85
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A Facile Access to Metal-Free Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones/Thiones using Acridine Yellow G as a Photo-Induced Electron Transfer Photocatalyst

ORCID Icon
Pages 495-506 | Received 26 Sep 2022, Accepted 28 Jan 2023, Published online: 10 Feb 2023

References

  • R. I. Patel, A. Sharma, S. Sharma, and A. Sharma, “Visible Light-Mediated Applications of Methylene Blue in Organic Synthesis,” Organic Chemistry Frontiers 8 (2021): 1694–718. doi:10.1039/D0QO01182G
  • F. Politano and G. Oksdath-Mansilla, “Light on the Horizon: Current Research and Future Perspectives in Flow Photochemistry,” Organic Process Research & Development 22 (2018): 1045–62. doi:10.1021/acs.oprd.8b00213
  • R. H. Verschueren and W. M. de Borggraeve, “Electrochemistry and Photoredox Catalysis: A Comparative Evaluation in Organic Synthesis,” Molecules 24 (2019): 2122–60. doi:10.3390/molecules24112122
  • G. J. Tangelder, C. J. Janssens, D. W. Slaaf, M. G. Oude Egbrink, and R. S. Reneman, “In Vivo Differentiation of Leukocytes Rolling in Mesenteric Postcapillary Venules,” American Journal of Physics 268 (1995): 909–15. doi:10.1152/ajpheart.1995.268.2.H909
  • M. Teuber, M. Rögner, and S. Berry, “Fluorescent Probes for Non-invasive Bioenergetics Studies of Whole Cyanobacterial Cells,” Biochimica et Biophysica Acta 1506, no. 1 (2001): 31–46. doi:10.1016/S0005-2728(01)00178-5
  • W. S. Vincent and E. S. Goldstein, “Rapid Preparation of Covalently Closed Circular DNA by Acridine Yellow Affinity Chromatography,” Analytical Biochemistry 110, no. 1 (1981): 123–7. doi:10.1016/0003-2697(81)90121-4
  • I. Yu Goryacheva, G. V. Mel’nikov, and S. N. Shtykov, “Acridine Dyes in the Triplet State as Reagents for the Selective Luminescence Determination of Polycyclic Aromatic Hydrocarbons,” Journal of Analytical Chemistry 55, no. 9 (2000): 874–8. doi:10.1007/BF02757853
  • T. Pérez-Ruíz, C. Martínez-Lozano, V. Tomás, and J. Fenoll, “Spectrofluorimetric Determination of Formaldehyde by a Flow-Injection Method Based on Its Catalytic Effect on the Acridine Yellow-Bromate Reaction,” Analytical and Bioanalytical Chemistry 375, no. 5 (2003): 661–5. doi:10.1007/s00216-003-1763-y
  • T. Pérez-Ruiz, C. Martínez-Lozano, A. Sanz, and M. T. San Miguel, “Flow Extraction Spectrophotometric Method for the Determination of Diclofenac Sodium in Pharmaceutical Preparations,” Journal of Pharmaceutical and Biomedical Analysis 16, no. 2 (1997): 249–54. doi:10.1016/S0731-7085(97)00028-9
  • A. Arques, A. M. Amat, L. Santos-Juanes, R. F. Vercher, M. L. Marin, and M. A. Miranda, “Abatement of Methidathion and Carbaryl from Aqueous Solutions Using Organic Photocatalysts,” Catalysis Today 144, no. 1–2 (2009): 106–11. doi:10.1016/j.cattod.2008.11.013
  • A. M. Amat, A. Arques, F. Galindo, M. A. Miranda, L. Santos-Juanes, R. F. Vercher, and R. Vicente, “Acridine Yellow as Solar Photocatalyst for Enhancing Biodegradability and Eliminating Ferulic Acid as Model Pollutant,” Applied Catalysis B: Environmental 73, no. 3–4 (2007): 220–6. doi:10.1016/j.apcatb.2006.12.003
  • F. Takemura, “Dye-Sensitized Photopolymerization of Vinyl Monomers. II. Photobleaching of Acridine Yellow in Some Vinyl Monomers,” Bulletin of the Chemical Society of Japan 35, no. 7 (1962): 1078–86. doi:10.1246/bcsj.35.1078
  • P. Saint-Cricq, T. Pigot, S. Blanc, and S. Lacombe, “Selective Oxidation with Nanoporous Silica Supported Sensitizers: An Environment Friendly Process Using Air and Visible Light,” Journal of Hazardous Materials 211–212 (2012): 266–74. doi:10.1016/j.jhazmat.2011.09.066
  • R. B. Webb, B. S. Hass, and H. E. Kubitschek, “Photodynamic Effects of Dyes on Bacteria. II. Genetic Effects of Broad-Spectrum Visible Light in the Presence of Acridine Dyes and Methylene Blue in Chemostat Cultures of Escherichia coli,” Mutation Research 59, no. 1 (1979): 1–13. doi:10.1016/0027-5107(79)90190-8
  • L. O. Kostjukova, S. V. Leontieva, and V. V. Kostjukov, “The Vibronic Absorption Spectra and Electronic States of Acridine Yellow in Aqueous Solution,” Journal of Molecular Liquids 326 (2021): 115312. doi:10.1016/j.molliq.2021.115312
  • F. Mohamadpour, “Visible Light Irradiation Promoted Catalyst-Free and Solvent-Free Synthesis of Pyrano[2,3-d]Pyrimidine Scaffolds at Room Temperature,” Journal of Saudi Chemical Society 24, no. 8 (2020): 636–41. doi:10.1016/j.jscs.2020.06.006
  • F. Mohamadpour, “Catalyst-Free, Visible Light Irradiation Promoted Synthesis of Spiroacenaphthylenes and 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Diones in Aqueous Ethyl Lactate,” Journal of Photochemistry and Photobiology A: Chemistry 407 (2021): 113041. doi:10.1016/j.jphotochem.2020.113041
  • F. Mohamadpour, “Catalyst-Free and Solvent-Free Visible Light Irradiation-Assisted Knoevenagel–Michael Cyclocondensation of Aryl Aldehydes, Malononitrile, and Resorcinol at Room Temperature, Monatshefte Für Chemie,” Monatshefte Für Chemie-Chemical Monthly 152, no. 5 (2021): 507–12. doi:10.1007/s00706-021-02763-1
  • K. Sujatha, P. Shanmugam, P. T. Perumal, D. Muralidharan, and M. Rajendran, “Synthesis and Cardiac Effects of 3,4-Dihydropyrimidin-2(1H)-One-5carboxylates,” Bioorganic & Medicinal Chemistry Letters 16, no. 18 (2006): 4893–7. doi:10.1016/j.bmcl.2006.06.059
  • S. Wisen, J. Androsavich, C. G. Evans, L. Chang, and J. E. Gestwicki, “Chemical Modulators of Heat Shock Protein 70 (Hsp70) by Sequential, Microwave-Accelerated Reactions on Solid Phase,” Bioorganic & Medicinal Chemistry Letters 18, no. 1 (2008): 60–5. doi:10.1016/j.bmcl.2007.11.027
  • L. Heys, C. G. Moore, and P. Murphy, “The Guanidine Metabolites of Ptilocaulis spiculifer and Related Compounds; Isolation and Synthesis,” Chemical Society Reviews 29, no. 1 (2000): 57–67. doi:10.1039/a903712h
  • Mithun Ashok, Bantwal Shivarama Holla, and Nalilu Suchetha Kumari, “Convenient One Pot Synthesis of Some Novel Derivatives of Thiazolo [2,3-b] Dihydropyrimidinone Possessing 4-Methylthiophenyl Moiety and Evaluation of Their Antibacterial and Antifungal Activities,” European Journal of Medicinal Chemistry 42, no. 3 (2007): 380–5. doi:10.1016/j.ejmech.2006.09.003
  • E. W. Hurst and R. Hull, “Two New Synthetic Substances Active against Viruses of the Psittacosis-Lymphogranuloma-Trachoma Group,” Journal of Medicinal and Pharmaceutical Chemistry 3, no. 2 (1961): 215–29. doi:10.1021/jm50015a002
  • A. M. Magerramov, M. M. Kurbanova, R. T. Abdinbekova, I. A. Rzaeva, V. M. Farzaliev, and M. A. Allakhverdiev, “Synthesis and Antioxidative Properties of Some 3,4-Dihydropyrimidin-2(1H)Ones (-Thiones),” Russian Journal of Applied Chemistry 79, no. 5 (2006): 787–90. doi:10.1134/S107042720605017X
  • S. S. Bahekar and D. B. Shinde, “Synthesis and anti-Inflammatory Activity of Some [4,6-(4-Substituted Aryl)-2-Thioxo-1,2,3,4-Tetrahydro-Pyrimidin-5-yl]-Acetic Acid Derivatives,” Bioorganic & Medicinal Chemistry Letters 14, no. 7 (2004): 1733–6. doi:10.1016/j.bmcl.2004.01.039
  • F. Mohamadpour, “Visible-Light-Induced Radical Condensation Cyclization to Synthesize 3,4-Dihydropyrimidin-2-(1H)-Ones/Thiones Using Photoexcited Na2 Eosin Y as a Direct Hydrogen Atom Transfer (HAT) Catalyst,” ACS Omega 7, no. 10 (2022): 8429–36. doi:10.1021/acsomega.1c05808
  • J. N. Liu, J. Li, L. Zhang, L. P. Song, M. Zhang, W. J. Cao, S. Z. Zhu, H. G. Deng, and M. Shao, “Facile One-Pot Three-Component Reaction to Synthesize Trifluoromethylated Cyclopenta[b]Pyran Derivatives and Their Further Transformation,” Tetrahedron Letters 53, no. 19 (2012): 2469–72. doi:10.1016/j.tetlet.2012.03.023
  • A. Kumar and R. A. Maurya, “An Efficient Bakers’ Yeast Catalyzed Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones,” Tetrahedron Letters 48, no. 26 (2007): 4569–71. doi:10.1016/j.tetlet.2007.04.130
  • J. Lal, M. Sharma, S. Gupta, P. Parashar, P. Sahu, and D. D. Agarwal, “Hydrotalcite: A Novel and Reusable Solid Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidinones and Mechanistic Study under Solvent Free Conditions,” Journal of Molecular Catalysis A: Chemical 352 (2012): 31–7. doi:10.1016/j.molcata.2011.09.009
  • M. Litvic, I. Vecani, Z. M. Ladisic, M. Lovric, V. Voncovic, and M. Filipan-Litvic, “First Application of Hexaaquaaluminium(III)Tetrafluoroborate as a Mild, Recyclable, Non-Hygroscopic Acid Catalyst in Organic Synthesis: A Simple and Efficient Protocol for the Multigram Scale Synthesis of 3,4-Dihydropyrimidinones by Biginelli Reaction,” Tetrahedron 66 (2010): 3463–71. doi:10.1016/j.tet.2010.03.024
  • Bahar Ahmed, Riaz A. Khan, and Manoj Keshari Habibullah, “An Improved Synthesis of Biginelli-Type Compounds via Phase-Transfer Catalysis,” Tetrahydron Letters 50, no. 24 (2009): 2889–92. doi:10.1016/j.tetlet.2009.03.177
  • A. Kamal, T. Krishnaji, and M. A. Azhar, “Copper(II)Tetrafluoroborate as a Mild and Efficient Catalyst for the One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones under Solvent-Free Conditions,” Catalysis Communications 8, no. 12 (2007): 1929–33. doi:10.1016/j.catcom.2007.03.009
  • Y. Zhang, B. Wang, X. Zhang, J. Huang, and C. Liu, “An Efficient Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and Thiones Catalyzed by a Novel Brønsted Acidic Ionic Liquid under Solvent-Free Conditions,” Molecules 20, no. 3 (2015): 3811–20. doi:10.3390/molecules20033811
  • P. Attri, R. Bhatia, J. Gaur, B. Arora, A. Gupta, N. Kumar, and E. H. C. Hoi, “Triethylammonium Acetate Ionic Liquid Assisted One-Pot Synthesis of Dihydropyrimidinones and Evaluation of Their Antioxidant and Antibacterial Activities,” Arabian Journal of Chemistry 10, no. 2 (2017): 206–14. doi:10.1016/j.arabjc.2014.05.007
  • F. Mohamadpour, M. T. Maghsoodlou, R. Heydari, and M. Lashkari, “Saccharin: A Green, Economical and Efficient Catalyst for the One-Pot, Multi-Component Synthesis of 3,4-Dihydropyrimidin-2-(1H)-One Derivatives and 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Dione Derivatives and Substituted Dihydro-2-Oxypyrrole,” Journal of the Iranian Chemical Society 13, no. 8 (2016): 1549–60. doi:10.1007/s13738-016-0871-5
  • F. Mohamadpour and M. Lashkari, “Three-Component Reaction of β-Keto Esters, Aromatic Aldehydes and Urea/Thiourea Promoted by Caffeine, a Green and Natural, Biodegradable Catalyst for Eco-Safe Biginelli Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones/Thiones Derivatives under Solvent-Free Conditions,” Journal of the Serbian Chemical Society 83 (2018): 673–84. doi:10.2298/JSC170712041M
  • N. Li, Y. Wang, F. Liu, X. Zhao, X. Xu, Q. An, and K. Yun, “Air‐Stable Zirconium (IV)‐Salophen Perfluorooctanesulfonate as a Highly Efficient and Reusable Catalyst for the Synthesis of 3,4‐Dihydropyrimidin‐2‐(1H)‐Ones/Thiones under Solvent‐Free Conditions,” Applied Organometallic Chemistry 34 (2020): e5454. doi:10.1002/aoc.5454
  • L. V. Chopda and P. N. Dave, “Heteropoly-12-Tungstophosphoric Acid H3[PW12O40] over Natural Bentonite as a Heterogeneous Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2-(1H)-Ones,” Arabian Journal of Chemistry 13, no. 6 (2020): 5911–21. doi:10.1016/j.arabjc.2020.04.034
  • T. S. Choudhare, D. S. Wagare, V. T. Kadam, A. A. Kharpe, and P. D. Netankar, “Rapid One-Pot Multicomponent Dioxane-HCl Complex Catalyzed Solvent-Free Synthesis of 3,4-Dihydropyrimidine-2-One Derivatives,” Polycyclic Aromatic Compounds 42, no. 6 (2022): 3865-73. doi:10.1080/10406638.2021.1873808
  • G. Bosica, F. Cachia, R. De Nittis, and N. Mariotti, “Efficient One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones via a Three-Component Biginelli Reaction,” Molecules 26, no. 12 (2021): 3753. doi:10.3390/molecules26123753
  • L. V. Chopda, and P. N. Dave, “12‐Tungstosilicic Acid H4[W12SiO40] over Natural Bentonite as a Heterogeneous Catalyst for the Synthesis of 3,4‐Dihydropyrimidin‐2(1H)‐Ones,” ChemistrySelect 5, no. 8 (2020): 2395–400. doi:10.1002/slct.201904962
  • M. Küçükislamoğlu, Ş. Beşoluk, M. Zengin, M. Arslan, and M. Nebioğlu, “An Efficient One-Pot Synthesis of Dihydropyrimidinones Catalyzed by Zirconium Hydrogen Phosphate under Solvent-Free Conditions,” Turkish Journal of Chemistry 34 (2010): 411–6. doi:10.3906/kim-0912-357
  • A. Maleki and R. Paydar, “Bionanostructure-Catalyzed One-Pot Three-Component Synthesis of 3,4-Dihydropyrimidin-2(1H)-One Derivatives under Solvent-Free Conditions,” Reactive and Functional Polymers 109 (2016): 120–4. doi:10.1016/j.reactfunctpolym.2016.10.013
  • F. Mohamadpour, “A New Role for Photoexcited Na2 Eosin Y as Direct Hydrogen Atom Transfer (HAT) Photocatalyst in Photochemical Synthesis of Dihydropyrano[2,3-c]Pyrazole Scaffolds Promoted by Visible Light Irradiation under Air Atmosphere,” Journal of Photochemistry and Photobiology A: Chemistry 418 (2021): 113428. doi:10.1016/j.jphotochem.2021.113428
  • F. Mohamadpour, “New Role for Photoexcited Organic Dye, Na2 Eosin Y via the Direct Hydrogen Atom Transfer (HAT) Process in Photochemical Visible-Light-Induced Synthesis of Spiroacenaphthylenes and 1H-Pyrazolo[1,2-b]Phthalazine-5,10-Diones under Air Atmosphere,” Dyes and Pigments 194 (2021): 109628. doi:10.1016/j.dyepig.2021.109628
  • F. Mohamadpour, “The Development of Imin-Based Tandem Michael–Mannich Cyclocondensation through a Single-Electron Transfer (SET)/Energy Transfer (EnT) Pathway in the Use of Methylene Blue (MB+) as a Photo-Redox Catalyst,” RSC Advances 12, no. 17 (2022): 10701–10. doi:10.1039/D2RA01190E
  • F. M. Arlan, A. Poursattar Marjani, R. Javahershenas, and J. Khalafy, “Recent Developments in the Synthesis of Polysubstituted Pyridines via Multicomponent Reactions Using Nanocatalysts,” New Journal of Chemistry 45, no. 28 (2021): 12328–45. doi:10.1039/D1NJ01801A
  • L. Kafi‐Ahmadi, A. Poursattar Marjani, and E. Nozad, “Ultrasonic‐Assisted Preparation of Co3O4 and Eu‐Doped Co3O4 Nanocatalysts and Their Application for Solvent‐Free Synthesis of 2‐Amino‐4H‐Benzochromenes under Microwave Irradiation,” Applied Organometallic Chemistry 35, no. 8 (2021): e6271. doi:10.1002/aoc.6271
  • L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani, and E. Nozad, “Microwave-Assisted Preparation of Polysubstituted Imidazoles Using Zingiber Extract Synthesized Green Cr2O3 Nanoparticles,” Scientific Reports 12, no. 1 (2022): 19942.
  • M. Khashaei, L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani, and E. Nozad, “A Facile Hydrothermal Synthesis of High-Efficient NiO Nanocatalyst for Preparation of 3,4-Dihydropyrimidin-2(1H)-Ones,” Scientific Reports 12, no. 1 (2022): 8585. doi:10.1038/s41598-022-12589-4
  • L. Kafi-Ahmadi, S. Khademinia, A. Poursattar Marjani, and P. Gozali Balkanloo, “Fabrication of 5-Aryl-1H-Tetrazoles Derivatives by Solid-State Synthesized MgFe2O4 and MgFe2ZnxO4+δ Heterogeneous Nanocatalysts,” Research on Chemical Intermediates 48, no. 7 (2022): 2973–86. doi:10.1007/s11164-022-04741-6
  • A. Poursattar Marjani, F. Asadzadeh, and A. Danandeh Asl, “Fe3O4@Glycerol-Cu as a Novel Heterogeneous Magnetic Nanocatalyst for the Green Synthesis of 2-Amino-4H-Chromenes,” Scientific Reports 12, no. 1 (2022): 22173.
  • P. Biginelli and P. Gazz, “Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones,” Gazzetta Chimica Italiana 23 (1893): 360–72.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.