233
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Antioxidant, and Electrochemical Behavior Studies of 2-Amino-4H-Chromene Derivatives Catalyzed by WEOFPA: Green Protocol

, , , , &
Pages 333-360 | Received 30 Aug 2022, Accepted 18 Jan 2023, Published online: 10 Feb 2023

References

  • V. Lobo, A. Patil, A. Phatak, and N. Chandra, “Free Radicals, Antioxidants and Functional Foods: Impact on Human Health,” Pharmacognosy Reviews 4, no. 8 (2010): 118–26. nodoi:10.4103/0973-7847.70902
  • A. B. Samel, and N. R. Pai, “Synthesis of Novel Aryloxy Propanoyl Thiadiazoles as Potential Antihypertensive Agents,” Journal of the Chinese Chemical Society 57, no. 6 (2010): 1327–30. doi:10.1002/jccs.201000196
  • U. C. Pant, H. Chandra, and S. Goyal, “Synthesis of 1,5-Benzothiazepines: Part XXX-Synthesis and Antimicrobial Studies of 10-Substituted-6a,7-Dihydro-6H -7-(4-Fluorophenyl)-6-Phenyl[1] Benzopyrano[3,4-C] [1,5]Benzothiazepines,” Indian Journal of Chemistry 45B (2006): 752–7.
  • S. R. Cherkupally, P. R. Gurrala, N. Adki, and S. Avula, “Synthesis and Biological Study of Novel Methylene-Bis-Benzofuranyl-[1,5]-Benzothiazepines,” Organic Communication 4, no. 1 (2008): 84–94.
  • Ardeshir Khazaeia, Ahmad Reza Moosavi-Zareb, Hadis Afshar, and Vahid Khakyzadeh Hezarkhania, “Programming of Fe-Catalyzed Cascade Knoevenagel-Michael Cyclocondensation Reaction: create out Pseudo Acridine Derivatives under Solvent Free Conditions,” Eurasian Chemical Communications 2, no. 1 (2020): 27–34.
  • B. Elleby, L. C. Chirica, C. Tu, M. Zeppezauer, and S. Lindskog, “Characterization of Carbonic Anhydrase from Neisseria Gonorrhoeae,” European Journal of Biochemistry 268, no. 6 (2001): 1613–9.
  • R. R. Kamble, and B. S. Sudha, “Synthesis and Pharmacological Evaluation of 1,5-Benzothiazepine Derivatives,” Phosphorus, Sulfur, and Silicon and the Related Elements 183, no. 7 (2008): 1691–709. nodoi:10.1080/10426500701724555
  • S. Agarwal, A. Sethiya, J. Soni, N. Sahiba, and P. Teli, “An overview of Recent Advances in the Catalytic Synthesis of Substituted Pyrans,” Applied Organometallic Chemistry 36, no. 4 (2022): e6604. doi:10.1002/aoc.6604
  • S. Jumat, S. Nadia, Y. Emad, H. Ayad, and I. Hiba, “Synthesis, Characterization and Biological Activity of Schiff Bases of 2,5-Dimercapto-1,3,4-Thiadiazole,” Australian Journal of Basic and Applied Sciences 4, no. 7 (2010): 2016–21.
  • A. R. Salih, and Z. A. K. Al-Messri, “Synthesis of Pyranopyrazole and Pyranopyrimidine Derivatives Using Magnesium Oxide Nanoparticles and Evaluation as Corrosion Inhibitors for Lubricants,” Eurasian Chemical Communications 8, no. 3 (2021): 533–41.
  • S. Darvishy, H. Alinezhad, M. Vafaeezadeh, S. Peiman, and B. Maleki, “S-(+) Camphorsulfonic Acid Glycine (CSAG) as Surfactant-Likes Bronsted Acidic Ionic Liquid for One-Pot Synthesis of ß-Amino Carbonyl,” Polycyclic Aromatic Compounds (2022): 1–13. doi:10.1080/10406638.2022.2094419
  • B. Maleki, H. Atharifar, O. Reiser, and R. Sabbaghzadeh, “Glutathione-Coated Magnetic Nanoparticles for One-Pot Synthesis of 1,4-Dihydropyridine Derivatives,” Polycyclic Aromatic Compounds 41, no. 4 (2021): 721–34. doi:10.1080/10406638.2019.1614639
  • W. M. Xu, Y. G. Wang, M. Z. Miao, and X. Huang, “A Novel Cleavage for Polystyrene-Supported Selenium Resins: An Efficient Route to 3,5-Disubstituted Isoxazolines and Their Derivatives Synthesis,” Synthesis 13 (2005): 2143–6.
  • A. Makaritis, D. Georgiadis, V. Dive, and A. Yiotakis, “Diastereoselective Solution and Multipin‐Based Combinatorial Array Synthesis of a Novel Class of Potent Phosphinic Metalloprotease Inhibitors,” Chemistry (Weinheim an Der Bergstrasse, Germany) 9, no. 9 (2003): 2079–94. doi:10.1002/chem.200204456
  • Y. J. Shang, and Y. G. Wang, “One‐Pot Synthesis of Isoxazolines Using Soluble Polymer‐Supported Acrylate,” Chinese Journal Chemistry 21, no. 1 (2003): 7–8.
  • Robert Łysek, Bartłomiej Furman, Maciej Cierpucha, Barbara Grzeszczyk, Łukasz Matyjasek, and Marek Chmielewski, “Solid‐Phase [2 + 2] Cycloadditions between Chlorosulfonyl Isocyanate and Chiral Vinyl Ethers,” European Journal of Organic Chemistry 2002, no. 14 (2002): 2377–84. doi:10.1002/1099-0690(200207)2002:14<2377::AID-EJOC2377>3.0.CO;2-I
  • Q. Ren, W. Y. Siau, Z. Du, K. Zhang, and J. Wang, “Expeditious Assembly of a 2-Amino- 4HChromene Skeleton by Using an Enantioselective Mannich Intramolecular Ring Cyclization-Tautomerization Cascade Sequence,” Chemistry – A European Journal 17, no. 28 (2011): 7781–5. doi:10.1002/chem.201100927
  • Mohammad Nikpassand, and Leila Zare Fekri, Department of Chemistry, Rasht Branch, Islamic Azad University, Rasht, Iran“Catalyst-Free Synthesis of Mono and Bis Spiro Pyrazolopyridines in DSDABCO as a Novel Media,” Chemical Methodologies 4, no. 4 (2020): 437–46. doi:10.33945/SAMI/CHEMM.2020.4.6
  • E. Haddadzadeh, and M. K. Mohammadi, “One-Pot Synthesize of Phenyl Phenanthro Imidazole Derivatives Catalyzed by Lewis Acid in the Presence of Ammonium Acetate,” Chemical Methodologies 4, no. 4 (2020): 324–32.
  • Behrooz Maleki, Hadi Natheghi, Reza Tayebee, Heshmatollah Alinezhad, Amirhassan Amiri, Seyed Alireza Hossieni, and Seyed Mohammad Mahdi Nouri, “Synthesis and Characterization of Nanorod Magnetic Co-Fe Mixed Oxides and Its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 633–43. doi:10.1080/10406638.2018.1469519
  • E. R. Seresht, M. B. Noroozi, and B. Maleki, “Piperazine-Grafted Magnetic Reduced Graphene Oxide (Fe3O4@rGO-NH) as a Reusable Heterogeneous Catalyst for Gewald Three-Component Reaction,” Polycyclic Aromatic Compounds 41, no. 9 (2021): 1944–52. doi:10.1080/10406638.2019.1708417
  • J. M. Batista, A. A. Lopes, D. L. Ambrosio, L. O. Regasini, M. J. Kato, V. da Silva Bolzani, R. M. B. Cicarelli, and M. Furlan, “Natural Chromenes and Chromene Derivatives as Potential anti-Trypanosomal Agents,” Biological & Pharmaceutical Bulletin 31, no. 3 (2008): 538–40. doi:10.1248/bpb.31.538
  • Hosadurga K. Keerthy, Manoj Garg, Chakrabhavi D. Mohan, Vikas Madan, Deepika Kanojia, Rangappa Shobith, Shivananju Nanjundaswamy, Daniel J. Mason, Andreas Bender, Kanchugarakoppal S. Rangappa, et al., “Synthesis and Characterization of Novel 2-Amino-Chromene-Nitriles That Target Bcl-2 in Acute Myeloid Leukemia Cell Lines,” PloS One 9, no. 9 (2014): e107118. doi:10.1371/journal.pone.0107118
  • K. Mansouri, R. Khodarahmi, A. Foroumadi, A. Mostafaie, and H. M. Motlagh, “Anti-Angiogenic/Proliferative Behavior of a 4-Aryl-4H-Chromene on Blood Vessel’s Endothelial Cells: A Possible Evidence on Dual anti-Tumor Activity,” Medicinal Chemistry Research 20, no. 7 (2011): 920–9. doi:10.1007/s00044-010-9418-y
  • F. M. Abdelrazek, P. Metz, and E. K. Farrag, “Synthesis and Molluscicidal Activity of 5-Oxo-5,6,7,8-Tetrahydro-4H-Chromene Derivatives,” Archiv der Pharmazie 337, no. 9 (2004): 482–5. doi:10.1002/ardp.200400881
  • D. C. Mungra, M. P. Patel, D. P. Rajani, and R. G. Patel, “Synthesis and Identification of Β-Aryloxyquinolines and Their Pyrano[3,2-c]Chromene Derivatives as a New Class of Antimicrobial and Antituberculosis Agents,” European Journal of Medicinal Chemistry 46, no. 9 (2011): 4192–200. doi:10.1016/j.ejmech.2011.06.022
  • L. Abrunhosa, M. Costa, F. Areias, A. Venancio, and F. Proença, “Antifungal Activity of a Novel Chromene Dimer,” Journal of Industrial Microbiology & Biotechnology 34, no. 12 (2007): 787–92. doi:10.1007/s10295-007-0255-z
  • M. Khoobi, M. Alipour, A. Sakhteman, H. Nadri, A. Moradi, M. Ghandi, S. Emami, A. Foroumadi, and A. Shafiee, “Design, Synthesis, Biological Evaluation and Docking Study of 5-Oxo-4,5-Dihydropyrano[3,2-C]Chromene Derivatives as Acetylcholinesterase and Butyrylcholinesterase Inhibitors,” European Journal of Medicinal Chemistry 68 (2013): 260–9. doi:10.1016/j.ejmech.2013.07.038
  • A. Fallah-Tafti, R. Tiwari, A. Nasrolahi Shirazi, T. Akbarzadeh, D. Mandal, A. Shafiee, K. Parang, and A. Foroumadi, “4-Aryl-4H-Chromene-3-Carbonitrile Derivatives: Evaluation of Src Kinase Inhibitory and Anticancer Activities,” Medicinal Chemistry (Shariqah (United Arab Emirates)) 7, no. 5 (2011): 466–72. doi:10.2174/157340611796799258
  • A. R. M. Zare, and H. A. Hezarkhani, “Application of [Pyridine-1-SO3H-2-COOH]Cl as an Efficient Catalyst for the Preparation of Hexahyroquinolines,” Eurasian Chemical Communications 2, no. 4 (2020): 465–74.
  • H. Alinezhad, M. Tajbakhsh, B. Maleki, and F. P. Oushibi, “Acidic Ionic Liquid [H-NP]HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b]Pyridines and Polysubstituted Imidazoles,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1485–500. doi:10.1080/10406638.2018.1557707
  • Behrooz Maleki, Reza Tayebee, Ali Khoshsima, and Farshid Ahmadpoor, “Facile Protocol for the Synthesis of 2-Amino-4H-Chromene Derivatives Using Choline Chloride/Urea,” Organic Preparations and Procedures International 53, no. 1 (2021): 34–41. doi:10.1080/00304948.2020.1833623
  • J. M. Doshi, D. Tian, and C. Xing, “Structure-Activity Relationship Studies of Ethyl 2-Amino-6-Bromo-4-(1-Cyano-2-Ethoxy-2-Oxoethyl)-4H-Chromene-3-Carboxylate (HA 14-1), an Antagonist for Antiapoptotic Bcl-2 Proteins to Overcome Drug Resistance in Cancer,” Journal of Medicinal Chemistry 49, no. 26 (2006): 7731–9. doi:10.1021/jm060968r
  • M. I. Fernandez-Bachiller, C. N. Perez, L. Monjas, J. R. Rademann, and M. I. Rodriguez-Franco, “New Tacrine-4-Oxo-4H-Chromene Hybrids as Multifunctional Agents for the Treatment of Alzheimer’s Disease, with Cholinergic, Antioxidant, and Β-Amyloid-Reducing Properties,” Journal of Medicinal Chemistry 55, no. 3 (2012): 1303–17. doi:10.1021/jm201460y
  • N. Oztaşkın, Y. Çetinkaya, P. Taslimi, S. Goksu, and I. Gulçin, “Antioxidant and Acetylcholinesterase Inhibition Properties of Novel Bromophenol Derivatives,” Bioorganic Chemistry 60 (2015): 49–57. doi:10.1016/j.bioorg.2015.04.006
  • W. Tan, Q. Li, T. Zhou, Q. Chen, G. Wang, F. Dong, and Z. Guo, “Synthesis and Antioxidant Ability of 6,6′-Diamino-6,6′-Dideoxytrehalose,” Bioorganic Chemistry 74 (2017): 66–71. doi:10.1016/j.bioorg.2017.07.005
  • C. Y. Wang, T. C. Wu, S. L. Hsieh, Y. H. Tsai, C. W. Yeh, and C. Y. Huang, “Antioxidant Activity and Growth Inhibition of Human Colon Cancer Cells by Crude and Purified Fucoidan Preparations Extracted from Sargassum Cristaefolium,” Journal of Food and Drug Analysis 23, no. 4 (2015): 766–77. doi:10.1016/j.jfda.2015.07.002
  • H. Mangge, K. Becker, D. Fuchs, and J. M. Gostner, “Antioxidants, Inflammation and Cardiovascular Disease,” World Journal of Cardiology 6, no. 6 (2014): 462–77. doi:10.4330/wjc.v6.i6.462
  • Biao Song, Chang Zhang, Guangming Zeng, Jilai Gong, Yingna Chang, and Yan Jiang, “Antibacterial Properties and Mechanism of Graphene Oxide-Silver Nanocomposites as Bactericidal Agents for Water Disinfection,” Archives of Biochemistry and Biophysics 604 (2016): 167–76. doi:10.1016/j.abb.2016.04.018
  • A. Shafei, M. ElShemy, and A. Abou-Okeil, “Eco-Friendly Finishing Agent for Cotton Fabrics to Improve Flame Retardant and Antibacterial Properties,” Carbohydrate Polymers 118 (2015): 83–90. doi:10.1016/j.carbpol.2014.11.007
  • S. Langsrud, M. S. Sidhu, E. Heir, and A. L. Holck, “Bacterial Disinfectant Resistance-A Challenge for the Food Industry,” International Biodeterioration & Biodegradation 51, no. 4 (2003): 283–90. doi:10.1016/S0964-8305(03)00039-8
  • R. L. Medernach, and L. K. Logan, “The Growing Threat of Antibiotic Resistance in Children,” Infectious disease Clinics of North America 32, no. 1 (2018): 1–17. doi:10.1016/j.idc.2017.11.001
  • I. Roca, M. Akova, F. Baquero, J. Carlet, M. Cavaleri, S. Coenen, J. Cohen, M. M. Khafagy, A. H. F. A. El-Wahas, F. A. Eid, et al., “Synthesis of Halogen Derivatives of Benzo[H]Chromene and Benzo[a]Anthracene with Promising Antimicrobial Activities,” II Farmaco 57, no. 9 (2002): 715–22.
  • K. Hiramoto, A. Nasuhara, K. Michikoshi, T. Kato, and K. Kikugawa, “DNA Strand-Breaking Activity and Mutagenicity of 2,3-Dihydro-3,5-Dihydroxy-6-Methyl-4H-Pyran-4-One (DDMP), a Maillard Reaction Product of Glucose and Glycine,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis 395, no. 1 (1997): 47–56. doi:10.1016/S1383-5718(97)00141-1
  • M. Kidwai, S. Saxena, M. K. Khan, and S. S. Thukral, “Aqua Mediated Synthesis of Ubstituted 2-Amino-4H-Chromenes and in Vitro Study as Antibacterial Agents,” Bioorganic & Medicinal Chemistry Letters 15, no. 19 (2005): 4295–8. doi:10.1016/j.bmcl.2005.06.041
  • A. G. Martinez, and L. J. Marco, “Friedlander Reaction on 2-Amino-3-Cyano-4H-Pyrans: Synthesis of Derivatives of 4H-Pyran [2,3-b] Quinoline, New Tacrine Analogues,” Bioorganic & Medicinal Chemistry Letters 7, no. 24 (1997): 3165–70. doi:10.1016/S0960-894X(97)10165-2
  • S. J. Mohr, M. A. Chirigos, F. S. Fuhrman, and J. W. Pryor, “Pyran Copolymer as an Effective Adjuvant to Chemotherapy against a Murine Leukemia and Solid Tumor,” Cancer Research 35, no. 12 (1975): 3750–4.
  • K. Niknam, and A. Piran, “Silica-Grafted Ionic Liquids as Recyclable Catalysts for the Synthesis of 3,4-Dihydropyrano[c]Chromenes and Pyrano[2,3-c]Pyrazoles,” Sustainable Chemistry 3, no. 2A (2013): 416–24.
  • C. S. Konkoy, D. B. Fisck, S. X. Cai, N. C. Lan, and J. F. W. Keana, “PCT Int Appl, WO 0075123, 2000,” Chemical Abstract 134 (2001): 29313a.
  • G. P. Ellis, and A. Weissberger, and E. C. Taylor, The Chemistry of Heterocyclic Compounds. Chromenes, Chromanes and Chromeones (New York: Wiley, 1977), 13.
  • E. A. A. Hafez, M. H. Elnagdi, A. G. A. Elagamey, and F. M. A. A. El-Taweel, “Nitriles in Heterocyclic Synthesis: Novel Synthesis of Benzo[C]Coumarin and of Benzo[C]Pyrano[3,2-C]Quinoline Derivatives,” Heterocycles 26, no. 4 (1987): 903–7.
  • Y. He, R. Hu, R. Tong, F. Li, J. Shi, and M. Zhang, “K2CO3-Mediated Synthesis of Functionalised 4-Substituted-2-Amino-3-Cyano-4H-Chromenes via Michael-Cyclization Reactions,” Molecules 19, no. 12 (2014): 19253–68. doi:10.3390/molecules191219253
  • B. Maleki, and S. Sheikh, “One-Pot Synthesis of 2-Amino-2-Chromene and 2-Amino-3-Cyano-4H-Pyran Derivatives Promoted by Potassium Fluoride,” Organic Preparations and Procedures International 47, no. 5 (2015): 368–78. doi:10.1080/00304948.2015.1066647
  • B. Maleki, and S. Sheikh, “Nano polypropylenimine Dendrimer (DAB-PPI-G1): as a Novel Nano Basic-Polymer Catalyst for One-Pot Synthesis of 2-Amino-2-Chromene Derivatives,” RSC Advances 5, no. 54 (2015): 42997–3005. doi:10.1039/C5RA04458H
  • A. Sethiya, P. Kalal, P. Teli, N. Sahiba, J. Soni, D. Joshi, and S. Agarwa, “Highly efficient and Diversity-Oriented Solvent-Free Synthesis of Biologically Active Fused Heterocycles Using Glycerol-Based Sulfonic Acid,” Research on Chemical Intermediates 48, no. 11 (2022): 4711–27. doi:10.1007/s11164-022-04822-6
  • A. Zonouzi, R. Mirzazadeh, M. Safavi, S. K. Ardestani, S. Emami, and A. Foroumadi, “2-Amino-4-(Nitroalkyl)-4h-Chromene-3-Carbonitriles as New Cytotoxic Agents,” Iranian Journal of Pharmaceutical Research 12, no. 4 (2013): 679–85.
  • F. K. Mohammed, A. Y. Soliman, A. Ssawy, and M. G. Badre, “Arylidene Derivatives as Synthons in Heterocyclic Synthesis,” Journal of Chemical and Pharmaceutical Research 1, no. 2 (2009): 1–47.
  • S. R. Kolla, and Y. R. Lee, “Ca(OH)2-Mediated Efficient Synthesis of 2-Amino-5-Hydroxy-4H-Chromene Derivatives with Various Substituents,” Tetrahedron 67, no. 43 (2011): 8271–5. doi:10.1016/j.tet.2011.08.086
  • D. R. Anderson, S. Hegde, E. Reinhard, L. Gomez, W. F. Vernier, L. Lee, S. Liu, A. Sambandam, P. A. Snider, and L. Masih, “Aminocyanopyridine Inhibitors of Mitogen Activated Protein Kinase-Activated Protein Kinase 2 (MK-2),” Bioorganic & Medicinal Chemistry Letters 15, no. 6 (2005): 1587–90.
  • L. Caruana, M. Mondatori, V. Corti, S. Morales, A. Mazzanti, M. Fochi, and L. Bernardi, “Catalytic Asymmetric Addition of Meldrum’s Acid, Malononitrile, and 1,3-Dicarbonyls to Ortho-Quinone Methides Generated in Situ under Basic Conditions,” Chemistry (Weinheim an Der Bergstrasse, Germany) 21, no. 16 (2015): 6037–41. doi:10.1002/chem.201500710
  • M. Fujiwara, M. Sakamoto, K. Komeyama, H. Yoshida, and K. Takaki, “Convenient Synthesis of 2-Amino-4H-Chromenes from Photochemically Generated o-Quinone Methides and Malononitrile,” Journal of Heterocyclic Chemistry 52, no. 1 (2015): 59–66. nodoi:10.1002/jhet.1964
  • S. Khaksar, A. Rouhollahpour, and S. M. Talesh, “A Facile and Efficient Synthesis of 2-Amino-3-Cyano-4H-Chromenes and Tetrahydrobenzo[b]Pyrans Using 2,2,2-Trifluoroethanol as a Metal-Free and Reusable Medium,” Journal of Fluorine Chemistry 141 (2012): 11–5. doi:10.1016/j.jfluchem.2012.05.014
  • Michael Weßling, and Hans J. Schäfer, “Cathodic hydrodimerization of Nitroolefins,” Beilstein Journal of Organic Chemistry 11 (2015): 1163–74. doi:10.3762/bjoc.11.131
  • S. M. Mousawi, Y. M. Elkholy, M. A. Mohammad, and M. H. Elnagdi, “Synthesis of New Condensed 2-Amino-4h-Pyran-3-Carbonitriles and of 2-Aminoquinoline-3 Carbonitriles,” Organic Preparations and Procedures International 31, no. 3 (1999): 305–13. doi:10.1080/00304949909458324
  • P. Sharma, M. Gupta, R. Kant, and V. K. Gupta, “One-Pot Synthesis of Various 2-Amino-4H-Chromene Derivatives Using a Highly Active Supported Ionic Liquid Catalyst,” RSC Advances 6, no. 38 (2016): 32052–9. doi:10.1039/C6RA06523F
  • R. L. Magar, P. B. Thorat, V. B. Jadhav, S. U. Tekale, S. A. Dake, B. R. Patil, and R. P. Pawar, “Silica Gel Supported Polyamine: A Versatile Catalyst for One Pot Synthesis of 2-Amino-4H-Chromene Derivatives,” Journal of Molecular Catalysis A: Chemical 374 (2013): 118–24.
  • K. R. Desale, K. P. Nandre, and S. L. Patil, “p-Dimethylaminopyridine (DMAP): a Highly Efficient Catalyst for One Pot, Solvent Free Synthesis of Substituted 2-Amino-2-Chromenes under Microwave Irradiation,” Organic Communication 5, no. 4 (2012): 179–85.
  • D. Kumar, V. B. Reddy, S. Sharad, U. Dube, and S. Kapur, “A Facile One-Pot Green Synthesis and Antibacterial Activity of 2-Amino-4H-Pyrans and 2-Amino-5-Oxo-5,6,7,8-Tetrahydro-4H-Chromenes,” European Journal of Medicinal Chemistry 44, no. 9 (2009): 3805–9. doi:10.1016/j.ejmech.2009.04.017
  • K. Hamzeh, and G. Fatemeh, “Potassium Phthalimide Promoted Green Multicomponent Tandem Synthesis of 2-Amino-4H-Chromenes and 6-Amino-4H-Pyran-3-Carboxylates,” Journal of Saudi Chemical Society 18, no. 5 (2014): 689–701.
  • G. Sedighe, D. Abolghasem, and N. M. Mahboobeh, “Synthesis, Characterization, and Antibacterial Evaluation of New Alkyl 2-Amino-4-Aryl-4H-Chromene-3-Carboxylates,” Chemistry of Heterocyclic Compounds 51 (2015): 808–13.
  • G. D. Mohammad, E. Mohammad, and M. Ali, “Potassium Phthalimide-N-Oxyl: A Novel, Efficient, and Simple Organocatalyst for the One-Pot Three-Component Synthesis of Various 2-Amino-4H-Chromene Derivatives in Water,” Tetrahedron 69, no. 3 (2013): 1074–85.
  • Suleyman Akocak, Betül Şen, Nabih Lolak, Aysun Şavk, Murat Koca, Sultan Kuzu, and Fatih Şen, “One-Pot Three-Component Synthesis of 2-Amino-4H-Chromene Derivatives by Using Monodisperse Pd Nanomaterials Anchored Graphene Oxide as Highly Efficient and Recyclable Catalyst,” Nano-Structures & Nano-Objects 11 (2017): 25–31. doi:10.1016/j.nanoso.2017.06.002
  • R. P. Singh, K. N. C. Murthy, and G. K. Jayaprakasha, “Studies on the Antioxidant Activity of Pomegranate (Punicagranatum) Peel and Seed Extracts Using in Vitro Models,” Journal of Agricultural and Food Chemistry 50, no. 1 (2002): 81–6. doi:10.1021/jf010865b
  • K. Kantharaju, and P. B. Hiremath S. Y. Khatavi, “WEB: A Green and an Efficient Catalyst for Knoevenagel Condensation under Grindstone Method,” Indian Journal of Chemistry 58B, no. 6 (2019): 706–13.
  • K. Kantharaju, and P. B. Hiremath, “Application of Novel, Efficient and Agro-Waste Sourced Catalyst for Knoevenagel Condensation Reaction,” Indian Journal of Chemistry B 59B, no. 2 (2020): 258–70.
  • K. Kantharaju, and P. B.Hiremath, “A Green Catalytic System for the Knoevenagel Condensation Using WEPBA,” International Journal of Engineering Technology Science and Research 4, no. 9 (2017): 807–13.
  • S. P. Suresh, D. J. Swati, and M. B. Deshmukh, “Eco-Friendly and Economic Method for Knoevenagel Condensation by Employing Natural Catalyst,” Indian Journal of Chemistry B 52B, no. 8 (2013): 1172–5.
  • S. D. Bagul, J. D. Rajput, and R. S. Bendre, “Synthesis of 3-Carboxycoumarins at Room Temperature in Water Extract of Banana Peels,” Environmental Chemistry Letters 15, no. 4 (2017): 725–31. doi:10.1007/s10311-017-0645-z
  • K. Kantharaju, and S. Y. Khatavi, “Microwave Accelerated Synthesis of 2-Amino-4H Chromenes Catalyzed by WELFSA: A Green Protocol,” ChemistrySelect 3, no. 18 (2018): 5016–24. doi:10.1002/slct.201800096
  • W. Leitner, “Green Solvents-Progress in Science and Application,” Green Chemistry 11 (2009): 603.
  • K. B. Badiger, S. Y. Khatavi, P. B. Hiremath, and K. Kantharaju, “Agro-Waste Sourced Catalyst as an Eco-Friendly and Sustainable Approach for Knoevenagel Condensation Reaction,” Current Organocatalysis 9, no. 2 (2021): 179–94.
  • P. W. Chia, B. S. Lim, F. S. J. Yong, S. C. Poh, and S. Y. Kan, “An Efficient Synthesis of Bisenols in Water Extract of Waste Onion Peel Ash,” Environmental Chemistry Letters 16, no. 4 (2018): 1493–1499. doi:10.1007/s10311-018-0764-1
  • S. Shinde, S. Damate, S. Morbale, M. Patil, and S. S. Patil, “Aegle Marmelos in Heterocyclization: Greener, Highly Efficient, One-Pot Three-Component Protocol for the Synthesis of Highly Functionalized 4HBenzochromenes and 4H-Chromenes,” RSC Advances 7, no. 12 (2017): 7315–7328. doi:10.1039/C6RA28779D
  • M. Sarmah, A. Dewan, A. J. Thakur, and U. Bora, “Extraction of Base from Eichhornia Crassipes and Its Implication in Palladium-Catalyzed Suzuki Cross-Coupling Reaction,” ChemistrySelect 2, no. 24 (2017): 7091–7095. doi:10.1002/slct.201701057
  • P. B. Hiremath, and K. Kantharaju, “An Efficient and Facile Synthesis of 2-Amino-4H-Pyrans & Tetrahydrobenzo[b]Pyrans Catalysed by WEMFSA at Room Temperature,” ChemistrySelect 5, no. 6 (2020): 1896–1906. doi:10.1002/slct.201904336
  • P. B. Hiremath, and K. Kantharaju, “A Microwave Accelerated Sustainable Approach for the Synthesis of 2- Amino-4H-Chromenes Catalysed by WEPPA: A Green Strategy,” Current Microwave Chemistry 6, no. 1 (2019): 30–43. doi:10.2174/2213335606666190820091029
  • K. Laskar, P. Bhattacharjee, M. Gohain, D. Deka, and U. Bora, “Application of Bio-Based Green Heterogeneous Catalyst for the Synthesis of Arylidinemalononitriles,” Sustainable Chemistry and Pharmacy 14 (2019): 100181. doi:10.1016/j.scp.2019.100181
  • M. Gohain, K. Laskar, H. Phukon, U. Bora, D. Kalita, and D. Deka, “Towards Sustainable Biodiesel and Chemical Production: Multifunctional Use of Heterogeneous Catalyst from Littered Tectona Grandis Leaves,” Waste Management 102 (2020): 212–221. doi:10.1016/j.wasman.2019.10.049
  • M. Gohain, K. Laskar, A. K. Paul, N. Daimary, M. Maharana, I. K. Goswami, A. Hazarika, U. Bora, and D. Deka, “Carica Papaya Stem: A Source of Versatile Heterogeneous Catalyst for Biodiesel Production and C–C Bond Formation,” Renewable Energy 147, no. 1 (2020): 541–555. doi:10.1016/j.renene.2019.09.016
  • P. B. Hiremath, K. Kantharaju, and S. H. Pattanashetty, “Microwave-Assisted Synthesis of 4-Benzylidene-2- (2-Fluorophenyl) Oxazol-5(4H)-One Derivatives Catalysed by Egg Shell Powder and Evaluation of Their anti-Microbial Activity,” Conference on Drug Design and Discovery Technologies, Royal Society of Chemistry 355 (2019): 125.
  • (a) S. Y. Khatavi, and K. Kantharaju, “Facile and Greener Method Synthesis of Pyrano[2,3-d]Pyrimidine-2,4,7-Triones: Electrochemical and Biological Activity Evaluation Studies,” Journal of Molecular Structure 1250, no. 2 (2022): 131708. doi:10.1016/j.molstruc.2021.131708 (b) K. B. Badiger, and K. Kantharaju, “Knoevenagel Condensation Reaction Catalysed by Agro-Waste Extract as a Greener Solvent Catalyst,” Organic Communications 14, no. 1 (2021): 81–91. doi:10.25135/acg.oc.99.21.01.1948
  • P. S. Joshi, and D. S. Sutrave, “A Brief Study of Cyclic Voltammetry and Electrochemical Analysis,” International Journal of ChemTech Research 11, no. 3 (2018): 77–88.
  • N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S; Rountree, T. T. Eisenhart, and J. L. Dempsey, “A Practical Beginner’s Guide to Cyclic Voltammetry,” Journal of Chemical Education 95, no. 2 (2018): 197–206. doi:10.1021/acs.jchemed.7b00361
  • B. Nair, and T. Pradeep, “Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus, Strains,” Crystal Growth & Design 2, no. 4 (2002): 293–298. doi:10.1021/cg0255164
  • D. Mukesh, S. N. Pravin. Mahajan, A. V. Chate, S. K. Dabhade, and C. H. Gill, “Molecular Properties of Heterocyclic Compounds,” Journal of the Chilean Chemical Society 60, no. 2 (2015): 2966–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.