365
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

4-Bromo-1,8-Naphthalimide derivatives as Antifungal Agents: Synthesis, Characterization, DNA Binding, Molecular docking, Antioxidant and ADMET studies

, , , , ORCID Icon &
Pages 748-772 | Received 14 Mar 2022, Accepted 08 Feb 2023, Published online: 06 Mar 2023

References

  • S. Zhao, X. Zhang, P. Wei, X. Su, L. Zhao, M. Wu, C. Hao, C. Liu, D. Zhao, and M. Cheng, “Design, Synthesis and Evaluation of Aromatic Heterocyclic Derivatives as Potent Antifungal Agents,” European Journal of Medicinal Chemistry, 137 (2017): 96–107. doi:10.1016/j.ejmech.2017.05.043
  • Y. Mi, J. Zhang, Y. Chen, X. Sun, W. Tan, Q. Li, and Z. Guo, “New Synthetic Chitosan Derivatives Bearing Benzenoid/Heterocyclic Moieties with Enhanced Antioxidant and Antifungal Activities,” Carbohydrate Polymers, 249 (2020): 116847. doi:10.1016/j.carbpol.2020.116847
  • F. F. Alblewi, R. M. Okasha, Z. M. Hritani, H. M. Mohamed, M. A. A. El-Nassag, A. H. Halawa, A. Mora, A. M. Fouda, M. A. Assiri, A.-A. M. Al-Dies, et al, “Antiproliferative Effect, Cell Cycle Arrest and Apoptosis Generation of Novel Synthesized Anticancer Heterocyclic Derivatives Based 4H-Benzo[h]Chromene,” Bioorganic Chemistry, 87 (2019): 560–71. doi:10.1016/j.bioorg.2019.03.059
  • S. Ravula, R. R. Bobbala, and B. Kolli, “Synthesis of Novel Isoxazole Functionalized Pyrazolo[3,4‐ b] Pyridine Derivatives; Their Anticancer Activity,” Journal of Heterocyclic Chemistry 57, no. 6 (2020): 2535–8. doi:10.1002/jhet.3968
  • S. Maddila, S. Gorle, and S. B. Jonnalagadda, “Drug Screening of Rhodanine Derivatives for Antibacterial Activity,” Expert Opinion on Drug Discovery 15, no. 2 (2020): 203–29. doi:10.1080/17460441.2020.1696768
  • N. C. Desai, K. R. Wadekar, H. K. Mehta, U. P. Pandit, and V. M. Khedkar, “Design, Synthesis, Antibacterial Activity and in Silico Studies of Novel Quinolone Fused with Triazine, Thiadiazole and Oxadiazole Heterocycles,” Polycyclic Aromatic Compounds, 41 (2021): 1–13.
  • H. N. Akolkar, S. G. Dengale, K. K. Deshmukh, B. K. Karale, N. R. Darekar, V. M. Khedkar, and M. H. Shaikh, “Design, Synthesis and Biological Evaluation of Novel Furan & Thiophene Containing Pyrazolyl Pyrazolines as Antimalarial Agents,” Polycyclic Aromatic Compounds 40 (2020): 1–13.
  • R. Matsa, P. Makam, M. Kaushik, S. L. Hoti, and T. Kannan, “Thiosemicarbazone Derivatives: Design, Synthesis and in Vitro Antimalarial Activity Studies,” Europian Journal of Pharmceutical Sciences 137 (2019): 104986.
  • Y. Hu, W. Chen, Y. Shen, B. Zhu, and G.-X. Wang, “Synthesis and Antiviral Activity of Coumarin Derivatives against Infectious Hematopoietic Necrosis Virus,” Bioorganic & Medicinal Chemistry Letters 29, no. 14 (2019): 1749–55. doi:10.1016/j.bmcl.2019.05.019
  • Y. Luo, Y. Zhou, J. Fu, and H.-L. Zhu, “4,5-Dihydropyrazole Derivatives Containing Oxygen-Bearing Heterocycles as Potential Telomerase Inhibitors with Anticancer Activity,” RSC Advances 4, no. 45 (2014): 23904. doi:10.1039/c4ra02200a
  • G.-B. Liang, J.-H. Wei, H. Jiang, R.-Z. Huang, J.-T. Qin, H.-L. Wang, H.-S. Wang, and Y. Zhang, “Design, Synthesis and Antitumor Evaluation of New 1,8-Naphthalimide Derivatives Targeting Nuclear DNA,” European Journal of Medicinal Chemistry 210, (2021): 112951. doi:10.1016/j.ejmech.2020.112951
  • F. Zhao, X. Sun, W. Lu, L. Xu, J. Shi, S. Yang, M. Zhou, F. Su, F. Lin, and F. Cao, “Synthesis of Novel, DNA Binding Heterocyclic Dehydroabietylamine Derivatives as Potential Antiproliferative and Apoptosis-Inducing Agents,” Drug Delivery 27, no. 1 (2020): 216–27. doi:10.1080/10717544.2020.1716879
  • I. Ott, Y. Xu, J. Liu, M. Kokoschka, M. Harlos, W. S. Sheldrick, and X. Qian, “Sulfur-Substituted Naphthalimides as Photoactivatable Anticancer Agents: DNA Interaction, Fluorescence Imaging, and Phototoxic Effects in Cultured Tumor Cells,” Bioorganic & Medicinal Chemistry 16, no. 15 (2008): 7107–16. doi:10.1016/j.bmc.2008.06.052
  • U. Yildiz, and B. Coban, “Novel Naphthalimide Derivatives as Selective G-Quadruplex DNA Binders,” Applied Biochemistry and Biotechnology 186, no. 3 (2018): 547–62. doi:10.1007/s12010-018-2749-8
  • Colin S. Swenson, Arventh Velusamy, Hector S. Argueta-Gonzalez, and Jennifer M. Heemstra, “Peptide Nucleic Acids: Encoding the Languages of Nucleic Acids and Proteins in a Single Self-Assembling Biopolymer,” Journal of the American Chemical Society 141, no. 48 (2019): 19038–47. doi:10.1021/jacs.9b09146
  • D. Douche, Y. Sert, S. A. Brandán, A. A. Kawther, B. Bilmez, N. Dege, A. El. Louzi, K. Bougrin, K. Karrouchi, and B. Himmi, “5-((1H-Imidazol-1-yl)Methyl)Quinolin-8-ol as Potential Antiviral SARS-CoV-2 Candidate: Synthesis, Crystal Structure, Hirshfeld Surface Analysis, DFT and Molecular Docking Studies,” Journal of Molecular Structure 1232 (2021): 130005. doi:10.1016/j.molstruc.2021.130005
  • Y.-Y. Chen, L. Gopala, R. R. Y. Bheemanaboina, H.-B. Liu, Y. Cheng, R.-X. Geng, and C.-H. Zhou, “Novel Naphthalimide Aminothiazoles as Potential Multitargeting Antimicrobial Agents,” ACS Medicinal Chemistry Letters 8, no. 12 (2017): 1331–5. doi:10.1021/acsmedchemlett.7b00452
  • F. Gai, Y. Zuo, and W. Lin, “Detecting Lipid Droplets Polarity: Silicone-Based Unique Fluorescent Probe for Cancer Diagnosis in Living Cells,” Talanta 225 (2021): 122059. doi:10.1016/j.talanta.2020.122059
  • M. Verma, V. Luxami, and K. Paul, “Synthesis, in Vitro Evaluation and Molecular Modelling of Naphthalimide Analogue as Anticancer Agents,” European Journal of Medicinal Chemistry 68 (2013): 352–60. doi:10.1016/j.ejmech.2013.07.027
  • H. Zhang, M. Zhang, Y.-C. Zheng, J.-G. Zhang, and H. Xu, “The Design, Synthesis and Cellular Imaging of a Tumor-Anchored, Potent and Cell-Permeable BRD4-Targeted Fluorescent Ligands,” Bioorganic Chemistry 114 (2021): 105120. doi:10.1016/j.bioorg.2021.105120
  • Z. Xu, Y. Zhou, J. Wang, L. Mao, W. Li, and G. Xu, “The Synthesis and Antitumor Activity of 1,8-Naphthalimide Derivatives Linked 1,2,3-Triazole,” Frontiers in Bioengineers Biotechnololgy 9 (2021): 662432.
  • P.-L. Zhang, G. Lavanya, Y. Yu, B. Fang, and C.-H. Zhou, “Identification of a Novel Antifungal Backbone of Naphthalimide Thiazoles with Synergistic Potential for Chemical and Dynamic Treatment,” Future Medicinal Chemistry 13, no. 23 (2021): 2047–67. doi:10.4155/fmc-2021-0162
  • Y.-Y. Zhang, and C.-H. Zhou, “Synthesis and Activities of Naphthalimide Azoles as a New Type of Antibacterial and Antifungal Agents,” Bioorganic & Medicinal Chemistry Letters 21, no. 14 (2011): 4349–52. doi:10.1016/j.bmcl.2011.05.042
  • M. Sadeghi-Kiakhani, and S. Safapour, “Functionalization of Poly(Amidoamine) Dendrimer-Based Nano-Architectures Using a Naphthalimide Derivative and Their Fluorescent, Dyeing and Antimicrobial Properties on Wool Fibers,” Luminescence 31, no. 4 (2016): 1005–12. doi:10.1002/bio.3065
  • M. Spain, J. K.-H. Wong, G. Nagalingam, J. M. Batten, E. Hortle, S. H. Oehlers, X. F. Jiang, H. E. Murage, J. T. Orford, P. Crisologo, et al, “Antitubercular Bis-Substituted Cyclam Derivatives: Structure – Activity Relationships and in Vivo Studies,” Journal of Medicinal Chemistry 61, no. 8 (2018): 3595–608. doi:10.1021/acs.jmedchem.7b01569
  • C. Zhang, Q.-Z. Zhang, K. Zhang, L.-Y. Li, M. D. Pluth, L. Yi, and Z. Xi, “Dual-Biomarker-Triggered Fluorescence Probes for Differentiating Cancer Cells and Revealing Synergistic Antioxidant Effects under Oxidative Stress,” Chemical Science 10, no. 7 (2019): 1945–52. doi:10.1039/C8SC03781G
  • D. Staneva, E. Vasileva-Tonkova, P. Grozdanov, N. Vilhelmova-Ilieva, I. Nikolova, and I. Grabchev, “Synthesis and Photophysical Characterisation of 3-Bromo-4-Dimethylamino-1,8-Naphthalimides and Their Evaluation as Agents for Antibacterial Photodynamic Therapy,” Journal of Photochemistry and Photobiology A: Chemistry 401, (2020): 112730. doi:10.1016/j.jphotochem.2020.112730
  • M. Gümüş, ŞN. Babacan, Y. Demir, Y. Sert, İ. Koca, and İ. Gülçin, “Discovery of Sulfadrug–Pyrrole Conjugates as Carbonic Anhydrase and Acetylcholinesterase Inhibitors,” Archiv Der Pharmazie - Pharmazie 355, no. 1 (2022): 2100242. doi:10.1002/ardp.202100242
  • Y. Fujikawa, K. Terakado, T. Nampo, M. Mori, and H. Inoue, “4-Bromo-1,8-Naphthalimide Derivatives as Fluorogenic Substrates for Live Cell Imaging of Glutathione S-Transferase (GST) Activity,” Talanta 204 (2019): 633–40. doi:10.1016/j.talanta.2019.06.059
  • T. Brider, B. Redko, M. Oron-Herman, A. Cohen-Matzlich, G. Gerlitz, G. Gellerman, and F. Grynszpan, “Synthesis and in Vitro Anticancer Evaluation of 1,8-Naphthalimide N(4) and S(4)-Derivatives Combining DNA Intercalation and Alkylation Capabilities,” Research on Chemical Intermediates 42, no. 3 (2016): 1741–57. doi:10.1007/s11164-015-2115-1
  • S. Li, S. Xu, Y. Tang, S. Ding, J. Zhang, S. Wang, G. Zhou, C. Zhou, and X. Li, “Synthesis, Anticancer Activity and DNA-Binding Properties of Novel 4-Pyrazolyl-1,8-Naphthalimide Derivatives,” Bioorganic & Medicinal Chemistry Letters 24, no. 2 (2014): 586–90. doi:10.1016/j.bmcl.2013.12.014
  • J. Kang, V. K. R. Tangadanchu, L. Gopala, W.-W. Gao, Y. Cheng, H.-B. Liu, R.-X. Geng, S. Li, and C.-H. Zhou, “Novel Potentially Antibacterial Naphthalimide-Derived Metronidazoles: Design, Synthesis, Biological Evaluation and Supramolecular Interactions with DNA, Human Serum Albumin and Topoisomerase II,” Chinese Chemical Letters 28, no. 7 (2017): 1369–74. doi:10.1016/j.cclet.2017.04.002
  • J.-S. Lv, X.-M. Peng, B. Kishore, and C.-H. Zhou, “1,2,3-Triazole-Derived Naphthalimides as a Novel Type of Potential Antimicrobial Agents: Synthesis, Antimicrobial Activity, Interaction with Calf Thymus DNA and Human Serum Albumin,” Bioorganic & Medicinal Chemistry Letters 24, no. 1 (2014): 308–13. doi:10.1016/j.bmcl.2013.11.013
  • C. Niu, L. Li, P. Qin, G. Zeng, and Y. Zhang, “Determination of Water Content in Organic Solvents by Naphthalimide Derivative Fluorescent Probe,” Analytical Sciences 26, no. 6 (2010): 671–4. doi:10.2116/analsci.26.671
  • Z.-B. Huang, X.-J. Xia, Z.-H. Huang, L. Xu, X.-Y. Zhang, and R.-Y. Tang, “Selective C–H Dithiocarbamation of Arenes and Antifungal Activity Evaluation,” Organic & Biomolecular Chemistry 18, no. 7 (2020): 1369–76. doi:10.1039/C9OB02514F
  • Rabiya Mehandi, Rizwan Arif, Manish Rana, Saiema Ahmedi, Razia Sultana, Md Shahzad Khan, Mohsin Maseet, Manika Khanuja, Nikhat Manzoor, Nahid Nishat, et al, ” “CT-DNA/pBR322 DNA Interaction and Molecular Docking Studies of Heterocyclic Analogs,” Journal of Molecular Structure 1245 (2021): 131248. doi:10.1016/j.molstruc.2021.131248
  • N. Jyothi, Nirmala Ganji, and Sreenu Daravath Shivaraj, “Mononuclear Cobalt(II), Nickel(II) and Copper(II) Complexes: Synthesis, Spectral Characterization and Interaction Study with Nucleotide by in Vitro Biochemical Analysis,” Journal of Molecular Structure 1207 (2020): 127799. doi:10.1016/j.molstruc.2020.127799
  • Rabiya Mehandi, Razia Sultana, Saiema Ahmedi, Manish Rana, Nikhat Manzoor, Saleem Javed, and Nahid Nishat Rahisuddin, “Oxadiazole Schiff Base as Fe3+ Ion Chemosensor: “Turn-off” Fluorescent, Biological and Computational Studies,” Journal of Fluorescence 33 (2023): 751–772. doi:10.1007/s10895-022-03083-1
  • E. A. Jolley, L. K. E. Hardebeck, Y. Ren, M. S. Adams, M. Lewis, and B. M. Znosko, “The Effects of Varying the Substituent and DNA Sequence on the Stability of 4-Substituted DNA-Naphthalimide Complexes,” Biophysical Chemistry 239 (2018): 29–37. doi:10.1016/j.bpc.2018.04.008
  • Rizwan Arif, Manish Rana, Shama Yasmeen, Md Shahzad Khan, Mohammad Abid, and M. S. Khan Amaduddin Rahisuddin, “Facile Synthesis of Chalcone Derivatives as Antibacterial Agents: Synthesis, DNA Binding, Molecular Docking, DFT and Antioxidant Studies,” Journal of Molecular Structure 1208 (2020): 127905. doi:10.1016/j.molstruc.2020.127905
  • Z. Ou, Y. Qian, Y. Gao, Y. Wang, G. Yang, Y. Li, K. Jiang, and X. Wang, “Photophysical, G-Quadruplex DNA Binding and Cytotoxic Properties of Terpyridine Complexes with a Naphthalimide Ligand,” RSC Advances 6, no. 43 (2016): 36923–31. doi:10.1039/C6RA01441K
  • Manish Rana, Aysha Fatima, Nazia Siddiqui, Saiema Ahmedi, Sajad Hussain Dar, Nikhat Manzoor, and Saleem Javed Rahisuddin, “Carbothioamide-Based Pyrazoline Derivative: Synthesis, Single Crystal Structure, DFT/TD-DFT, Hirshfeld Surface Analysis and Biological Studies,” Polycyclic Aromatic Compounds 42 (2022): 1–21. doi:10.1080/10406638.2022.2112707
  • H. Sharma, J. S. Sidhu, W. M. Hassen, N. Singh, and J. J. Dubowski, “Synthesis of a 3,4-Disubstituted 1,8-Naphthalimide-Based DNA Intercalator for Direct Imaging of Legionella pneumophila,” ACS Omega. 4, no. 3 (2019): 5829–38. doi:10.1021/acsomega.8b03638
  • W. Streciwilk, A. Terenzi, X. Cheng, L. Hager, Y. Dabiri, P. Prochnow, J. E. Bandow, S. Wölfl, B. K. Keppler, and I. Ott, “Fluorescent Organometallic Rhodium(I) and Ruthenium(II) Metallodrugs with 4-Ethylthio-1,8-Naphthalimide Ligands: Antiproliferative Effects, Cellular Uptake and DNA-Interaction,” European Journal of Medicinal Chemistry 156 (2018): 148–61. doi:10.1016/j.ejmech.2018.06.056
  • V. A. Oliveira, H. Terenzi, L. B. Menezes, O. A. Chaves, and B. A. Iglesias, “Evaluation of DNA-Binding and DNA-Photocleavage Ability of Tetra-Cationic Porphyrins Containing Peripheral [Ru(Bpy)2Cl]+ Complexes: Insights for Photodynamic Therapy Agents,” Journal of Photochemistry and Photobiology B: Biology 211 (2020): 111991. doi:10.1016/j.jphotobiol.2020.111991
  • M. Shakeel, T. M. Butt, M. Zubair, H. M. Siddiqi, N. K. Janjua, Z. Akhter, A. Yaqub, and S. Mahmood, “Electrochemical Investigations of DNA-Intercalation Potency of Bisnitrophenoxy Compounds with Different Alkyl Chain Lengths,” Heliyon 6, no. 6 (2020): e04124. doi:10.1016/j.heliyon.2020.e04124
  • Manish Rana, Rizwan Arif, Faez Iqbal Khan, Vikas Maurya, Raja Singh, Md Imam Faizan, Shama Yasmeen, Sajad Hussain Dar, Raquib Alam, Ankita Sahu, et al, “Pyrazoline Analogs as Potential Anticancer Agents and Their Apoptosis, Molecular Docking, MD Simulation, DNA Binding and Antioxidant Studies,” Bioorganic Chemistry 108 (2021): 104665. doi:10.1016/j.bioorg.2021.104665
  • B.-L. Fei, L.-Y. Li, P. Wang, C.-N. Hui, and J.-Y. Long, “Multifunctional Novel Rosin Derivatives Based on Dehydroabietylamine with Metal Ion Sensing and DNA/BSA Binding Activities,” Journal of Molecular Liquids 347 (2022): 118273. doi:10.1016/j.molliq.2021.118273
  • Rizwan Arif, Pattan Sirajuddin Nayab, Istikhar A. Ansari, M. Shahid, Mohammad Irfan, Shadab Alam, and Mohammad Abid Rahisuddin, “Synthesis, Molecular Docking and DNA Binding Studies of Phthalimide-Based Copper(II) Complex: In Vitro Antibacterial, Hemolytic and Antioxidant Assessment,” Journal of Molecular Structure 1160 (2018): 142–53. doi:10.1016/j.molstruc.2018.02.008
  • Manish Rana, Md Imam Faizan, Sajad Hussain Dar, and Tanveer Ahmad Rahisuddin, “Design and Synthesis of Carbothioamide/Carboxamide-Based Pyrazoline Analogs as Potential Anticancer Agents: Apoptosis, Molecular Docking, ADME Assay, and DNA Binding Studies,” ACS Omega. 7, no. 26 (2022): 22639–56. doi:10.1021/acsomega.2c02033
  • İ. Çapan, S. Servi, İ. Yıldırım, and Y. Sert, “Synthesis, DFT Study, Molecular Docking and Drug‐Likeness Analysis of the New Hydrazine‐1‐Carbothioamide, Triazole and Thiadiazole Derivatives: Potential Inhibitors of HSP90,” ChemistrySelect 6, no. 23 (2021): 5838–46. doi:10.1002/slct.202101086
  • G. Onar, M. O. Karataş, S. Balcıoğlu, T. T. Tok, C. Gürses, I. Kılıç-Cıkla, N. Özdemir, B. Ateş, and B. Alıcı, “Benzotriazole Functionalized N-Heterocyclic Carbene–Silver(I) complexes: Synthesis, Cytotoxicity, Antimicrobial, DNA Binding, and Molecular Docking Studies,” Polyhedron 153 (2018): 31–40. doi:10.1016/j.poly.2018.06.052
  • J. Ghanaat, M. A. Khalilzadeh, and D. Zareyee, “Molecular Docking Studies, Biological Evaluation and Synthesis of Novel 3-Mercapto-1,2,4-Triazole Derivatives,” Molecular Diversity 25, no. 1 (2021): 223–32. doi:10.1007/s11030-020-10050-0
  • İ. Çapan, M. Gümüş, H. Gökce, H. Çetin, Y. Sert, and İ. Koca, “Synthesis, Dielectric Properties, Molecular Docking and ADME Studies of Pyrrole-3-Ones,” Journal of Biomolecular Structure and Dynamics 40, no. 19 (2022): 8655–71. doi:10.1080/07391102.2021.1914174
  • I. Azad, A. Jafri, T. Khan, Y. Akhter, M. Arshad, F. Hassan, N. Ahmad, A. R. Khan, and M. Nasibullah, “Evaluation of Pyrrole-2,3-Dicarboxylate Derivatives: Synthesis, DFT Analysis, Molecular Docking, Virtual Screening and in Vitro anti-Hepatic Cancer Study,” Journal of Molecular Structure 1176 (2019): 314–34. doi:10.1016/j.molstruc.2018.08.049
  • Salman A. Khan, Qasim Ullah, Salahuddin Syed, Abdulraheem S. A. Almalki, Sanjay Kumar, Rami J. Obaid, Meshari A. Alsharif, S. Y. Alfaifi, and Humaira Parveen Alimuddin, “Microwave Assisted One-Pot Synthesis, Photophysical and Physicochemical Studies of Novel Biologically Active Heterocyclic Donor (D)-π-Acceptor (A) Chromophore,” Bioorganic Chemistry 112 (2021): 104964. doi:10.1016/j.bioorg.2021.104964
  • C. Demetgül, and N. Beyazit, “Synthesis, Characterization and Antioxidant Activity of Chitosan-Chromone Derivatives,” Carbohydrate Polymers 181 (2018): 812–7. doi:10.1016/j.carbpol.2017.11.074
  • R. M. Naidu Kalla, R. S. Karunakaran, M. Balaji, and I. Kim, “Catalyst‐Free Synthesis of Xanthene and Pyrimidine‐Fused Heterocyclic Derivatives at Water‐Ethanol Medium and Their Antioxidant Properties,” ChemistrySelect 4, no. 2 (2019): 644–9. doi:10.1002/slct.201803449
  • Y. Xu, H. Zhang, K. Shen, S. Mao, X. Shi, and H. Wu, “Four-, Five- and Six-Coordinated Transition Metal Complexes Based on Naphthalimide Schiff Base Ligands: Synthesis, Crystal Structure and Properties,” Applied Organometallic Chemistry 32, no. 1 (2018): e3902. doi:10.1002/aoc.3902
  • R. S. Nayab, S. Maddila, M. P. Krishna, S. J. J. Titinchi, B. S. Thaslim, V. Chintha, R. Wudayagiri, V. Nagam, V. Tartte, S. Chinnam, et al, “In Silico Molecular Docking and in Vitro Antioxidant Activity Studies of Novel α -Aminophosphonates Bearing 6-Amino-1,3-Dimethyl Uracil,” Journal of Receptors and Signal Transduction 40, no. 2 (2020): 166–72. doi:10.1080/10799893.2020.1722166
  • U. Yildiz, I. Kandemir, F. Cömert, S. Akkoç, and B. Coban, “Synthesis of Naphthalimide Derivatives with Potential Anticancer Activity, Their Comparative ds ‑ and G ‑ Quadruplex – DNA Binding Studies and Related Biological Activities,” Molecular Biology Reports 47, no. 3 (2020): 1563–72. doi:10.1007/s11033-019-05239-y
  • M. Korzec, K. Malarz, A. Mrozek-Wilczkiewicz, R. Rzycka-Korzec, E. Schab-Balcerzak, and J. Polański, “Live Cell Imaging by 3-Imino-(2-Phenol)-1,8-Naphthalimides: The Effect of Ex Vivo Hydrolysis,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 238 (2020): 118442. doi:10.1016/j.saa.2020.118442
  • F. Betancourt, A. Valente, and H. Yan, “1,8-Naphthalimide Derivatives as Probes for Protein Surface Hydrophobicity,” Journal of Photochemistry and Photobiology A: Chemistry 418 (2021): 113386. doi:10.1016/j.jphotochem.2021.113386
  • Y. Sharma, S. K. Rastogi, A. Perwez, M. A. Rizvi, and N. Manzoor, “β-Citronellol Alters Cell Surface Properties of Candida albicans to Influence Pathogenicity Related Traits,” Medical Mycology 58, no. 1 (2020): 93–106. doi:10.1093/mmy/myz009
  • J. Zhang, W. Tan, L. Wei, Y. Chen, Y. Mi, X. Sun, Q. Li, F. Dong, and Z. Guo, “Synthesis of Urea-Functionalized Chitosan Derivatives for Potential Antifungal and Antioxidant Applications,” Carbohydrate Polymers 215 (2019): 108–18. doi:10.1016/j.carbpol.2019.03.067
  • X. Cao, Y. Xu, Y. Cao, R. Wang, R. Zhou, W. Chu, and Y. Yang, “Design, Synthesis, and Structure–Activity Relationship Studies of Novel Thienopyrrolidone Derivatives with Strong Antifungal Activity against Aspergillus Fumigates,” European Journal of Medicinal Chemistry 102 (2015): 471–6. doi:10.1016/j.ejmech.2015.08.023
  • A. Meščić Macan, N. Perin, S. Jakopec, M. Mioč, M. R. Stojković, M. Kralj, M. Hranjec, and S. Raić-Malić, “Synthesis, Antiproliferative Activity and DNA/RNA-Binding Properties of Mono- and Bis-(1,2,3-Triazolyl)-Appended Benzimidazo[1,2-a]Quinoline Derivatives,” European Journal of Medicinal Chemistry 185 (2020): 111845. doi:10.1016/j.ejmech.2019.111845
  • K.-R. Wang, F. Qian, Q. Sun, C.-L. Ma, R.-X. Rong, Z.-R. Cao, X.-M. Wang, and X.-L. Li, “Substituent Effects on Cytotoxic Activity, Spectroscopic Property, and DNA Binding Property of Naphthalimide Derivatives,” Chemical Biology & Drug Design 87, no. 5 (2016): 664–72. doi:10.1111/cbdd.12698
  • Rizwan Arif, Sarfraz Ahmed, Saami Ahmed, and Mohammad Abid, Amaduddin Rahisuddin, “Synthesis, in Vitro Biological Evaluation and in Silico Studies of Some New Heterocyclic Schiff Bases,” ChemistrySelect 3, no. 47 (2018): 13517–25. doi:10.1002/slct.201803072
  • M. H. Nasir, E. Jabeen, R. Qureshi, F. L. Ansari, A. Shaukat, U. Nasir, and A. Ahmed, “Investigation of Redox Mechanism and DNA Binding of Novel 2-(x-Nitrophenyl)-5-Nitrobenzimidazole (x = 2, 3 and 4),” Biophysical Chemistry 258 (2020): 106316. doi:10.1016/j.bpc.2019.106316
  • S. Sardar, E. Jabeen, A. Mumtaz, M. Yasinzai, and J.-M. Leveque, “Synthesis, DNA-Binding Study and Antioxidant Assay of Novel Protic Ionic Liquids: Experimental and Computational Approaches,” Journal of Molecular Liquids 300 (2020): 112255. doi:10.1016/j.molliq.2019.112255
  • I. Singh, V. Luxami, and K. Paul, “Synthesis, Cytotoxicity, Pharmacokinetic Profile, Binding with DNA and BSA of New Imidazo[1,2-a]Pyrazine-Benzo[d]Imidazol-5-yl Hybrids,” Scientific Reports 10, no. 1 (2020): 6534. doi:10.1038/s41598-020-63605-4
  • D. Patra, S. Paul, N. Sepay, R. Kundu, and T. Ghosh, “Structure-Activity Relationship on DNA Binding and Anticancer Activities of a Family of Mixed-Ligand Oxidovanadium(V) hydrazone Complexes,” Journal of Biomolecular Structure and Dynamics 36, no. 16 (2018): 4143–55. doi:10.1080/07391102.2017.1409652
  • S. K. Maiti, M. Kalita, A. Singh, J. Deka, and P. Barman, “Investigation of DNA Binding and Bioactivities of Thioether Containing Schiff Base Copper(II), Cobalt(II) and Palladium(II) Complexes: Synthesis, Characterization, Spectrochemical Study, Viscosity Measurement,” Polyhedron 184 (2020): 114559. doi:10.1016/j.poly.2020.114559
  • I. Warad, H. Suboh, N. Al-Zaqri, A. Alsalme, F. A. Alharthi, M. M. Aljohani, and A. Zarrouk, “Synthesis and Physicochemical, DFT, Thermal and DNA-Binding Analysis of a New Pentadentate N 3 S 2 Schiff Base Ligand and Its [CuN3S2] 2+ Complexes,” RSC Advances 10, no. 37 (2020): 21806–21. doi:10.1039/D0RA04323K
  • M. Zampakou, S. Balala, F. Perdih, S. Kalogiannis, I. Turel, and G. Psomas, “Structure, Antimicrobial Activity, Albumin- and DNA-Binding of Manganese (<Scp > ii</Scp>) –Sparfloxacinato Complexes,” RSC Advances 5, no. 16 (2015): 11861–72.
  • Ayaz Mahmood Dar, Bilal Rah, Shafia Mir, Rizwan Nabi, Manzoor Ahmad Gatoo, Ashraf Mashrai, and Yusuf Khan Shamsuzzaman, “DNA Binding, Artificial Nuclease Activity and Cytotoxic Studies of Newly Synthesized Steroidal Pyrimidines,” International Journal of Biological Macromolecules 111 (2018): 52–61. doi:10.1016/j.ijbiomac.2017.12.128
  • M. A. Salem, A. Ragab, A. El-Khalafawy, A. H. Makhlouf, A. A. Askar, and Y. A. Ammar, “Design, Synthesis, in Vitro Antimicrobial Evaluation and Molecular Docking Studies of Indol-2-One Tagged with Morpholinosulfonyl Moiety as DNA Gyrase Inhibitors,” Bioorganic Chemistry 96 (2020): 103619. doi:10.1016/j.bioorg.2020.103619
  • S. Murugavel, C. S. Jacob Prasanna Stephen, R. Subashini, and D. AnanthaKrishnan, “Synthesis, Structural Elucidation, Antioxidant, CT-DNA Binding and Molecular Docking Studies of Novel Chloroquinoline Derivatives: Promising Antioxidant and anti-Diabetic Agents,” Journal of Photochemistry and Photobiology B: Biology 173 (2017): 216–30. doi:10.1016/j.jphotobiol.2017.05.043
  • V. K. Gurjar, and D. Pal, “Design, in Silico Studies, and Synthesis of New 1,8-Naphthyridine-3-Carboxylic Acid Analogues and Evaluation of Their H1R Antagonism Effects,” RSC Advances 10, no. 23 (2020): 13907–21. doi:10.1039/D0RA00746C
  • L. Wei, W. Tan, G. Wang, Q. Li, F. Dong, and Z. Guo, “The Antioxidant and Antifungal Activity of Chitosan Derivatives Bearing Schiff Bases and Quaternary Ammonium Salts,” Carbohydrate Polymers 226 (2019): 115256. doi:10.1016/j.carbpol.2019.115256
  • Y. Mi, J. Zhang, X. Han, W. Tan, Q. Miao, J. Cui, Q. Li, and Z. Guo, “Modification of Carboxymethyl Inulin with Heterocyclic Compounds: Synthesis, Characterization, Antioxidant and Antifungal Activities,” International Journal of Biological Macromolecules 181 (2021): 572–81. doi:10.1016/j.ijbiomac.2021.03.109
  • N. Mihailović, V. Marković, I. Z. Matić, N. S. Stanisavljević, ŽS. Jovanović, S. Trifunović, and L. Joksović, “Synthesis and Antioxidant Activity of 1,3,4-Oxadiazoles and Their Diacylhydrazine Precursors Derived from Phenolic Acids,” RSC Advances 7, no. 14 (2017): 8550–60. doi:10.1039/C6RA28787E
  • D. Ashok, E. V. L. Madhuri, M. Sarasija, S. Sree Kanth, M. Vijjulatha, M. D. Alaparthi, and S. R. Sagurthi, “Synthesis, Biological Evaluation and Molecular Docking of Spirofurochromanone Derivatives as anti-Inflammatory and Antioxidant Agents,” RSC Advances 7, no. 41 (2017): 25710–24. doi:10.1039/C7RA01550J

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.