110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, X-Ray Crystal Structure, and Identification of Potential Drug Candidate against COVID-19 Main Protease through Structure-Guided Modeling and Simulation Approach

, , , , , , & show all
Pages 9496-9513 | Received 18 Aug 2022, Accepted 30 Dec 2022, Published online: 12 Jan 2023

References

  • P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang, et al., “A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin,” Nature 579, no. 7798 (2020): 270–3. doi:10.1038/s41586-020-2012-7
  • C. Wang, P. W. Horby, F. G. Hayden, and G. F. Gao, “A Novel Coronavirus Outbreak of Global Health Concern,” The Lancet 395, no. 10223 (2020): 470–3. doi:10.1016/S0140-6736(20)30185-9
  • L. H. Abdel-Rahman, M. T. Basha, B. S. Al-Farhan, M. R. Shehata, S. K. Mohamed, and Y. Ramli, “Cu (Dipicolinoylamide)(NO3)(H2O)] as Anti-COVID-19 and Antibacterial Drug Candidate: Design, Synthesis, Crystal Structure, DFT and Molecular Docking,” Journal of Molecular Structure 1247 (2022): 131348. doi:10.1016/j.molstruc.2021.131348
  • I. Adachi, T. Yamamori, Y. Hiramatsu, K. Sakai, S.-I. Mihara, M. Kawakami, M. Masui, O. Uno, and M. Ueda, “Studies on Dihydropyridines. III. Synthesis of 4, 7-Dihydrothieno [2, 3-b]-Pyridines with Vasodilator and Antihypertensive Activities,” Chemical & Pharmaceutical Bulletin 36, no. 11 (1988): 4389–402. doi:10.1248/cpb.36.4389
  • E. A. Soylem, M. G. Assy, and G. M. Morsi, “Heteroannelation of Cyclic Ketones: Synthesis, Characterization and Antitumor Evaluation of Some Condensed Azine Derivatives,” Acta Chimica Slovenica 63, no. 3 (2016): 609–18. doi:10.17344/acsi.2016.2297
  • H. Gaffour, and M. Mokhtari, “Photocatalytic Degradation of 4-Nitrophenol Using TiO2+ Fe2O3 and TiO2/Fe2O3-Supported Bentonite as Heterogeneous Catalysts,” Research on Chemical Intermediates 42, no. 6 (2016): 6025–38. doi:10.1007/s11164-016-2436-8
  • F. Shi, S. Tu, F. Fang, and T. Li, “One-Pot Synthesis of 2-Amino-3-Cyanopyridine Derivatives under Microwave Irradiation without Solvent,” Arkivoc 2005, no. 1 (2005): 137–42. doi:10.3998/ark.5550190.0006.114
  • K. Madhusudana, B. Shireesha, V. G. M. Naidu, S. Ramakrishna, B. Narsaiah, A. R. Rao, and P. V. Diwan, “Anti-Inflammatory Potential of Thienopyridines as Possible Alternative to NSAIDs,” European Journal of Pharmacology 678, no. 1-3 (2012): 48–54. doi:10.1016/j.ejphar.2011.12.019
  • H. Liu, Y. Li, X.-Y. Wang, B. Wang, H.-Y. He, J.-Y. Liu, M.-L. Xiang, J. He, X.-H. Wu, and L. Yang, “Synthesis, Preliminary Structure–Activity Relationships, and In Vitro Biological Evaluation of 6-Aryl-3-Amino-Thieno [2, 3-b] Pyridine Derivatives as Potential Anti-Inflammatory Agents,” Bioorganic & Medicinal Chemistry Letters 23, no. 8 (2013): 2349–52. doi:10.1016/j.bmcl.2013.02.059
  • Luiz C. S. Pinheiro, Júlio C. Borgesa, César D. Oliveira, Vitor F. Ferreira, Gilberto A. Romeiro, Isakelly P. Marques, Paula A. Abreu, Izabel C. P. P. Frugulheti, Carlos R. Rodrigues, Magaly G. Albuquerque, et al., “Synthesis of New 4-(Phenylamino) Thieno [2, 3-b] Pyridines and Derivatives of the Novel Benzo [b] Thieno [3, 2-h]-1, 6-Naphthyridine Tetracyclic System,” Arkivoc 2008, no. 14 (2008): 77–87. doi:10.3998/ark.5550190.0009.e09
  • A. Chaubey, and S. N. Pandeya, “Pyridine a Versatile Nucleuse in Pharmaceutical Field,” Asian Journal of Pharmaceutical and Clinical Research 4 (2011): 5–8.
  • A. A. Farag, S. N. Abd‐Alrahman, G. F. Ahmed, R. M. Ammar, Y. A. Ammar, and S. Y. Abbas, “Synthesis of Some Azoles Incorporating a Sulfonamide Moiety as Anticonvulsant Agents,” Archiv Der Pharmazie 345, no. 9 (2012): 703–12. doi:10.1002/ardp.201200014
  • Rajesh H. Bahekar, Mukul R. Jain, Pradip A. Jadav, Vijay M. Prajapati, Dipam N. Patel, Arun A. Gupta, Ajay Sharma, Robby Tom, Debdutta Bandyopadhya, Honey Modi, et al., “Synthesis and Antidiabetic Activity of 2, 5-Disubstituted-3-Imidazol-2-yl-Pyrrolo [2, 3-b] Pyridines and Thieno [2, 3-b] Pyridines,” Bioorganic & Medicinal Chemistry 15, no. 21 (2007): 6782–95. doi:10.1016/j.bmc.2007.08.005
  • S. Nagashree, P. Mallu, L. Mallesha, and S. Bindya, “Synthesis and In Vitro Biological Activity of 6-Chloro-Pyridin-2-yl-Amine Derivatives,” Journal of Chemistry 2013 (2013): 1–5. doi:10.1155/2013/312961
  • F. A. Attaby, M. A. Ali, A. H. H. Elghandour, and Y. M. Ibrahem, “Synthesis, Reactions, and Antiviral Activity of 5′-Acetyl-6′-Methyl-2′-Thioxo-1′, 2′-Dihydro-3, 4′-Bipyridine-3′-Carbonitrile,” Phosphorus, Sulfur, and Silicon 181, no. 1 (2006): 1–14. doi:10.1080/104265090968398
  • V. Dollé, E. Fan, C. H. Nguyen, A. M. Aubertin, A. Kirn, M. L. Andreola, G. Jamieson, L. Tarrago-Litvak, and E. Bisagni, “A New Series of Pyridinone Derivatives as Potent Non-Nucleoside HIV-1 Specific Reverse Transcriptase Inhibitors,” Journal of Medicinal Chemistry 38 (1995): 674–9.
  • T. Ooe, M. Sano, H. Kobayashi, and M. Kudome, Jpn. Kokai Tokkyo Koho JP 07 53, 562, In: Chem. Abstr, 1995. p. 256681k.
  • T. Sohda, H. Makino, and A. Baba, PCT Int. Appl. WO 96 14, 319, In: Chem. Abstr, 1996. p. 114583.
  • Y. Ling, Z.-Y. Hao, D. Liang, C.-L. Zhang, Y.-F. Liu, and Y. Wang, “The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design,” Drug Design, Development and Therapy 15 (2021): 4289–338. doi:10.2147/DDDT.S329547
  • J. Stebbing, A. Phelan, I. Griffin, C. Tucker, O. Oechsle, D. Smith, and P. Richardson, “COVID-19: Combining Antiviral and Anti-Inflammatory Treatments,” The Lancet. Infectious Diseases 20, no. 4 (2020): 400–2. doi:10.1016/S1473-3099(20)30132-8
  • M. A. A. H. Allah, A. A. Balakit, H. I. Salman, Ali A. Abdulridha, and Y. Sert, “New Heterocyclic Compound as Carbon Steel Corrosion Inhibitor in 1 M H2SO4, High Efficiency at Low Concentration: Experimental and Theoretical Studies,” Journal of Adhesion Science and Technology 1 (2022): 1–23. doi:10.1080/01694243.2022.2034588
  • Ali Ahmed Abdulridha, Mahmood A. Albo Hay Allah, Sajjad Q. Makki, Yusuf Sert, Hamida Edan Salman, and Asim A. Balakit, “Corrosion Inhibition of Carbon Steel in 1 M H2SO4 Using New Azo Schiff Compound: Electrochemical, Gravimetric, Adsorption, Surface and DFT Studies,” Journal of Molecular Liquids 315 (2020): 113690. doi:10.1016/j.molliq.2020.113690
  • A. A. Balakit, S. Q. Makki, Y. Sert, F. Ucun, Mohammed B. Alshammari, P. Thordarson, and G. A. El-Hiti, “Synthesis, Spectrophotometric and DFT Studies of New Triazole Schiff Bases as Selective Naked-Eye Sensors for Acetate Anion,” Supramolecular Chemistry 32, no. 10 (2020): 519–26. doi:10.1080/10610278.2020.1808217
  • Z. I. Noor, D. Ahmed, H. M. Rehman, M. T. Qamar, M. Froeyen, S. Ahmad, and M. U. Mirza, “In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum Basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes,” Biology 8, no. 4 (2019): 92. doi:10.3390/biology8040092
  • Hafiz Muzzammel Rehman, Muhammad Usman Mirza, Mian Azhar Ahmad, Mahjabeen Saleem, Matheus Froeyen, Sarfraz Ahmad, Roquyya Gul, Huda Ahmed Alghamdi, Muhammad Shahbaz Aslam, Muhammad Sajjad, et al., “A Putative Prophylactic Solution for COVID-19: Development of Novel Multiepitope Vaccine Candidate against SARS-COV-2 by Comprehensive Immunoinformatic and Molecular Modelling Approach,” Biology 9, no. 9 (2020): 296.doi:10.3390/biology9090296
  • Imran Ali, Hafiz Muzzammel Rehman, Muhammad Usman Mirza, Muhammad Waheed Akhtar, Rehana Asghar, Muhammad Tariq, Rashid Ahmed, Fatima Tanveer, Hina Khalid, Huda Ahmed Alghamdi, et al., “Enhanced Thermostability and Enzymatic Activity of cel6A Variants from Thermobifida fusca by Empirical Domain Engineering,” Biology 9, no. 8 (2020): 214.doi:10.3390/biology9080214
  • Rigaku Corporation, REQAB (Tokyo, Japan: Rigaku Corporation, 1998).
  • J. W. Pflugrath, “The Finer Things in X-Ray Diffraction Data Collection,” Acta Crystallographica. Section D, Biological Crystallography 55, no. Pt 10 (1999): 1718–25. doi:10.1107/s090744499900935x
  • M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, and R. Spagna, “IL MILIONE: A Suite of Computer Programs for Crystal Structure Solution of Proteins,” Journal of Applied Crystallography 40, no. 3 (2007): 609–13. doi:10.1107/S0021889807010941
  • M. A. Spackman, and P. G. Byrom, “A Novel Definition of a Molecule in a Crystal,” Chemical Physics Letters 267, no. 3–4 (1997): 215–20. doi:10.1016/S0009-2614(97)00100-0
  • J. J. McKinnon, M. A. Spackman, and A. S. Mitchell, “Novel Tools for Visualizing and Exploring Intermolecular Interactions in Molecular Crystals,” Acta Crystallographica. Section B, Structural Science 60, no. Pt 6 (2004): 627–68. doi:10.1107/S0108768104020300
  • M. A. Spackman, and D. Jayatilaka, “Hirshfeld Surface Analysis,” CrystEngComm 11, no. 1 (2009): 19–32. doi:10.1039/B818330A
  • C. F. Mackenzie, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, “CrystalExplorer Model Energies and Energy Frameworks: Extension to Metal Coordination Compounds, Organic Salts, Solvates and Open-Shell Systems,” IUCrJ 4, no. Pt 5 (2017): 575–87. doi:10.1107/S205225251700848X
  • M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman, CrystalExplorer17 (Perth: University of Western Australia, 2017).
  • A. D. Becke, “Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Physical Review. A, General Physics 38, no. 6 (1988): 3098–100. doi:10.1103/physreva.38.3098
  • C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–9. doi:10.1103/physrevb.37.785
  • B. Miehlich, A. Savin, H. Stoll, and H. Preuss, “Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr,” Chemical Physics Letters 157, no. 3 (1989): 200–6. doi:10.1016/0009-2614(89)87234-3
  • A. D. McLean, and G. S. Chandler, “Contracted Gaussian Basis Sets for Molecular Calculations. I. Second Row Atoms, Z = 11-18,” Journal of Chemical Physics 72, no. 10 (1980): 5639–48. doi:10.1063/1.438980
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, and H. Nakatsuji, Gaussian 16 (Wallingford, CT: Gaussian, Inc., 2016).
  • Schrödinger Release, 4: LigPrep (New York, NY: Schrödinger, LLC, 2018), 2014–8.
  • Edward Harder, Wolfgang Damm, Jon Maple, Chuanjie Wu, Mark Reboul, Jin Yu Xiang, Lingle Wang, Dmitry Lupyan, Markus K. Dahlgren, Jennifer L. Knight, et al., “OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins,” Journal of Chemical Theory and Computation 12, no. 1 (2016): 281–96. doi:10.1021/acs.jctc.5b00864
  • S. Tahlan, S. Kumar, K. Ramasamy, S. M. Lim, S. A. A. Shah, V. Mani, and B. Narasimhan, “In-Silico Molecular Design of Heterocyclic Benzimidazole Scaffolds as Prospective Anticancer Agents,” BMC Chemistry 13, no. 1 (2019): 22. doi:10.1186/s13065-019-0608-5
  • J. C. Shelley, A. Cholleti, L. L. Frye, J. R. Greenwood, M. R. Timlin, and M. Uchimaya, “Epik: A Software Program for pK a Prediction and Protonation State Generation for Drug-like Molecules,” Journal of Computer-Aided Molecular Design 21, no. 12 (2007): 681–91. doi:10.1007/s10822-007-9133-z
  • Richard A. Friesner, Jay L. Banks, Robert B. Murphy, Thomas A. Halgren, Jasna J. Klicic, Daniel T. Mainz, Matthew P. Repasky, Eric H. Knoll, Mee Shelley, Jason K. Perry, et al., “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy,” Journal of Medicinal Chemistry 47, no. 7 (2004): 1739–49. doi:10.1021/jm0306430
  • D. Shivakumar, J. Williams, Y. Wu, W. Damm, J. Shelley, and W. Sherman, “Prediction of Absolute Solvation Free Energies Using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field,” Journal of Chemical Theory and Computation 6, no. 5 (2010): 1509–19. doi:10.1021/ct900587b
  • K. J. Bowers, D. E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, and F. D. Sacerdoti, “Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters” (SC’06 Proceedngs of the 2006 ACM/IEEE Conference on Supercomputing, IEEE, 2006), 43.
  • Noel M. O'Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Vandermeersch, and Geoffrey R. Hutchison, “Open Babel: An Open Chemical Toolbox,” Journal of Cheminformatics 3, no. 1 (2011): 1–14. doi:10.1186/1758-2946-3-33
  • G. A. Zhurko, and D. A. Zhurko, Chemcraft-Graphical Program for Visualization of Quantum Chemistry Computations (Ivanovo, Russia: Chemcraft, 2005).
  • S. Karthikeyan, G. Bharanidharan, R. Mangaiyarkarasi, S. Chinnathambi, R. Sriram, K. Gunasekaran, K. Saravanan, M. Gopikrishnan, P. Aruna, and S. Ganesan, “A Cytotoxicity, Optical Spectroscopy and Computational Binding Analysis of 4‐[3‐Acetyl‐5‐(Acetylamino)‐2‐Methyl‐2, 3‐Dihydro‐1, 3, 4‐Thiadiazole‐2‐yl] Phenyl Benzoate in Calf Thymus DNA,” Luminescence : The Journal of Biological and Chemical Luminescence 33, no. 4 (2018): 731–41. doi:10.1002/bio.3470
  • D. R. Roy, R. Parthasarathi, B. Maiti, V. Subramanian, and P. K. Chattaraj, “Electrophilicity as a Possible Descriptor for Toxicity Prediction,” Bioorganic & Medicinal Chemistry 13, no. 10 (2005): 3405–12. doi:10.1016/j.bmc.2005.03.011
  • T. Koopmans, “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms,” Physica 1, no. 1-6 (1934): 104–13. doi:10.1016/S0031-8914(34)90011-2
  • Wedad Al Garadi, Youness El Bakri, Chin-Hung Lai, El Hassane Anouar, Lhoussaine El Ghayati, Joel T. Mague, and El Mokhtar Essassi, “Synthesis, X-Ray, Spectroscopic Characterization, Hirshfeld Surface Analysis, DFT Calculation and Molecular Docking Investigations of a Novel 7-Phenyl-2, 3, 4, 5-Tetrahydro-1H-1, 4-Diazepin-5-One Derivative,” Journal of Molecular Structure 1234 (2021): 130146. doi:10.1016/j.molstruc.2021.130146
  • Y. El. Bakri, C.-H. Lai, S. Karthikeyan, L. Guo, S. Ahmad, A. Ben-Yahya, J. T. Mague, and E. M. Essassi, “Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Computational Approach of New 2-Methylbenzimidazo [1, 2-a] Pyrimidin-4 (1H)-One,” Journal of Molecular Structure 1239 (2021): 130497. doi:10.1016/j.molstruc.2021.130497
  • L. H. Abdel-Rahman, S. K. Mohamed, Y. El. Bakri, S. Ahmad, C.-H. Lai, A. A. Amer, J. T. Mague, and E. M. Abdalla, “Synthesis, Crystal Structural Determination and in Silco Biological Studies of 3, 3′-Ethane-1, 2-Diylbis (2-Benzylidene-1, 3-Thiazolidin-4-One,” Journal of Molecular Structure 1245 (2021): 130997. doi:10.1016/j.molstruc.2021.130997

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.