570
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Multi-Component Synthesis of Indole-Substituted Heterocycles– A Review

, &
Pages 671-706 | Received 23 Nov 2022, Accepted 18 Jan 2023, Published online: 03 Feb 2023

References

  • A. T. Balaban, D. C. Oniciu, and A. R. Katritzky, “Aromaticity as a Cornerstone of Heterocyclic Chemistry,” Chemical Reviews 104, no. 5 (2004): 2777–812. doi:10.1021/cr0306790
  • H. H. Jung, and P. E. Floreancig, “Gold-Catalyzed Synthesis of Oxygen-and Nitrogen-Containing Heterocycles from Alkynyl Ethers: Application to the Total Synthesis of Andrachcinidine,” The Journal of Organic Chemistry 72, no. 19 (2007): 7359–66. doi:10.1021/jo071225w
  • Marcos Martins, Wilson Cunico, Claudio Pereira, Adilson Sinhorin, Alex Flores, Helio Bonacorso, and Nilo Zanatta, “4-Alkoxy-1,1,1-Trichloro-3-Alken-2-Ones: Preparation and Applications in Heterocyclic Synthesis,” Current Organic Synthesis 1, no. 4 (2004): 391–403. doi:10.2174/1570179043366611
  • P. Majumdar, A. Pati, M. Patra, R. K. Behera, and A. K. Behera, “Acid Hydrazides, Potent Reagents for Synthesis of Oxygen-, Nitrogen-, and/or Sulfur-Containing Heterocyclic Rings,” Chemical reviews 114, no. 5 (2014): 2942–77. doi:10.1021/cr300122t
  • A. Dömling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical reviews 106, no. 1 (2006): 17–89. doi:10.1021/cr0505728
  • A. Y. El-Khateeb, S. E. Hamed, and K. M. Elattar, “Recent advancements in the Multicomponent Synthesis of Heterocycles Integrated With a Pyrano [2, 3-d] Pyrimidine Core,” RSC Advances 12, no. 19 (2022): 11808–42. doi:10.1039/d2ra00927g
  • Elattar, K.M., El-Khateeb, A.Y. and Hamed, S.E., “Insights Into the Recent Progress in the Medicinal Chemistry of Pyranopyrimidine Analogs,” RSC Medicinal Chemistry 13 (2022): 522–67. doi:10.1039/D2MD00076H
  • R. Maggi, R. Ballini, G. Sartori, and R. Sartorio, “Basic Alumina Catalyzed Synthesis of Substituted 2-Amino-2-Chromenes Via Three-Component Reaction,” Tetrahedron Letters 45, no. 11 (2004): 2297–9. doi:10.1016/j.tetlet.2004.01.115
  • M. Mamaghani, and R. Hossein Nia, “Recent Developments in the MCRs Synthesis of Pyridopyrimidines and Spiro-Pyridopyrimidines,” Journal of Heterocyclic Chemistry 54, no. 3 (2017): 1700–22. doi:10.1002/jhet.2783
  • M. Mamaghani, R. Hossein Nia, F. Tavakoli, and P. Jahanshahi, “Recent Advances in the MCRs Synthesis of Chromenes: A Review,” Current Organic Chemistry 22, no. 17 (2018): 1704–69. doi:10.2174/1385272822666180530104302
  • M. Mamaghani, and R. Hossein Nia, “A Review on the Recent Multicomponent Synthesis of Pyranopyrazoles,” Polycyclic Aromatic Compounds 41, no. 2 (2021): 223–91. doi:10.1080/10406638.2019.1584576
  • R. Hossein Nia, M. Mamaghani, and F. Tavakoli, “Ag-Catalyzed Multicomponent Synthesis of Heterocyclic Compounds: A Review,” Current Organic Synthesis 19, no. 4 (2022): 484–506. doi:10.2174/1570179418666210910105744
  • D. N. Turner, L. Edwards, A. Kornienko, L. V. Frolova, and S. Rogelj, “Synergistic Action of Substituted Indole Derivatives and Clinically Used Antibiotics Against Drug-Resistant Bacteria,” Future Microbiology 15, no. 8 (2020): 579–90. doi:10.2217/fmb-2019-0094
  • A. P. N. Kumar, “Synthesis, Characterization and Evaluation of 3- Acetylindole Derivatives as Potential Antifungal Agents,” The Journal of Pharmaceutical Innovation 9 (2020): 468–74.
  • M. Sayed, O. Younis, R. Hassanien, M. Ahmed, A. A. K. Mohammed, A. M. Kamal, and O. Tsutsumi, “Design and Synthesis of Novel Indole Derivatives with Aggregation Induced Emission and Antimicrobial Activity,” Journal of Photochemistry and Photobiology A: Chemistry 383 (2019): 111969. doi:10.1016/j.jphotochem.2019.111969
  • Jufrizal Syahri, Nurul Hidayah, Rahmiwati Hilma, Beta Achromi Nurohmah, and Emmy Yuanita, “Design of New 2,4-Substituted Furo [3,2-b]Indole Derivatives as Anticancer Compounds Using Quantitative Structure-Activity Relationship (QSAR) and Molecular Docking,” Molekul 15, no. 1 (2020): 9–17. doi:10.20884/1.jm.2020.15.1.582
  • Z. Y. Mo, X. Y. Wang, Y. Z. Zhang, L. Yang, H. T. Tang, and Y. M. Pan, “Electrochemically Enabled Functionalization of Indoles or Anilines for the Synthesis of Hexafluoroisopropoxy Indole and Aniline Derivatives,” Organic & Biomolecular Chemistry 18, no. 20 (2020): 3832–7. doi:10.1039/d0ob00157k
  • C. Wei, L. Zhao, Z. Sun, D. Hu, and B. Song, “Discovery of Novel Indole Derivatives Containing Dithioacetal as Potential Antiviral Agents for Plants,” Pesticide Biochemistry and Physiology 166 (2020): 104568. doi:10.1016/j.pestbp.2020.104568
  • C. G. Yang, H. Huang, and B. Jiang, “Progress in Studies of Novel Marine Bis(Indole) Alkaloids,” Current Organic Chemistry 8, no. 17 (2004): 1691–720. doi:10.2174/1385272043369656
  • N. K. Garg, R. Sarpong, and B. M. Stoltz, “The First Total Synthesis of Dragmacidin D,” Journal of the American Chemical Society 124, no. 44 (2002): 13179–84. doi:10.1021/ja027822b
  • N. Salem El-Sayed, A. Nasrolahi Shirazi, M. Goda El-Meligy, A. Kamel El-Ziaty, D. Rowley, J. Sun, Z. Adeeb Nagib, and K. Parang, “Synthesis of 4-Aryl-6-Indolylpyridine-3-Carbonitriles and Evaluation of Their Antiproliferative Activity,” Tetrahedron letters 55, no. 6 (2014): 1154–8. doi:10.1016/j.tetlet.2013.12.081
  • A. A. Fadda, A. El-Mekabaty, I. A. Mousa, and K. M. Elattar, “Cemistry of 3-(1H-Indol-3-yl)-3-Oxopropanenitrile,” Synthetic Communications 44, no. 11 (2014): 1579–99. doi:10.1080/00397911.2013.861915
  • Roghayeh Hossein Nia, Manouchehr Mamaghani, Khalil Tabatabaeian, Farhad Shirini, and Mehdi Rassa, “An Expeditious Regioselective Synthesis of Novel Bioactive Indole-Substituted Chromene Derivatives via One-Pot Three-Component Reaction,” Bioorganic & Medicinal Chemistry Letters 22, no. 18 (2012): 5956–60. doi:10.1016/j.bmcl.2012.07.059
  • S. Fatma, D. Singh, P. Mishra, P. K. Singh, P. Ankit, M. Singh, and J. Singh, “Nucleophilic Heterocyclic Carbene Promoted One Pot Multicomponent Synthesis of New 6-(1H-Indol-3-yl)-2-Oxo-4-Aryl-1,2,3,4 Tetrahydropyrimidine-5-Carbonitrile: An Eco-Compatible Approach with PEG as Biodegradable Medium,” RSC Advances 3, no. 44 (2013): 22527–31. doi:10.1039/C3RA43606C
  • L. J. Geng, G. L. Feng, H. L. Zhang, and Y. M. Zhang, “Synthesis of 3-Cyano-2-(1H-Indol-3-yl)-6-(9-Butylcarbazol-3-yl)Pyridine Derivatives by a Multicomponent Reaction under Microwave Irradiation,” Journal of Chemical Research 37, no. 8 (2013): 503–5. doi:10.3184/174751913X13736278296459
  • Shahin Fatma, Divya Singh, Priya Mishra, Pravin K. Singh, Preyas Ankit, and J. Singh, “Novel, Versatile and Eco-Compatible Preparation of New 6-(1H-Indol-3-yl)-2-Oxo-4-Aryl-1,2,3,4-Tetrahydropyrimidine-5-Carbonitriles in Water,” Journal of Chemical Research 37, no. 10 (2013): 642–4. doi:10.3184/174751913X13796840700061
  • S. Fatma, D. Singh, P. Ankit, P. Mishra, M. Singh, and J. Singh, “An Eco-Compatible Multicomponent Strategy for the Synthesis of New 2-Amino-6-(1H-Indol-3-yl)-4-Arylpyridine-3,5-Dicarbonitriles in Aqueous Micellar Medium Promoted by Thiamine-Hydrochloride,” Tetrahedron Letters 55, no. 14 (2014): 2201–7. doi:10.1016/j.tetlet.2014.02.050
  • L. Y. Zeng, and C. Cai, “Four-Component Synthesis of Star-Shaped 2-(Indol-3-yl)Pyridine Derivatives in One-Pot” Synth,” Synthetic Communications 43, no. 5 (2013): 705–18. doi:10.1080/00397911.2011.607933
  • J. Wang, H. Liu, R. Wen, Z. Zhu, J. Li, and S. Zhu, “L-Proline Catalyzed Facile and Efficient Synthesis of Functionalized Indol-3-yl-Pyran Derivatives by Multi-Component Reactions,” Research on Chemical Intermediates 43, no. 8 (2017): 4575–83. doi:10.1007/s11164-017-2897-4
  • S. K. Krishnammagari, S. G. Balwe, J. S. Kim, K. T. Lim, and Y. T. Jeong, “A One-Pot Four-Component Domino Protocol for the Synthesis of Indole and Coumarin Containing Pyridine-3-Carbonitrile Derivatives,” Monatshefte für Chemie - Chemical Monthly 150, no. 4 (2019): 691–702. doi:10.1007/s00706-019-2365-5
  • J. Wang, S. Zhu, Y. Liu, X. Zhu, K. Shi, X. Li, and S. Zhu, “Microwave-Assisted Multicomponent Reaction: An Efficient Synthesis of Indolyl Substituted and Spiroxindole Pyrido[2,3-d]Pyrimidine Derivatives,” Synthetic Communications 52, no. 1 (2022): 85–95. doi:10.1080/00397911.2021.2001019
  • M. H. Abdollahi-Basir, F. Shirini, H. Tajik, and M. A. Ghasemzadeh, “A Three-Component Process for the Synthesis of Tetrazolo[1,5-a]Pyrimidine-6-Carbonitrile Derivaties Using Amino-Functionalized UiO-66(Zr) Metal Organic Framwork (MOF),” Polycyclic Aromatic Compounds 42, no. 8 (2022): 5719–30. doi:10.1080/10406638.2021.1955716
  • P. Song, L. Zhao, and S. Ji, “Facile Synthesis of 4-H-Pyran Derivatives Bearing Indole Skeleton via [3+3] Cyclization of 3-Indolyl-3-Oxopropanenitriles with Dialkyl Acetylenedicarboxylates and Isocyanides,” Chinese Journal of Chemistry 32, no. 5 (2014): 381–6. doi:10.1002/cjoc.201400155
  • R. Wen, L. Cen, Y. Ma, J. Wang, and S. Zhu, “One-Pot, Five-Component 1,3-Dipolar Cycloaddition: A Facile Synthesis of Spiropyrrolidine and Spiropyrrolizidine Derivatives,” Tetrahedron Letters 59, no. 17 (2018): 1686–90. doi:10.1016/j.tetlet.2018.03.059
  • S. K. Krishnammagari, B. G. Cho, J. T. Kim, and Y. T. Jeong, “An Efficient and Solvent-Free One-Pot Multi-Component Synthesis of Novel Highly Substituted Pyrido[2,3,: 3,4]Pyrazolo[1,5-a]Pyrimidine-3-Carbonitrile Derivatives Catalyzed by Tetramethylguanidine,” Synthetic Communications 48, no. 20 (2018): 2663–74. doi:10.1080/00397911.2018.1514053
  • M. A. A. Radwan, F. M. Alminderej, H. E. M. Tolan, and H. M. Awad, “One-Pot Three-Component Synthesis of New Triazolopyrimidine Derivatives Bearing Indole Moiety as Antiproliferative Agents,” Journal of Applied Pharmaceutical Science 10 (2020): 012–22. doi:10.7324/JAPS.2020.10902
  • M. Mamaghani, M. Sheykhan, M. Sadeghpour, and F. Tavakoli, “An Expeditious One-Pot Synthesis of Novel Bioactive Indole-Substituted Pyrido[2,3-d]Pyrimidines Using Fe3O4@SiO2-Supported Ionic Liquid Nanocatalyst,” Monatshefte für Chemie - Chemical Monthly 149, no. 8 (2018): 1437–46. doi:10.1007/s00706-018-2166-2
  • M. A. A. Radwan, F. M. Alminderej, and H. M. Awad, “One-Pot Multicomponent Synthesis and Cytotoxic Evaluation of Novel 7-Substituted-5-(1H-Indol-3-yl)Tetrazolo[1,5-a] Pyrimidine-6-Carbonitrile,” Molecules 25, no. 2 (2020): 255–67. doi:10.3390/molecules25020255
  • S. C. Zhan, R. J. Fang, J. Sun, and C. G. Yan, “Multicomponent Reaction for Diastereoselective Synthesis of Spiro[Carbazole-3,4′-Pyrazoles] and Spiro[Carbazole-3,4′-Thiazoles,” The Journal of Organic Chemistry 86, no. 13 (2021): 8726–41. doi:10.1021/acs.joc.1c00538
  • T. B. Aychiluhim, and V. R. Rao, “Multi-Component Synthesis of 3-{3-[2-(1H-Indol-3-yl) Ethyl]}-2,3-Dihydro-2-(Aryliminothiazol-4-yl)-2H-Chromen-2-One,” Organic Preparations and Procedures International 46, no. 1 (2014): 66–75. doi:10.1080/00304948.2014.866469
  • M. Ghandi, S. Rahimi, and N. Zarezadeh, “Synthesis of Novel Tetrazole Containing Quinoline and 2,3,4,9- Tetrahydro-1H-β-Carboline Derivatives,” Journal of Heterocyclic Chemistry 54, no. 1 (2017): 102–9. doi:10.1002/jhet.2546
  • Y. H. Jiang, and C. G. Yan, “Three-Component Reaction for the Convenient Synthesis of Functionalized 3-{1-[2-(1H-Indol-3-yl)Ethyl]-4,5,6,7-Tetrahydro-1H-Indol-3-yl}Indolin-2-Ones,” Synthesis 48, no. 18 (2016): 3057–64. doi:10.1055/s-0035-1561457
  • X. Tang, S. Zhu, Y. Ma, R. Wen, L. Cen, P. Gong, and J. Wang, “A Simple and Efficient Synthesis of Highly Substituted Indeno[1,2-b]Pyrrole and Acenaphtho[1,2-b]Pyrrole Derivatives by Tandem Three-Component Reactions,” Molecules 23, no. 11 (2018): 3031–41. doi:10.3390/molecules23113031
  • T. R. Makhanya, R. M. Gengan, and K. Kasumbwe, “Synthesis of Fused Indolo-Pyrazoles and Their Antimicrobial and Insecticidal Activities against Anopheles Arabiensis Mosquito,” ChemistrySelect 5, no. 9 (2020): 2756–62. doi:10.1002/slct.201904620
  • A. Khalafi-Nezhad, M. Nourisefat, and F. Panahi, “Taprerimethylsilyl Iodide as a Multifunctional Agent in the One-Pot Synthesis of 9-(1H-Indol-3-yl)Xanthen-4-(9H)-Ones from O-Methyl Protected Salicylaldehydes, Indoles, and β-Dicarbonyl Compounds,” Synth 46 (2014): 2071–8. doi:10.1055/s-0033-1338633.
  • S. S. Reddy, A. Varyambath, R. M. N. Kalla, W. Song, and I. Kim, “Synthesis of 3-Indole Substituted Sulfonyl 4H-Chromenes Using Recyclable Cyclometrix Polyphosphazene-Base Catalysts,” ChemistrySelect 6, no. 9 (2021): 2335–42. doi:10.1002/slct.202100342
  • X. B. Chen, S. L. Xiong, Z. X. Xie, Y. C. Wang, and W. Liu, “Three-Component One-Pot Synthesis of Highly Functionalized Bis-Indole Derivatives,” ACS Omega 4, no. 7 (2019): 11832–7. doi:10.1021/acsomega.9b01159
  • L. P. Fu, Q. Q. Shi, Y. Shi, B. Jiang, and S. J. Tu, “Three-Component Domino Reactions for Regioselective Formation of Bis-Indole Derivatives,” ACS combinatorial Science 15, no. 2 (2013): 135–40. doi:10.1021/co3001428
  • S. D. Dindulkar, D. Jeong, E. Cho, D. Kim, and S. Jung, “Microbial Cyclosophoraose as a Catalyst for the Synthesis of Diversified Indolyl-4H-Chromenes via One-Pot Three-Component Reactions in Water,” Green Chemistry 18, no. 12 (2016): 3620–7. doi:10.1039/C6GC00137H
  • Daggupati V. Ramana, B. Vinayak, V. Dileepkumar, U. S. N. Murty, L. Raju Chowhan, and M. Chandrasekharam, “Hydrophobically Directed, Catalyst-Free, Multi-Component Synthesis of Functionalized 3,4-Dihydroquinazolin-2(1H)-Ones,” RSC Advances 6, no. 26 (2016): 21789–94. doi:10.1039/C6RA00381H
  • A. Thakur, P. L. Reddy, M. Tripathi, and D. S. Rawat, “Facile Construction of 3-Indolochromenes and 3-Indoloxanthenes via EDDF Catalyzed One-Pot Three-Component Reactions,” New Journal of Chemistry 39, no. 8 (2015): 6253–60. doi:10.1039/C5NJ01288K
  • F. Chen, M. Lei, and L. Hu, “Synthesis of 2-Substituted-3-(1H-Indol-3-yl)-Isoindolin-1-One Derivatives in Water Under Catalyst-Free Conditions,” Green Chemistry 16, no. 5 (2014): 2472–9. doi:10.1039/c3gc41882k
  • K. Sonogashira, “Development of Pd–Cu Catalyzed Cross-Coupling of Terminal Acetylenes with sp2-Carbon Halides,” Journal of Organometallic Chemistry 653, no. 1–2 (2002): 46–9. doi:10.1016/S0022-328X(02)01158-0
  • S. Sarkar, R. Pal, and A. K. Sen, “Efficient synthesis of 3-Benzyl-3-(Indol-3-yl)-2-Phenyl-2,3-Dihydroisoindolinones Derivatives via a Simple and Convenient MCR in Aqueous Micellar System,” Tetrahedron Letters. 54, no. 32 (2013): 4273–6. doi:10.1016/j.tetlet.2013.05.151
  • X. B. Chen, X. Y. Wang, D. D. Zhu, S. J. Yan, and J. Lin, “Three-Component Domino Reaction Synthesis of Highly Functionalized Bicyclic Pyrrole Derivatives,” Tetrahedron Letters. 70, no. 5 (2014): 1047–54. doi:10.1016/j.tet.2013.12.062
  • W. Zhang, Z. Zhao, Z. Wang, C. Guo, C. Wang, R. Zhao, and L. Wang, “Lipase-Catalyzed Synthesis of Indolyl-4H-Chromenes Via a Multicomponent Reaction in Ionic Liquid,” Journal of Catalysis. 7, no. 6 (2017): 185–6. doi:10.3390/catal7060185
  • Mo Zhang, Meng‐Nan Chen, and Zhan‐Hui Zhang, “Visible Light-Initiated Catalyst-Free One-Pot, Multicomponent Construction of 5-Substituted Indole Chromeno[2,3-b]Pyridines,” Advanced Synthesis & Catalysis 361, no. 22 (2019): 5182–90. doi:10.1002/adsc.201900994
  • S. Samala, M. Saifuddin, A. K. Mandadapu, and B. Kundu, “Three-Component Tandem-Intramolecular Hydroamination Reactions in One-Pot Involving Indoles, 2-Aminobenzyl Alcohols, and 2-Alkynylbenzaldehydes: Consecutive 7-Endo-Trig and Electrophilic 6-Endo-Dig Cyclizations,” European Journal of Organic Chemistry 2013, no. 18 (2013): 3797–806. doi:10.1002/ejoc.201300100
  • R. Baharfar, S. Peiman, and B. Maleki, “Fe3O4@SiO2@D-NHCS-Tr as an Efficient and Reusable Catalyst for the Synthesis of Indol-3-yl-4H-Chromene via a Multi-Component Reaction Under Solvent-Free Condition,” Journal of Heterocyclic Chemistry 58, no. 6 (2021): 1302–10. doi:10.1002/jhet.4258
  • M. Taheri, R. Mohebat, and M. H. Moslemin, “Synthesis of Benzo[a]Furo[2,3-c]Phenazine Derivatives Through an Efficient, Rapid and via Microwave Irradiation Under Solvent-Free Conditions Catalyzed by H3PW12O40@Fe3O4-ZnO for High-Performance Removal of Methylene Blue,” Artificial cells, Nanomedicine, and Biotechnology 49, no. 1 (2021): 250–60. doi:10.1080/21691401.2021.1894163
  • X. Yang, and L. Wu, “Synthesis of Novel 1,4-Naphthoquinones Possessing Indole Scaffolds Using in(OTf)3 in Solvent-Free Conditions,” Molecules 23, no. 8 (2018): 1954–62. doi:10.3390/molecules23081954
  • S. Damavandi, and R. Sandaroos, “Novel Functionalized Pyridoindole Derivatives Catalyzed by Iron (III) Triflate,” Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 45, no. 11 (2015): 1660–3. doi:10.1080/15533174.2015.1031009
  • S. Ahadi, A. Bazgir, and R. Ghahremanzadeh, “α-Carboline Derivatives: A Novel and One-Pot, Three-Component Synthesis of Indolopyrazolopyridines,” The Journal of Organic Chemistry 3 (2012): 1–10.
  • P. A. Muthu, K. Murugan, S. Meenakshisundaram, and S. Ponnusamy, “Keggin-Type Heteropoly-11-Molybdo-1-Vanadophosphoric Acid Supported Montmorillonite K-10 Clay-Catalysed One-Pot Multi-Component Synthesis of Chromeno[2,3-b]Indoles,” Research on Chemical Intermediates 47, no. 9 (2021): 3583–95. doi:10.1007/s11164-021-04483-x
  • L. Yan, X. Wu, Y. Zhang, M. Sankaran, L. Xu, L. Ling, Y. Wang, Y. Jiang, J. Ma, and L. Kong, “An Expedient Multi-Component Synthesis of Pyridinyl-Spirooxindoles and Their Effect on Proliferation of Lung Cancer A549 Cells,” Journal of Heterocyclic Chemistry 57, no. 11 (2020): 4044–56. doi:10.1002/jhet.4114
  • S. Majumder, and P. J. Bhuyan, “One-Pot Multi-Component Synthesis of Pyrimido[4,5-b]Indoles in Solvent-Free Condition,” Journal of the Iranian Chemical Society 11, no. 4 (2014): 993–6. doi:10.1007/s13738-013-0366-6
  • R. Jiang, Y. Wang, and Z. Zhou, “Facile Synthesis of Pyrido[3,2-b]Indole via Multicomponent Reaction Strategy Under Aerobic Conditions,” Tetrahedron Letters. 72, no. 41 (2016): 6444–9. doi:10.1016/j.tet.2016.08.050
  • H. B. Ghodasara, P. M. Singala, and V. H. Shah, “A Rapid, Convient and Diversified-Multicomponent Synthesis and Characterization of Pyrano[2,3-b]Indoles,” International Letters of Chemistry, Physics and Astronomy 26 (2014): 69–76. doi:10.18052/www.scipress.com/ILCPA.26.69
  • G. A. Khan, J. A. War, A. Kumar, I. A. Sheikh, A. Saxena, and R. Das, “A Facile Synthesis of Novel Indole Derivatives as Potential Antitubercular Agents,” Journal of Taibah University for Science 11, no. 6 (2017): 910–21. doi:10.1016/j.jtusci.2016.09.002
  • Q. D. Wang, J. M. Yang, B. Zhou, D. Fang, J. Ren, and B. B. Zeng, “Highly Regioselective Debus-Radziszewski Reaction of C-3 Indole-Substituted 1,2-Diketones: Facile Synthesis of 3-(1,2,4-Triaryl-1H-Imidazol-5-yl)-Indoles,” ChemistrySelect 2, no. 17 (2017): 4807–10. doi:10.1002/slct.201700612
  • K. C. Majumdar, S. Ponra, and T. Ghosh, “Green Approach to Highly Functionalized Thiopyrano Derivatives via Domino Multi-Component Reaction in Water,” RSC Advances. 2, no. 3 (2012): 1144–52. doi:10.1039/C1RA00655J
  • L. Zhang, F. Zhao, M. Zheng, Y. Zhai, and H. Liu, “Rapid and Selective Access to Three Distinct Sets of Indole-Based Heterocycles from a Single Set of Ugi-Adducts Under Microwave Heating,” Chemical Communications (Cambridge, England) 49, no. 28 (2013): 2894–6. doi:10.1039/C3CC00111C
  • S. Naureen, F. Chaudhry, M. A. Munawar, M. Ashraf, S. Hamid, and M. A. Khan, “Biological Evaluation of New Imidazole Derivatives Tethered with Indole Moiety as Potent α-Glucosidase Inhibitors,” Bioorganic Chemistry 76 (2018): 365–9. doi:10.1016/j.bioorg.2017.12.014
  • S. Naureen, S. Noreen, A. Nazeer, M. Ashraf, U. Alam, M. A. Munawar, and M. A. Khan, “Triarylimidazoles-Synthesis of 3-(4,5-Diaryl-1H-Imidazol-2-yl)-2-Phenyl-1H-Indole Derivatives as Potent a-Glucosidase Inhibitors,” Medicinal Chemistry Research 24, no. 4 (2015): 1586–95. doi:10.1007/s00044-014-1239-y
  • P. Boda, J. K. Ega, and K. Siddoju, “Au-TiO2 Nanospheres Catalyzed One-pot-MCR Synthesis, Characterization and Antiproliferation Activity of Indolyl-Imidazolopyridines Carboxylic Acid Hybrid Rasayan,” Rasayan Journal of Chemistry 15, no. 02 (2022): 762–6. doi:10.31788/RJC.2022.1526832
  • C. S. Yadav, R. Suhasini, V. Thiagarajan, D. Velmurugan, and S. Kannadasan, “Environmentally Benign Neat Mechanochemical Synthesis and Photophysical Studies of Indolylquinolines Via Silica Gel Catalyzed Metal Free A3-Coupling,” ChemistrySelect 3, no. 44 (2018): 12576–81. doi:10.1002/slct.201802941
  • S. Hasthavaram, N. Amarnath. Reddy, K. Kamala, R. Dayam, and K. V. Saritha, “One-Pot Synthesis of Phthalazinyl-2-Carbonitrile Indole Derivatives via [Bmim][OH] as Ionic Liquid and Their anti-Cancer Evaluation and Molecular Modeling Studies,” European Chemical Bulletin 9, no. 7 (2020): 154–9. doi:10.17628/ecb.2020.9.154-159
  • A. Dagar, S. Biswas, and S. Samanta, “Catalyst-Free, an Efficient Green MCR Protocol for the Access to Functionalized γ-Carbolines in Water,” RSC Advances 5, no. 65 (2015): 52497–507. doi:10.1039/C5RA08422A
  • A. Silvani, G. Lesma, S. Crippa, and V. Vece, “Multicomponent Access to Novel Dihydroimidazo[1',5':1,2]Pyrido[3,4-b]Indol-2-Ium Salts and Indoles by Means of Ugi/Bischler–Napieralski/Heterocyclization Two Step Strategy,” Tetrahedron Letters. 70, no. 26 (2014): 3994–4001. doi:10.1016/j.tet.2014.04.081

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.