

, , &
Pages 9024-9046 | Received 22 Aug 2022, Accepted 05 Dec 2022, Published online: 09 Jan 2023

References

  • (a) K. T. Potts, “The Chemistry of 1,2,4-Triazoles,” Chemical Reviews 61, no. 2 (1961): 87–127. doi:10.1021/cr60210a001. (b) A. D. M. Curtis, “Product Class 14: 1, 2, 4-Triazoles,” Science of Synthesis 13 (2004): 603–39.
  • J. W. Hull, D. R. Romer, T. J. Adaway, and D. E. Podhorez, “Development of Manufacturing Processes for a New Family of 2,6-Dihaloaryl 1,2,4-Triazole Insecticides,” Organic Process Research & Development 13, no. 6 (2009): 1125–9. doi:10.1021/op9001577
  • (a) J. Sun, A. Zhang, J. Zhang, X. Xie, and W. Liu, “Utilization of Wheat Straw for the Preparation of Coated Controlled-Release Fertilizer with the Function of Water Retention,” Journal of Agricultural and Food Chemistry 60, no. 1 (2012): 160–4. doi:10.1021/jf203742x. (b) I. A. Al-Masoudi, Y. A. Al-Soud, N. J. Al-Salihi, and N. A. Al-Masoudi, “1,2,4-Triazoles: Synthetic Approaches and Pharmacological Importance,” Chemistry of Heterocyclic Compounds 42, no. 11 (2006): 1377–403. doi:10.1007/s10593-006-0255-3. (c) E. Huntsman, and J. Balsells, “New Method for the General Synthesis of [1,2,4]Triazolo[1,5-a]Pyridines,” European Journal of Organic Chemistry 2005, no. 17 (2005): 3761–5. doi:10.1002/ejoc.200500247
  • C. S. Li, C. Y. An, X. M. Li, S. S. Gao, C. M. Cui, H. F. Sun, and B. G. Wang, “Antimicrobial Secondary Metabolites from the Seawater-Derived Fungus Aspergillus sydowii SW9,” Journal of Natural Products 74, no. 5 (2011): 1331–4. doi:10.1021/np200037z
  • X. Zhou, T. Xu, K. Wen, X. W. Yang, S. H. Xu, and Y. Liu, “New N-Acyl Taurine from the Sea Urchin Glyptocidaris Crenularis,” Bioscience, Biotechnology, and Biochemistry 74, no. 5 (2010): 1089–91. doi:10.1271/bbb.90848
  • A. Moulin, M. Bibian, A. L. Blayo, S. E. Habnouni, J. Martinez, and J. A. Fehrentz, “Synthesis of 3,4,5-Trisubstituted-1,2,4-Triazoles,” Chemical Reviews 110, no. 4 (2010): 1809–27. doi:10.1021/cr900107r
  • S. C. Holm, and B. F. Straub, “Synthesis of N-Substituted 1,2,4-Triazoles,” Organic Preparations and Procedures International. 43, no. 4 (2011): 319–47. doi:10.1080/00304948.2011.593999
  • F. Aiello, A. Brizzi, A. Garofalo, F. Grande, G. Ragno, R. Dayam, and N. Neamati, “Design, Synthesis, and Biological Evaluation of Dihydroartemisinin-Fluoroquinolone Conjugates as a Novel Type of Potential Antitubercular Agents,” Bioorganic & Medicinal Chemistry 12, no. 16 (2004): 4459–66. doi:10.1016/j.bmc.2004.05.037
  • J. H. Tailor, P. C. Patel, and G. M. Malik, “Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications,” Indian Journal of Chemistry Section B: Organic Chemistry Including Medicinal Chemistry 53, no. B (2014): 1263.
  • S. Kaur, H. Kumar, A. Chaudhary, and A. Kumar, “Synthesis and Biological Evaluation of Some New Substituted Benzoxazepine and Benzothiazepine as Antipsychotic as Well as Anticonvulsant Agents,” Arabian Journal of Chemistry 5, no. 3 (2012): 271–83. doi:10.1016/j.arabjc.2010.09.011
  • C. D. Ellis, K. A. Oppong, M. C. Laufersweiler, S. V. O’Neil, D. L. Soper, Y. Wang, J. A. Wos, A. N. Fancher, W. Lu, M. K. Suchanek, et al, “Synthesis and Evaluation of Thiazepines as Interleukin-1β Converting Enzyme (ICE) Inhibitors,” Bioorganic & Medicinal Chemistry Letters 16, no. 18 (2006): 4728–32. doi:10.1016/j.bmcl.2006.07.016
  • J. Drewe, S. Kasibhatla, B. Tseng, E. Shelton, D. Sperandio, R. M. Yee, J. Litvak, M. Sendzik, J. R. Spencer, and S. X. Cai, “Discovery of 5-(4-Hydroxy-6-Methyl-2-Oxo-2H-Pyran-3-yl)-7-Phenyl-(E)-2,3,6,7-Tetrahydro-1,4-Thiazepines as a New Series of Apoptosis Inducers Using a Cell- and Caspase-Based HTS Assay,” Bioorganic & Medicinal Chemistry Letters 17, no. 17 (2007): 4987–90. doi:10.1016/j.bmcl.2007.05.098
  • A. Zask, J. Kaplan, X. Du, G. MacEwan, V. Sandanayaka, N. Eudy, J. Levin, G. Jin, J. Xu, T. Cummons, et al, “Synthesis and SAR of Diazepine and Thiazepine TACE and MMP Inhibitors,” Bioorganic & Medicinal Chemistry Letters 15, no. 6 (2005): 1641–5. doi:10.1016/j.bmcl.2005.01.053
  • H. Ding, Y. Zhang, M. Bian, W. Yao, and C. Ma, “Concise Assembly of Highly Substituted Furan-Fused 1,4-Thiazepines and Their Diels-Alder Reactions with Benzynes,” The Journal of Organic Chemistry 73, no. 2 (2008): 578–84. doi:10.1021/jo702299m
  • (a) A. Domling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical Reviews 106 (2006): 17. (b) E. Ezzatzadeh, and Z. S. Hossaini, “Four-Component Green Synthesis of Benzochromene Derivatives Using nano-KF/Clinoptilolite as Basic Catalyst: Study of Antioxidant Activity,” Molecular Diversity 24, no. 1 (2020): 81–91. doi:10.1007/s11030-019-09935-6. (c) S. Rezayati, R. Hajinasiri, Z. S. Hossaini, and S. Abbaspour, “Chemoselective Synthesis of 1, 1-Diacetates (Acylals) Using 1, 1'‐Butylenebispyridinium Hydrogen Sulfate as a New, Halogen‐Free and Environmental-Friendly Catalyst,” Asian Journal of Green Chemistry 2 (2018): 268–80. (d) E. Ezzatzadeh, and Z. S. Hossaini, “A Novel One-Pot Three-Component Synthesis of Benzofuran Derivatives via Strecker Reaction: Study of Antioxidant Activity,” Natural Product Research 34, no. 7 (2020): 923–9. doi:10.1080/14786419.2018.1542389
  • (a) L. F. Tietze, and N. N. Rackelmann, “Domino Reactions in the Synthesis of Heterocyclic Natural Products and Analogs,” Pure and Applied Chemistry 76, no. 11 (2004): 1967–83. doi:10.1351/pac200476111967. (b) I. Yavari, Z. S. Hossaini, and M. Sabbaghan, “Efficient Synthesis of Tetrasubstituted Thiophenes by Reaction of Benzoyl Isothiocyanates, Ethyl Bromopyruvate and Enaminones,” Tetrahedron Letters 49, no. 5 (2008): 844–6. doi:10.1016/j.tetlet.2007.11.174.. (c) S. Soleimani‐Amiri, M. Arabkhazaeli, Z. S. Hossaini, S. Afrashteh, and A. A. Eslami, “Synthesis of Chromene Derivatives via Three‐Component Reaction of 4‐Hydroxycumarin Catalyzed by Magnetic Fe3O4 Nanoparticles in Water,” Journal of Heterocyclic Chemistry 55, no. 1 (2018): 209–13. doi:10.1002/jhet.3028. (d) I. Yavari, Z. Hossaini, and E. Karimi, “E Karimi a Synthesis of Dialkyl Phosphorylsuccinates from the Reaction of NH-Acids with Dialkyl Acetylenedicarboxylates in the Presence of Trialkyl (Aryl) Phosphites,” Monatshefte Für Chemie - Chemical Monthly 138, no. 12 (2007): 1267–71. doi:10.1007/s00706-007-0711-5
  • (a) A. Domling, and I. Ugi, “Multicomponent Reactions with Isocyanides,” Angewandte Chemie 39, no. 18 (2000): 3168–210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U. (b) A. Khazaei, A. R. Moosavi-Zare, H. Afshar-Hezarkhani, and V. Khakyzadeh, “Programming of Fe-Catalyzed Cascade Knoevenagel-Michael-Cyclocondensation Reaction: Create out Pseudo Acridine Derivatives under Solvent Free Conditions,” Eurasian Chemical Communications 2 (2020): 27–34. . (c) A. R. Salih Zainab, and A. K, “Al-Messri Synthesis of Pyranopyrazole and Pyranopyrimidine Derivatives Using Magnesium Oxide Nanoparticles and Evaluation as Corrosion Inhibitors for lubricantsEurasian,” Chemical Communications 3 (2021): 533–41. (d) H. Alinezhad, M. Tajbakhsh, B. Maleki, and F. Pourshaban Oushibi, “Acidic Ionic Liquid [H-NP]HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b]Pyridines and Polysubstituted Imidazoles,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1485–500. doi:10.1080/10406638.2018.1557707. (e) B. Maleki, H. Atharifar, O. Reiser, and R. Sabbaghzadeh, “Glutathione-Coated Magnetic Nanoparticles for One-Pot Synthesis of 1,4-Dihydropyridine Derivatives,” Polycyclic Aromatic Compounds 41, no. 4 (2021): 721–34. doi:10.1080/10406638.2019.1614639
  • (a) J. Kolb, B. Beck, M. Almstetter, S. Heck, E. Herdtweck, and A. Domling, “New MCRs: The First 4-Component Reaction Leading to 2,4-Disubstituted Thiazoles,” Molecular Diversity 6, no. 3–4 (2003): 297–313. doi:10.1023/b:modi.0000006827.35029.e4. (b) A. R. Moosavi-Zare, and H. Afshar-Hezarkhani, “Application of [Pyridine-1-SO3H-2-COOH]Cl as an Efficient Catalyst for the Preparation of Hexahyroquinolines,” Eurasian Chemical Communications 2 (2020): 465–74. (c) J. Ghanaat, M. A. Khalilzadeh, and D. Zareyee, “KF/CP NPs as an Efficient Nanocatalyst for the Synthesis of 1,2,4-Triazoles: Study of Antioxidant and Antimicrobial Activity,” Eurasian Chemical Communications, 2 (2020): 202–12. (d) A. Khazaei, A. R. Moosavi-Zare, H. Afshar-Hezarkhani, and V. Khakyzadeh, “Programming of Fe-Catalyzed Cascade Knoevenagel-Michael-Cyclocondensation Reaction: Create out Pseudo Acridine Derivatives under Solvent Free Conditions,” Eurasian Chemical Communications 2 (2020): 27–34.
  • (a) A. Domling, I. Ugi, and B. Werner, “The Chemistry of Isocyanides, Their MultiComponent Reactions and Their Libraries,” Molecules 8, no. 1 (2003): 53–66. doi:10.3390/80100053. (b) F. Hakimi, M. Fallah-Mehrjardi, and E. Golrasan, “Yttrium Aluminum Garnet (YAG: Al5Y3O12) as an Efficient Catalyst for the Synthesis of Benzimidazole and Benzoxazole Derivatives,” Chemical Methodologies 4 (2020): 234–44. (c) A. R. Moosavi-Zare, M. A. Zolfigol, and Z. Rezanejad, “The Synthesis of α,α′-Bis(Arylidene)Cycloalkanones Using Sulfonic Acid Functionalized Pyridinium Chloride,” Chemical Methodologies 4 (2020): 614–22. (d) Z. Mohammed Abd Al-Mohson, “Synthesis of Novel Pyrazole Derivatives Containing Tetrahydrocarbazole, Antimicrobail Evaluation and Molecular Properties,” Eurasian Chemical Communications 3 (2021): 425–34. (e) Z. Ebrahimi, A. Davoodnia, A. Motavalizadehkakhky, and J. Mehrzad, “Synthesis, Characterization, and Molecular Structure Investigation of New Tetrahydrobenzo[b]Thiophene-Based Schiff Bases: A Combined Experimental and Theoretical Study,” Eurasian Chemical Communications 2 (2020): 170–80.
  • (a) R. S. Bon, B. V. Vliet, N. E. Sprenkels, R. F. Schmitz, F. J. J. Kanter, C. V. Stevens, M. Swart, F. M. Bickelhaupt, M. B. Groen, and R. V. Orru, “Multicomponent Synthesis of 2-Imidazolines,” The Journal of Organic Chemistry 70, no. 9 (2005): 3542–53. doi:10.1021/jo050132g. (b) T. A. Rehan, N. Al-Lami, and R. Shakeeb Alanee, “Anti-Cancer and Antioxidant Activities of Some New Synthesized 3-Secondary Amine Derivatives Bearing Imidazo [1,2-A] Pyrimidine,” Eurasian Chemical Communications 3 (2021): 339–51. (c) R. Tayebee, and A. Gohari, “The Dual Role of Ammonium Acetate as Reagent and Catalyst in the Synthesis of 2, 4, 5-Triaryl-1H-Imidazoles,” Eurasian Chemical Communications, 2 (2020): 581–6. (d) B. Baghernejad, and L. Nazari, “Synthesis of Indeno [1,2-b] Pyridine Derivatives in the Precense of Nano CeO2/ZnO,” Eurasian Chemical Communications 3 (2021): 319–26. (e) M. Rohaniyan, A. Davoodnia, A. Khojastehnezhad, and S. A. Beyramabadi, “Catalytic Evaluation of Newly Prepared GO-SB-H2PMo as an Efficient and Reusable Nanocatalyst for the Neat Synthesis of Amidoalkyl Naphthols,” Eurasian Chemical Communications 2 (2020): 329–39.
  • (a) L. Banfi, A. Basso, G. Guanti, N. Kielland, C. Repetto, and R. Riva, “Ugi Ugi Ugi Multicomponent Reaction Followed by an Intramolecular Nucleophilic Substitution: Convergent Multicomponent Synthesis of 1-Sulfonyl 1,4-Diazepan-5-Ones and of Their Benzo-Fused Derivatives,” The Journal of Organic Chemistry 72 (2007): 2151–60. doi:10.1021/jo062626z. (b) S. Darvishy, H. Alinezhad, M. Vafaeezadeh, S. Peiman, and B. Maleki, “Behrooz Maleki S-(+) Camphorsulfonic Acid Glycine (CSAG) as Surfactant-Likes Brønsted Acidic Ionic Liquid for One-Pot Synthesis of ß-Amino Carbonyl,” Polycyclic Aromatic Compounds (2022): 1–13. doi:10.1080/10406638.2022.2094419. (c) M. Nikpassand, and L. Zare Fekri, “Catalyst-Free Synthesis of Mono and Bis Spiro Pyrazolopyridines in DSDABCO as a Novel Media,” Chemical Methodologies 4, no. 4 (2020): 437–46. doi:10.33945/SAMI/CHEMM.2020.4.6. (d) E. Haddazadeh, and M. K. Mohammadi, “One-Pot Synthesize of Phenyl Phenanthro Imidazole Derivatives Catalyzed by Lewis Acid in the Presence of Ammonium Acetate,” Chemical Methodologies 4 (2020): 324–32. (e) B. Maleki, and S. Sheikh, “Nano Polypropylenimine Dendrimer (DAB-PPI-G1): As a Novel Nano Basic-Polymer Catalyst for One-Pot Synthesis of 2-Amino-2-Chromene Derivatives,” RSC Advances 5, no. 54 (2015): 42997–3005. doi:10.1039/C5RA04458H. (f) B. Maleki, and F. Taimazi, “One-Pot Synthesis of 1-Amidoalkyl-2-Naphthols Under Solvent-Free Conditions,” Organic Preparations and Procedures International 46, no. 3 (2014): 252–60. doi:10.1080/00304948.2014.903143
  • C. V. Galliford, and K. A. Scheidt, “Syntheses of (−)-Oleocanthal, a Natural NSAID Found in Extra Virgin Olive Oil, the (−)-Deacetoxy-Oleuropein Aglycone, and Related Analogues,” The Journal of Organic Chemistry 72, no. 5 (2007): 1811–3. doi:10.1021/jo0624086
  • (a) H. Alinezhad, M. Tajbakhsh, B. Maleki, and F. Pourshaban Oushibi, “Fereshteh Pourshaban Oushibi. Acidic Ionic Liquid [H-NP]HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b]Pyridines and Polysubstituted Imidazoles,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1485–500. doi:10.1080/10406638.2018.1557707. (b) M. Ghani, Z. Zayeri, and B. Maleki, “Glutathione-Stabilized Fe3O4 Nanoparticles as the Sorbent for Magnetic Solid-Phase Extraction of Diazepam and Sertraline from Urine Samples through Quantitation via High-Performance Liquid Chromatography,” Journal of Separation Science 44, no. 6 (2021): 1195–202. doi:10.1002/jssc.202000938. (c) A. Jamshidi, F. Mohammadi Zonoz, and B. Maleki, “Synthesis and Characterization of a New Nano Ionic Liquid Based on Dawson-Type Polyoxometalate and Its Application in the Synthesis of Symmetrical N,N′-Alkylidene Bisamides,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 875–88. doi:10.1080/10406638.2018.1504094. (d) F. Hajizadeh, B. Maleki, F. Mohammadi Zonoz, and A. Amiri, “Application of Structurally Enhanced Magnetite Cored Polyamidoamine Dendrimer for Noevenagel Condensation,” Journal of the Iranian Chemical Society 18, no. 4 (2021): 793–804. doi:10.1007/s13738-020-02071-1. (e) S. Darvishy, H. Alinezhad, M. Vafaeezadeh, S. Peiman, and B. Maleki, “S-(+) Camphorsulfonic Acid Glycine (CSAG) as Surfactant-Likes Brønsted Acidic Ionic Liquid for One-Pot Synthesis of ß-Amino Carbonyl,” Polycyclic Aromatic Compounds (2022): 1–13. doi:10.1080/10406638.2022.2094419
  • (a) B. Maleki, H. Natheghi, R. Tayebee, H. Alinezhad, A. Amiri, S.A. Hossieni, and S. M. M. Nouri, “Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and Its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 633–43. doi:10.1080/10406638.2018.1469519. (b) “Immobilizing Pd Nanoparticles on the Ternary Hybrid System of Graphene Oxide, Fe3O4 Nanoparticles, and PAMAM Dendrimer as an Efficient Support for Catalyzing Sonogashira Coupling Reaction.” Applied Organometallic Chemistry 33, no. 11 (2019): e5203.. (c) S. S. Karbasaki, G. Bagherzade, B. Maleki, and M. Ghani, “Fabrication of Sulfamic Acid Functionalized Magnetic Nanoparticles with Denderimeric Linkers and Its Application for Microextraction Purposes, One-Pot Preparation of Pyrans Pigments and Removal of Malachite Green,” Journal of the Taiwan Institute of Chemical Engineers 118 (2021): 342–54. doi:10.1016/j.jtice.2020.12.025. (d) B. Maleki, F. Taheri, R. Tayebee, and F. Adibian, “Dendrimer-Functionalized Magnetic Graphene Oxide for Knoevenagel Condensation,” Organic Preparations and Procedures International 53, no. 3 (2021): 284–90. doi:10.1080/00304948.2021.1875799. (e) F. Adibian, A. R. Pourali, B. Maleki, M. Baghayeri, and A. Amiri, “One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b] Pyridines and Tetrahydrobenzo[b] Pyran Derivatives Using a New and Efficient Nanocomposite Catalyst Based on N-Butylsulfonate-Functionalized MMWCNTs-D-NH2,” Polyhedron 175 (2020): 114179. doi:10.1016/j.poly.2019.114179
  • R. Sahay, J. Sundaramurthy, P. Suresh Kumar, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna, “Synthesis and Characterization of CuO Nanofibers, and Investigation for Its Suitability as Blocking Layer in ZnO NPs Based Dye Sensitized Solar Cell and as Photocatalyst in Organic Dye Degradation,” Journal of Solid State Chemistry 186 (2012): 261–7. doi:10.1016/j.jssc.2011.12.013
  • (a) S. S. Reddy, A. Varyambath, R. M. N. Kalla, W. Song, and I. Kim, “Synthesis of 3‐Indole Substituted Sulfonyl 4H‐Chromenes Using Recyclable Cyclometrix Polyphosphazene‐Base Catalysts,” ChemistrySelect 6, no. 9 (2021): 2335–42. doi:10.1002/slct.202100342. (b) R. M. N. Kalla, R. Chakali, M. Amudala, M. Varalakshmi, and C. Nagaraju, “Friedel − Crafts Benzylation of Arenes with Benzylic Alcohols Using Sulfonic-Acid-Functionalized Hyper-Cross-Linked Poly(2-Naphthol) as a Solid Acid Catalyst,” Organic Communications, 3 (2021): 300–4. doi:10.25135/acg.oc.106.2104.2034. (c) R. M. N. Kalla, S. S. Reddy, and I. Kim, “Acylation of Phenols, Alcohols, Thiols, Amines and Aldehydes Using Sulfonic Acid Functionalized Hyper-Cross-Linked Poly (2-Naphthol) as a Solid Acid Catalyst,” Catalysis Letters 149, no. 10 (2019): 2696–705. doi:10.1007/s10562-019-02811-w
  • (a) N. Hezarcheshmeh Karami, and J. Azizian, "Solvent-free synthesis of new spiropyrroloindole compounds using Fe3O4/TiO2/MWCNTs MNCs via multicomponent reactions: assessment of new spiropyrroloindole antioxidant activity," Mol Divers 26 (2022): 2011–2024. (b) T. Kohestani, S. Z. Sayyed-Alangi, Z. S. Hossaini, and M. T. Baei, "Ionic liquid as an effective green media for the synthesis of (5Z, 8Z)-7H-pyrido[2,3-d]azepine derivatives and recycable Fe3O4/TiO2/multi-wall cabon nanotubes magnetic nanocomposites as high performance organometallic nanocatalyst," Mol Divers 26 (2022): 1441–1454.(c) M. Savari , A. Varasteh-Moradi, S. Z. Sayyed-Alangi, Z. S. Hossaini, and R. Zafar Mehrabian, "Green novel multicomponent synthesis and biological evaluation of new oxazolopyrazoloazepines and reduction of nitrophenols in the presence of Ag/Fe3O4/ZnO@MWCNT MNCs," Mol Divers 26 (2022): 3279-3294. (d) N. Zare Davijani, R. Kia-Kojoori, Sh. Abdolmohammadi, and S. Sadegh-Samiei, “Employing of Fe3O4/CuO/ZnO@MWCNT MNCs in the Solvent-Free Synthesis of New Cyanopyrroloazepine Derivatives and Investigation of Biological Activity,” Molecular Diversity 26, no. 4 (2022): 2121–34. doi:10.1007/s11030-021-10319-y
  • (a) Z. Shen, X. Xing, S. Wang, M. Lv, J. Li, and T. Li, “Effect of K-Modified Blue Coke-Based Activated Carbon on Low Temperature Catalytic Performance of Supported Mn–Ce/Activated Carbon,” ACS Omega 7, no. 10 (2022): 8798–807. doi:10.1021/acsomega.1c07076. (b) W. Liu, F. Huang, Y. Liao, J. Zhang, G. Ren, Z. Zhuang, J. Zhen, Z. Lin, and C. Wang, “Treatment of CrVI-Containing Mg(OH)2 Nanowaste,” Angewandte Chemie 47, no. 30 (2008): 5619–22. doi: 10.1002/anie.200800172. (c) J. He, P. Xu, R. Zhou, H. Li, H. Zu, J. Zhang, Y. Qin, X. Liu, and F. Wang, “Combustion Synthesized Electrospun InZnO Nanowires for Ultraviolet Photodetectors,” Advanced Electronic Materials 8, no. 4 (2022): 2100997. doi:10.1002/aelm.202100997. (d) T. Li, W. Yin, S. Gao, Y. Sun, P. Xu, S. Wu, H. Kong, G. Yang, and G. Wei, “The Combination of Two-Dimensional Nanomaterials with Metal Oxide Nanoparticles for Gas Sensors: A Review,” Nanomaterials 12, no. 6 (2022): 982. doi:10.3390/nano12060982
  • (a) Y. Zhao, “Co-Precipitated Ni/Mn Shell Coated Nano Cu-Rich Core Structure: A Phase-Field Study,” Journal of Materials Research and Technology 21 (2022): 546–60. doi:10.1016/j.jmrt.2022.09.032. (b) W. Zhang, X. Guan, X. Qiu, T. Gao, W. Yu, M. Zhang, L. Song, D. Liu, J. Dong, Z. Jiang, et al, “Bioactive Composite Janus Nanofibrous Membranes Loading Ciprofloxacin and Astaxanthin for Enhanced Healing of Full-Thickness Skin Defect Wounds,” Applied Surface Science 610 (2023): 155290. doi:10.1016/j.apsusc.2022.155290. (c) W. Lai, “Non-Conjugated Polymers with Intrinsic Luminescence for Drug Delivery,” Journal of Drug Delivery Science and Technology 59, no. 2020 (2020): 101916. doi:10.1016/j.jddst.2020.101916. (d) W. Lai, and W. Wong, “Property-Tuneable Microgels Fabricated by Using Flow-Focusing Microfluidic Geometry for Bioactive Agent Delivery,” Pharmaceutics 13, no. 6 (2021): 787. doi:10.3390/pharmaceutics13060787
  • (a) W. Lai, and W. Wong, “Use of Graphene-Based Materials as Carriers of Bioactive Agents,” Asian Journal of Pharmaceutical Sciences 16, no. 5 (2021): 577–88. doi:10.1016/j.ajps.2020.11.004. (b) W. Ding, Q. Meng, G. Dong, N. Qi, H. Zhao, and S. Shi, “Metabolic Engineering of Threonine Catabolism Enables Saccharomyces cerevisiae to Produce Propionate under Aerobic Conditions,” Biotechnology Journal 17, no. 3 (2022): e2100579. doi:10.1002/biot.202100579. (c) Y. Zhang, C. Li, D. Jia, D. Zhang, and X. Zhang, “Experimental Evaluation of the Lubrication Performance of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Ni-Based Alloy Grinding,” International Journal of Machine Tools and Manufacture 99 (2015): 19–33. doi:10.1016/j.ijmachtools.2015.09.003. (d) Y. Zhang, C. Li, D. Jia, D. Zhang, and X. Zhang, “Experimental Evaluation of MoS2 Nanoparticles in Jet MQL Grinding with Different Types of Vegetable Oil as Base Oil,” Journal of Cleaner Production 87 (2015): 930–40. doi:10.1016/j.jclepro.2014.10.027. (e) Y. Wang, C. Li, Y. Zhang, M. Yang, B. Li, D. Jia, Y. Hou, and C. Mao, “Experimental Evaluation of the Lubrication Properties of the Wheel/Workpiece Interface in Minimum Quantity Lubrication (MQL) Grinding Using Different Types of Vegetable Oils,” Journal of Cleaner Production 127 (2016): 487–99. doi:10.1016/j.jclepro.2016.03.121
  • (a) B.-T. Zhang, X. Zheng, H.-F. Li, and J.-M. Lin, “Application of Carbon-Based Nanomaterials in Sample Preparation: A Review,” Analytica Chimica Acta 784 (2013): 1–17. doi:10.1016/j.aca.2013.03.054. (b) Y. Zhang, C. Li, H. Ji, X. Yang, M. Yang, D. Jia, X. Zhang, R. Li, and J. Wang, “Analysis of Grinding Mechanics and Improved Predictive Force Model Based on Material-Removal and Plastic-Stacking Mechanisms,” International Journal of Machine Tools and Manufacture 122 (2017): 81–97. doi:10.1016/j.ijmachtools.2017.06.002. (c) M. Yang, C. Li, Y. Zhang, D. Jia, X. Zhang, Y. Hou, R. Li, and J. Wang, “Maximum Undeformed Equivalent Chip Thickness for Ductile-Brittle Transition of Zirconia Ceramics under Different Lubrication Conditions,” International Journal of Machine Tools and Manufacture 122 (2017): 55–65. doi:10.1016/j.ijmachtools.2017.06.003. (d) T. Gao, C. Li, Y. Zhang, M. Yang, D. Jia, T. Jin, Y. Hou, and R. Li, “Dispersing Mechanism and Tribological Performance of Vegetable Oil-Based CNT Nanofluids with Different Surfactants,” Tribology International 131 (2019): 51–63. doi:10.1016/j.triboint.2018.10.025. (e) Y. Zhang, C. Li, D. Jia, B. Li, Y. Wang, M. Yang, Y. Hou, and X. Zhang, “Experimental Study on the Effect of Nanoparticle Concentration on the Lubricating Property of Nanofluids for MQL Grinding of Ni-Based Alloy,” Journal of Materials Processing Technology 232 (2016): 100–15. doi:10.1016/j.jmatprotec.2016.01.031
  • I. E. Wachs, “Recent Conceptual Advances in the Catalysis Science of Mixed Metal Oxide Catalytic Materials,” Catalysis Today 100, no. 1–2 (2005): 79–94. doi:10.1016/j.cattod.2004.12.019
  • Z. Guo, B. Liu, Q. Zhang, W. Deng, Y. Wang, and Y. Yang, “Recent Advances in Heterogeneous Selective Oxidation Catalysis for Sustainable Chemistry,” Chemical Society Reviews 43, no. 10 (2014): 3480–524. doi:10.1039/c3cs60282f
  • A. Daştan, A. Kulkarni, and B. Török, “Environmentally Benign Synthesis of Heterocyclic Compounds by Combined Microwave-Assisted Heterogeneous Catalytic Approaches,” Green Chemistry 14, no. 1 (2012): 17–37. doi:10.1039/C1GC15837F
  • M. Jabłońska, and R. Palkovits, “Nitrogen Oxide Removal over Hydrotalcite-Derived Mixed Metal Oxides,” Catalysis Science & Technology 6, no. 1 (2016): 49–72. doi:10.1039/C5CY00646E
  • J. Shi, “On the Synergetic Catalytic Effect in Heterogeneous Nanocomposite Catalysts,” Chemical Reviews 113, no. 3 (2013): 2139–81. doi:10.1021/cr3002752
  • S. Lin-Bing, L. Xiao-Qin, and Z. Hong-Cai, “Design and Fabrication of Mesoporous Heterogeneous Basic Catalysts,” Chemical Society Reviews 44 (2015): 5092–147.
  • Q. Zhang, K. D. V. Vigier, S. Royer, and F. Jerome, “Deep Eutectic Solvents: Syntheses, Properties and Applications,” Chemical Society Reviews 41, no. 21 (2012): 7108–46. doi:10.1039/c2cs35178a
  • E. Kalantari, M. A. Khalilzadeh, D. Zareyee, and M. Shokouhimehr, “Natural Clinoptilolite/KOH: An Efficient Heterogeneous Catalyst for Carboxymethylation of Hemicellulose,” Journal of Molecular Structure 1218 (2020): 128488. doi:10.1016/j.molstruc.2020.128488
  • M. A. Khalilzadeh, S. Hosseini, A. S. Rad, and R. A. Venditti, “Synthesis of Grafted Nanofibrillated Cellulose-Based Hydrogel and Study of Its Thermodynamic, Kinetic, and Electronic Properties,” Journal of Agricultural and Food Chemistry 68, no. 32 (2020): 8710–9. doi:10.1021/acs.jafc.0c03500
  • U. Heiz, and E. L. Bullock, “Novel One-Step Synthesis of Amine-Stabilized Aqueous Colloidal Gold Nanoparticles,” Journal of Materials Chemistry 14, no. 4 (2004): 564–77. doi:10.1039/b313560h
  • E. Rafiee, and S. Eavani, “Heterogenization of Heteropoly Compounds: A Review of Their Structure and Synthesis,” RSC Advances 6, no. 52 (2016): 46433–66. doi:10.1039/C6RA04891A
  • J. R. Copeland, I. A. Santillan, S. M. Schimming, J. L. Ewbank, and C. Sievers, “Surface Interactions of Glycerol with Acidic and Basic Metal Oxides,” The Journal of Physical Chemistry C 117, no. 41 (2013): 21413–25. doi:10.1021/jp4078695
  • L. D. Trizio, and L. Manna, “Forging Colloidal Nanostructures via Cation Exchange Reactions,” Chemical Reviews 116, no. 18 (2016): 10852–87. doi:10.1021/acs.chemrev.5b00739
  • P. Xiaoyang, Y. Min-Quan, F. Xianzhi, Z. Nan, and X. Yi-Jun, Nanoscale 5 (2013): 3601–14.
  • B. F. G. Johnson, “Nanoparticles in Catalysis,” Topics in Catalysis 24, no. 1–4 (2003): 147–59. doi:10.1023/B:TOCA.0000003086.83434.b6
  • M. B. Gawande, P. S. Branco, K. Parghi, J. J. Shrikhande, R. K. Pandey, C. A. A. Ghumman, N. Bundaleski, O. Teodoro, and R. V. Jayaram, “Synthesis and Characterization of Versatile MgO–ZrO2 Mixed Metal Oxide Nanoparticles and Their Applications,” Catalysis Science & Technology 1, no. 9 (2011): 1653–64. doi:10.1039/c1cy00259g
  • S. Brauch, S. S. van Berkel, and W. Westermann, “Higher-Order Multicomponent Reactions: Beyond Four Reactants,” Chemical Society Reviews 42, no. 12 (2013): 4948–62. doi:10.1039/c3cs35505e
  • H. Y. Cho, and J. P. Morken, “Catalytic Bismetallative Multicomponent Coupling Reactions: Scope, Applications, and Mechanisms,” Chemical Society Reviews 43, no. 13 (2014): 4368–80. doi:10.1039/c3cs60482a
  • B. Eftekhari-Sis, M. Zirak, and A. Akbari, “Arylglyoxals in Synthesis of Heterocyclic Compounds,” Chemical Reviews 113, no. 5 (2013): 2958–3043. doi:10.1021/cr300176g
  • K. Sambasivarao, C. S. Arjun, and G. Deepti, “Diversity-Oriented Approaches to Polycyclics and Bioinspired Molecules via the Diels–Alder Strategy: Green Chemistry, Synthetic Economy, and Beyond,” ACS Combinatorial Science 17 (2015): 253–302.
  • B. H. Rotstein, S. Zaretsky, V. Rai, and A. K. Yudin, “Small Heterocycles in Multicomponent Reactions,” Chemical Reviews 114, no. 16 (2014): 8323–59. doi:10.1021/cr400615v
  • M. S. Singh, and S. Chowdhury, “Recent Developments in Solvent-Free Multicomponent Reactions: A Perfect Synergy for Eco-Compatible Organic Synthesis,” RSC Advances 2, no. 11 (2012): 4547–92. doi:10.1039/c2ra01056a
  • S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, “Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications,” Chemical Reviews 108, no. 6 (2008): 2064–110. doi:10.1021/cr068445e
  • A. Corma, and H. Garcia, “Supported Gold Nanoparticles as Catalysts for Organic Reactions,” Chemical Society Reviews 37, no. 9 (2008): 2096–126. doi:10.1039/b707314n
  • V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, and J. M. Basset, “Magnetically Recoverable Nanocatalysts,” Chemical Reviews 111, no. 5 (2011): 3036–75. doi:10.1021/cr100230z
  • R. Prasad, and P. Singh, “Low Temperature Complete Combustion of a Lean Mixture of LPG Emissions over Cobaltite Catalysts,” Catalysis Science & Technology 3, no. 12 (2013): 3326–34. doi:10.1039/c3cy00537b
  • H. S. Shirangi, A. Varasteh Moradi, M. Ahmadi Golsefidi, Z. Hossaini, and H. R. Jalilian, “Fe3O4/CuO/ZnO@MWCNT MNCs as an Efficient Organometallic Nanocatalyst Promoted Synthesis of New 1,2,4-Triazolpyrimidoazepine Derivatives: Investigation of Antioxidant and Antimicrobial Activity,” Applied Organometallic Chemistry 36, no. 1 (2022): e6460. doi:10.1002/aoc.6460
  • A. B. Djurišić, X. Chen, Y. H. Leung, and A. Man, “ZnO Nanostructures: Growth, Properties and Applications,” Journal of Materials Chemistry 22, no. 14 (2012): 6526–35. doi:10.1039/c2jm15548f
  • (a) B. Halliwell, “Antioxidant Defence Mechanisms: From the Beginning to the End (of the Beginning),” Free Radical Research 31, no. 4 (1999): 261–72. doi:10.1080/10715769900300841. (b) F. Ahmadi, M. Kadivar, and M. Shahedi, “Antioxidant Activity of Kelussia Odoratissima Mozaff. in Model and Food Systems,” Food Chemistry 105, no. 1 (2007): 57–64. doi:10.1016/j.foodchem.2007.03.056
  • A. M. Bidchol, A. Wilfred, P. Abhijna, and R. Harish, “Free Radical Scavenging Activity of Aqueous and Ethanolic,” Food and Bioprocess Technology 4, no. 7 (2011): 1137–43. doi:10.1007/s11947-009-0196-9
  • L. Liu, and M. Meydani, “Combined Vitamin C and E Supplementation Retards Early Progression of Arteriosclerosis in Heart Transplant Patients,” Nutrition Reviews 60 (2002): 368–71.
  • (a) M. Z. Kassaee, Z. S. Hossaini, B. N. Haerizade, and S. Z. Sayyed-Alangi, “Ab Initio Study of Steric Effects Due to Dialkyl Substitutions on H2C3 Isomers,” Journal of Molecular Structure: THEOCHEM 681, no. 1–3 (2004): 129–35. doi:10.1016/j.theochem.2004.05.014. (b) E. Ezzatzadeh, and Z. S. Hossaini, “Four-Component Green Synthesis of Benzochromene Derivatives Using nano-KF/Clinoptilolite as Basic Catalyst: Study of Antioxidant Activity,” Molecular Diversity 24, no. 1 (2020): 81–91. doi:10.1007/s11030-019-09935-6. (c) E. Ezzatzadeh, and Z. S. Hossaini, “A Novel One-Pot Three-Component Synthesis of Benzofuran Derivatives via Strecker Reaction: Study of Antioxidant Activity,” Natural Product Research 34, no. 7 (2020): 923–9. doi:10.1080/14786419.2018.1542389. (d) H. Aghahosseini, and A. Ramazani, “Magnetite L-Proline as a Reusable Nano-Biocatalyst for Efficient Synthesis of 4H-Benzo[b]Pyrans in Water: A Green Protocol,” Eurasian Chemical Communications 2, no. 3 (2020): 410–9. doi:10.33945/SAMI/ECC.2020.3.11. (e) E. Ezzatzadeh, and Z. S. Hossaini, “2D ZnO/Fe3O4 Nanocomposites as a Novel Catalyst‐Promoted Green Synthesis of Novel Quinazoline Phosphonate Derivatives,” Applied Organometallic Chemistry 34, no. 10 (2020): e5596. doi:10.1002/aoc.5947
  • (a) R. Tayebee, and Gohari  , “The Dual Role of Ammonium Acetate as Reagent and Catalyst in the Synthesis of 2, 4, 5-Triaryl-1H-Imidazoles,” Eurasian Chemical Communications 2 (2020): 581–6. (b) M. Nikpassand, and L. Zare Fekri, “Catalyst-Free Synthesis of Mono and Bis Spiro Pyrazolopyridines in DSDABCO as a Novel Media,” Chemical Methodologies 4, no. 4 (2020): 437–46. doi:10.33945/SAMI/CHEMM.2020.4.6. (c) H. Aghahosseini, and A. Ramazani, “Magnetite L-Proline as a Reusable Nano-Biocatalyst for Efficient Synthesis of 4H-Benzo[b]Pyrans in Water: A Green Protocol,” Eurasian Chemical Communications 2, no. 3 (2020): 410–9, doi:10.33945/SAMI/ECC.2020.3.11. (d) F. Raoufi, H. Aghaei, and M. Ghaedi, “Cu-Metformin Grafted on Multi Walled Carbon Nanotubes: Preparation and Investigation of Catalytic Activity,” Eurasian Chemical Communications 2 (2020): 226–33. (e) F. Hakimi, M. Fallah-Mehrjardi, and E. Golrasan, “Yttrium Aluminum Garnet (YAG: Al5Y3O12) as an Efficient Catalyst for the Synthesis of Benzimidazole and Benzoxazole Derivatives,” Chemical Methodologies 4 (2020): 234–44.
  • (a) M. Ghambarian, Z. Azizi, and M. Ghashghaee, “Cluster Modeling and Coordination Structures of Cu + Ions in Al-Incorporated Cu-MEL Catalysts-a Density Functional Theory Study,” Journal of the Mexican Chemical Society 61, no. 1 (2017): 1–13. doi:10.29356/jmcs.v61i1.122. (b) M. Ghambarian, Z. Azizi, and M. Ghashghaee, “Diversity of Monomeric Dioxo Chromium Species in Cr/Silicalite-2 Catalysts: A Hybrid Density Functional Study,” Computational Materials Science 118 (2016): 147–54. doi:10.1016/j.commatsci.2016.03.009. (c) M. Ghambarian, M. Ghashghaee, and Z. Azizi, “Coordination and Siting of Cu + Ion Adsorbed into Silicalite-2 Porous Structure: A Density Functional Theory Study,” Physical Chemistry Research 5 (2017): 135–52. (d) M. Z. Kassaee, M. Ghambarian, S. M. Musavi, F. A. Shakib, and M. R. Momeni, “A Theoretical Investigation into Dimethylcarbene and Its Diamino and Diphosphino Analogs: Effects of Cyclization and Unsaturation on the Stability and Multiplicity,” Journal of Physical Organic Chemistry 22, no. 10 (2009): 919–24. doi:10.1002/poc.1540. (e) M. Ghashghaee, M. Ghambarian, and Z. Azizi, “Theoretical Insights into Sensing of Hexavalent Chromium on Buckled and Planar Polymeric Carbon Nitride Nanosheets of Heptazine and Triazine Structures,” Molecular Simulation 46, no. 1 (2020): 54–61. doi:10.1080/08927022.2019.1674447
  • (a) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Theoretical Insights into Hydrogen Sensing Capabilities of Black Phosphorene Modified through ZnO Doping and Decoration,” International Journal of Hydrogen Energy 45, no. 33 (2020): 16918–28. doi:10.1016/j.ijhydene.2020.04.138. (b) M. Ghambarian, Z. Azizi, and M. Ghashghaee, “Functionalization and Doping of Black Phosphorus,” Black Phosphorus (2020): 1–30. (c) S. Reihani, Z. Azizi, M. Khaleghian, H. Passdar, L. Pishkar, and R. Ahmadi, “Theoretical Study of Hydrogen Bond Effects on Diphenylphosphorylazide,” Journal of Physical & Theoretical Chemistry 4 (2007): 51–6.. (d) Z. Samiei, S. Soleimani-Amiri, and Z. Azizi, “Fe3O4@C@OSO3H as an Efficient, Recyclable Magnetic Nanocatalyst in Pechmann Condensation: Green Synthesis, Characterization, and Theoretical Study,” Molecular Diversity 25, no. 1 (2021): 67–86. doi:10.1007/s11030-019-10025-w. (e) M. Ghambarian, Z. Azizi, and M. Ghashghaee, “Hydrogen Detection on Black Phosphorene Doped with Ni, Pd, and Pt: Periodic Density Functional Calculations,” International Journal of Hydrogen Energy 45, no. 32 (2020): 16298–309. doi:10.1016/j.ijhydene.2020.04.102. (f) M. Ghashghaee, Z. Azizi, and M. Ghambarian, “Adsorption of Iron(II, III) Cations on Pristine Heptazine and Triazine Polymeric Carbon Nitride Quantum Dots of Buckled and Planar Structures: Theoretical Insights,” Adsorption 26, no. 3 (2020): 429–42. doi:10.1007/s10450-019-00197-0. (g) M. Ghashghaee, M. Ghambarian, and Z. Azizi, "Chemistry of Black Phosphorus," Black Phosphorus (2020):1–30.
  • (a) M. Pirgheibi, M. Mohammadi, and A. Khanmohammadi, “Density Functional Theory Study of the Interplay between Cation–π and Intramolecular Hydrogen Bonding Interactions in Complexes Involving Methyl Salicylate with Li+, Na+, K,” +. Computational and Theoretical Chemistry 1198 (2021): 113172. doi:10.1016/j.comptc.2021.113172. (b) M. A. Poor, A. Darehkordi, M. Anary-Abbasinejad, and M. Mohammadi, “Gabapentin-Base Synthesis and Theoretical Studies of Biologically Active Compounds: N-Cyclohexyl-3-Oxo-2-(3-Oxo-2-Azaspiro [4.5] Decan-2-yl)-3-Arylpropanamides,” Journal of Molecular Structure 1152 (2018): 44–52. doi:10.1016/j.molstruc.2017.09.061. (c) M. Masoudi, M. Anary-Abbasinejad, and M. Mohammadi, “An Efficient One-Pot Synthesis of Polyfunctionalized 2H-Pyrroline Derivatives by Reaction of β-Enaminocarbonyls, Arylglyoxals and Amines,” Journal of the Iranian Chemical Society 13, no. 2 (2016): 315–21. doi:10.1007/s13738-015-0739-0. (d) M. Mohammadi, and A. Khanmohammadi, “Theoretical Investigation on the Non-Covalent Interactions of Acetaminophen Complex in Different Solvents: Study of the Enhancing Effect of the Cation–π Interaction on the,” Theoretical Chemistry Accounts 139, no. 8 (2020): 141. doi:10.1007/s00214-020-02650-8. (e) M. Mohammadi, and A. Khanmohammadi, “Molecular Structure, QTAIM and Bonding Character of Cation–π Interactions of Mono- and Divalent Metal Cations (Li+, Na+, K+, Be2+, Mg2+ and Ca2+) with Drug,” Theoretical Chemistry Accounts 138, no. 8 (2019): 101. doi:10.1007/s00214-019-2492-4
  • (a) Z. Hossaini, F. Sheikholeslami-Farahani, S. Soltani, S. Z. Sayyed-Alangi, and H. Sajjadi-Ghotabadi, “ZnO Nanoparticles as a Highly Efficient Heterogeneous Catalyst for the Synthesis of Various Chromene and Pyrano [4, 3-b] Pyran Derivatives under Solvent-Free Conditions,” Chemistry of Heterocyclic Compounds 51, no. 1 (2015): 26–30. doi:10.1007/s10593-015-1654-0. (b) J. Azizian, R. Miri, M. K. Mohammadi, F. Sheikholeslami Farahani, J. Hosseini, and M. Nikpour, “Synthesis of New (Pyrimido[4,5-e][1,3,4] Thiadiazin-7-yl)Hydrazine Derivatives,” Phosphorus, Sulfur, and Silicon 185, no. 8 (2010): 1782–7. doi:10.1080/10426500903299893. (c) F. Sheikholeslami-Farahani, and A. S. Shahvelayati, “Synthesis of Unsaturated α5-Acyloxybenzothiazoleamides via the Passerini Three-Component Reaction,” Combinatorial Chemistry & High Throughput Screening 16, no. 9 (2013): 726–30. doi:10.2174/13862073113169990041. (d) N. F. Hamedani, M. Ghazvini, F. Sheikholeslami‐Farahani, and M. T. Bagherian‐Jamnani, “ZnO Nanorods as Efficient Catalyst for the Green Synthesis of Thiophene Derivatives: Investigation of Antioxidant and Antimicrobial Activity,” Journal of Heterocyclic Chemistry 57, no. 4 (2020): 1588–98. doi:10.1002/jhet.3884. (e) F. Sheikholeslami-Farahani, and A. S. Shahvelayati, “Solvent-Free One-Pot Synthesis of Highly Functionalized Benzothiazolediamides via Ugi Four-Component Reaction,” Bulgarian Chemical Communications 47 (2015): 830–6.
  • (a) M. Ghazvini, F. Sheikholeslami-Farahani, S. Soleimani-Amiri, M. Salimifard, and R. Rostamian, “Green Synthesis of Pyrido[2,1-a]Isoquinolines and Pyrido[1,2-a] Quinolines by Using ZnO Nanoparticles,” Synlett 29, no. 04 (2018): 493–6. doi:10.1055/s-0036-1591509. (b) Z. Samiei, S. Soleimani-Amiri, and Z. Azizi, “Fe3O4@C@OSO3H as an Efficient, Recyclable Magnetic Nanocatalyst in Pechmann Condensation: Green Synthesis, Characterization, and Theoretical Study,” Molecular Diversity 25, no. 1 (2021): 67–86. doi:10.1007/s11030-019-10025-w. (c) S. Soleimani-Amiri, N. Asadbeigi, and S. Badragheh, “A Theoretical Approach to New Triplet and Quintet (Nitrenoethynyl) Alkylmethylenes,(Nitrenoethynyl) Alkylsilylenes,(Nitrenoethynyl) Alkylgermylenes,” Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 39 (2020): 39–52.
  • (a) T. A. Rehan, N. Al-Lami, and R. Shakeeb Alanee, “Anti-Cancer and Antioxidant Activities of Some New Synthesized 3-Secondary Amine Derivatives Bearing Imidazo [1,2-A] Pyrimidine,” Eurasian Chemical Communications 3 (2021): 339–51.. (b) S. Soleimani-Amiri, M. Arabkhazaeli, Z. Hossaini, S. Afrashteh, and A. A. Eslami, “Synthesis of Chromene Derivatives via Three-Component Reaction of 4-Hydroxycumarin Catalyzed by Magnetic Fe 3 O 4 Nanoparticles in Water,” Journal of Heterocyclic Chemistry 55, no. 1 (2018): 209–13. doi:10.1002/jhet.3028. (c) M. Koohi, S. S. Amiri, and M. Shariati, “Silicon Impacts on Structure, Stability and Aromaticity of C20-nSin Heterofullerenes (n = 1–10): A Density Functional Perspective,” Journal of Molecular Structure 1127 (2017): 522–31. doi:10.1016/j.molstruc.2016.08.012. (d) M. Z. Kassaee, H. Aref Rad, and S. Soleimani Amiri, “Carbon–Nitrogen Nanorings and Nanoribbons: A Theoretical Approach for Altering the Ground States of Cyclacenes and Polyacenes,” Monatshefte Für Chemie - Chemical Monthly 141, no. 12 (2010): 1313–9. doi:10.1007/s00706-010-0398-x. (e) H. A. Oskooie, S. Solemani Amiri, M. M. Heravi, and M. Ghassemzadeh, “Reductive Amination of Aldehydes and Ketones with Sodium Borohydride Supported onto HZSM-5 Zeolite under Microwave Irradiation in a Solvent Free System,” Phosphorus Sulfur and Silicon and the Related Elements Sulfur 180, no. 9 (2005): 2047–50. doi:10.1080/104265090902831. (f) H. Ghavidel, B. Mirza, and S. Soleimani-Amiri, “A Novel, Efficient, and Recoverable Basic Fe 3 O 4 @C Nano-Catalyst for Green Synthesis of 4 H -Chromenes in Water via One-Pot Three Component Reactions,” Polycyclic Aromatic Compounds 41, no. 3 (2021): 604–25. doi:10.1080/10406638.2019.1607413
  • (a) R. Jalilian, E. Ezzatzadeh, and A. Taheri, “A Novel Self-Assembled Gold Nanoparticles-Molecularly Imprinted Modified Carbon Ionic Liquid Electrode with High Sensitivity and Selectivity for the Rapid Determination,” Journal of Environmental Chemical Engineering 9, no. 4 (2021): 105513. doi:10.1016/j.jece.2021.105513. (b) E. Ezzatzadeh, “Chemoselective Oxidation of Sulfides to Sulfoxides Using a Novel Zn-DABCO Functionalized Fe3O4 MNPs as Highly Effective Nanomagnetic Catalyst,” Asian Journal of Nanosciences and Materials 4 (2021): 125–36.. (c) E. Ezzatzadeh, and Z. S. Hossaini, “2D ZnO/Fe3O4 Nanocomposites as a Novel Catalyst‐Promoted Green Synthesis of Novel Quinazoline Phosphonate Derivatives,” Applied Organometallic Chemistry 34, no. 10 (2020): e5596. doi:10.1002/aoc.5947
  • (a) K. Khandan-Barani, M. T. Maghsoodlou, N. Hazeri, S. M. Habibi-Khorasani, and S. S. Sajadikhah, “One-Pot, Three Component Reactions between Isocyanides and Dialkyl Acetylenedicarboxylates in the Presence of Phenyl Isocyanate,” Arkivoc 2011, no. 11 (2011): 22–8. doi:10.3998/ark.5550190.0012.b02. (b) M. Kangani, N. Hazeri, K. Khandan-Barani, M. Lashkari, and M. T. Maghsoodlou, “Lime Juice as an Efficient and Green Catalyst for the Synthesis of 6-Amino-4-Aryl-3-Methyl-1, 4-Dihydropyrano [2, 3-c] Pyrazole-5-Carbonitrile Derivatives,” Iranian Journal of Organic Chemistry 6 (2014): 1187–92.. (c) K. Khandan-Barani, M. Kangani, M. Mirbaluchzehi, and Z. Siroos, “Synthesis of Tetrahydrobenzo [b] Pyran and 3, 4-Dihydropyrimidinone Derivatives Using Glutamic Acid as an Efficient Catalyst,” Inorganic and Nano-Metal Chemistry 47, no. 5 (2017): 751–5. doi:10.1080/15533174.2016.1212233. (d) K. Khandan-Barani, and A. Motamedi-Asl, “Lactic Acid, as an Efficient Catalyst for the One-Pot Three-Component Synthesis of 1-Amidoalkyl-2-Naphthols under Thermal Solvent-Free Conditions,” Iranian Journal of Catalysis 5 (2015): 339–43.
  • (a) N. Faal Hamedani, F. Zamani Hargalani, and F. Rostami-Charati, “Biosynthesis of Cu/KF/Clinoptilolite@ MWCNTs Nanocomposite and Its Application as a Recyclable Nanocatalyst for the Synthesis of New Schiff Base of Benzoxazine Derivatives,” Molecular Diversity 26, no. 4 (2022): 2069–83. doi:10.1007/s11030-021-10316-1 (b) R. N. Mahmonir, V. Abdossi, Z. H. Fariba, and K. Larijani, “The Response of Hypericum Perfpratum L. to the Application of Selenium and Nano-Selenium,” (2021). doi:10.21203/rs.3.rs-708123/v1 (c) R. N. Mahmonir, A. Vahid, Z. H. Fariba, and L. Kambiz, “The Effect of Nano Selenium Foliar Application on Some Secondary Metabolites of Hypericum Perforatum L,” Journal of Medicinal Plants 21 (2022): 67–78. (d) E. Ezzatzadeh, F. Zamani Hargalani, and F. Shafaei, “Bio-Fe3O4-MNPs Promoted Green Synthesis of Pyrido[2,1-a]Isoquinolines and Pyrido[1,2-a]Quinolines: Study of Antioxidant and Antimicrobial Activity,” Polycyclic Aromatic Compounds 42, no. 7 (2022): 3908–23. doi:10.1080/10406638.2021.1879882
  • (a) F. Sheikholeslami-Farahani, Z. S. Hossaini, and F. Rostami-Charati, “Solvent-Free Synthesis of Substituted Thiopyrans via Multicomponent Reactions of α-Haloketones,” Chinese Chemical Letters 25, no. 1 (2014): 152–4. doi:10.1016/j.cclet.2013.10.016. (b) Z. S. Hossaini, F. Rostami-Charati, F. Sheikholeslami-Farahani, and M. Ghasemian, “ Synthesis of Functionalized Benzene Using Diels–Alder Reaction of Activated Acetylenes with Synthesized Phosphoryl-2-Oxo-2 H -Pyran,” Zeitschrift Für Naturforschung B 70, no. 5 (2015): 355–60. doi:10.1515/znb-2014-0261 (c) M. Ghazvini, F. Sheikholeslami-Farahani, S. Soleimani-Amiri, M. Salimifard, and R. Rostamian, “Green Synthesis of Pyrido[2,1-a]Isoquinolines and Pyrido[1,2-a]Quinolines by Using ZnO Nanoparticles,” Synlett 29, no. 04 (2018): 493–6. doi:10.1055/s-0036-1591509. (d) F. Sheikholeslami-Farahani, and A. S. Shahvelayati, “Synthesis of Unsaturated α-Acyloxybenzothiazoleamides via the Passerini Three-Component Reaction,” Combinatorial Chemistry & High Throughput Screening 16, no. 9 (2013): 726–30. doi:10.2174/13862073113169990041. (e) S. H. Hekmatara, M. Mohammadi, and M. Haghani, “Novel Water-Soluble, Copolymer Capped Zinc Oxide Nanorods with High Photocatalytic Activity for Degradation of Organic Pollutants from Water,” Chemical Physics Letters 730 (2019): 345–53. doi:10.1016/j.cplett.2019.05.046
  • (a) A. S. Shahvelayati, M. Sabbaghan, and S. Banihashem, “Sonochemically Assisted Synthesis of N-Substituted Pyrroles Catalyzed by ZnO Nanoparticles under Solvent-Free Conditions,” Monatshefte Für Chemie - Chemical Monthly 148, no. 6 (2017): 1123–9. doi:10.1007/s00706-016-1904-6. (b) I. Yavari, M. Ghazvini, A. Shahvelayati, and M. Ghanbari, “A One-Pot Synthesis of Functionalized 2,3-Dihydrothiazoles from Isothiocyanates, Primary Alkylamines, and Phenacyl Bromides,” Phosphorus, Sulfur, and Silicon 186, no. 1 (2010): 134–9. doi:10.1080/10426507.2010.487055
  • (a) M. Nikpassand, and L. Zare Fekri, “Catalyst-Free Synthesis of Mono and Bis Spiro Pyrazolopyridines in DSDABCO as a Novel Media,” Chemical Methodologies 4, no. 4 (2020): 437–46. doi:10.33945/SAMI/CHEMM.2020.4.6. (b) R. Tayebee, and Gohari  , “The Dual Role of Ammonium Acetate as Reagent and Catalyst in the Synthesis of 2, 4, 5-Triaryl-1H-Imidazoles,” Eurasian Chemical Communications 2 (2020): 581–6.
  • S. P. Rajendran, and K. Sengodan, “Synthesis and Characterization of Zinc Oxide and Iron Oxide Nanoparticles Using Sesbania Grandiflora Leaf Extract as Reducing Agent,” Journal of Nanoscience 2017 (2017): 1–7. doi:10.1155/2017/8348507
  • K. Shimada, K. Fujikawa, K. Yahara, and T. Nakamura, “Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion,” Journal of Agricultural and Food Chemistry 40, no. 6 (1992): 945–8. doi:10.1021/jf00018a005
  • G. C. Yen, and P. D. Duh, “Scavenging Effect of Methanolic Extracts of Peanut Hulls on Free-Radical and Active-Oxygen Species,” Journal of Agricultural and Food Chemistry 42, no. 3 (1994): 629–32. doi:10.1021/jf00039a005
  • A. Yildirim, A. Mavi, and A. A. Kara, “Determination of Antioxidant and Antimicrobial Activities of Rumex Crispus L. extracts,” Journal of Agricultural and Food Chemistry 49, no. 8 (2001): 4083–9. doi:10.1021/jf0103572

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.