171
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and antimicrobial Evaluation of Novel 2'-aryl-4-aryl-2,4'-Bisthiazole and 2'-aryl-4-Pyridyl-2,4'-Bisthiazole Derivatives as Potential Antibacterial Agents

, , , , , & show all
Pages 773-787 | Received 02 Jun 2022, Accepted 07 Feb 2023, Published online: 20 Feb 2023

References

  • D. van Duin, and D. L. Paterson, “Multidrug-Resistant Bacteria in the Community: Trends and Lessons Learned,” Infectious Disease Clinics of North America 30, no. 2 (2016): 377–90. doi:10.1016/j.idc.2016.02.004
  • E. L. Berkow, and S. R. Lockhart, “Fluconazole Resistance in Candida Species: A Current Perspective,” Infection and Drug Resistance 10 (2017): 237–45. doi:10.2147/IDR.S118892
  • J. H. Powers, “Antimicrobial Drug Development-the past, the Present, and the Future,” Clinical Microbiology and Infection 10, no. 4 (2004): 23–31. doi:10.1111/j.1465-0691.2004.1007.x
  • H. W. Boucher, G. H. Talbot, J. S. Bradley, J. E. Jr. Edwards, D. Gilbert, B. Rice, M. Scheld, B. Spellberg, and J. Bartlett, “Bad Bugs, No Drugs: no ESKAPE! an Update from the Infectious Diseases Society of America,” Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America 48, no. 1 (2009): 1–12. doi:10.1086/595011
  • D. E. Brown, and D. G. Wright, “Antibacterial Drug Discovery in the Resistance Era,” Nature 529, no. 7586 (2016): 336–43. doi:10.1038/nature17042
  • R. Aminov, “History of Antimicrobial Drug Discovery: Major Classes and Health Impact,” Biochemical Pharmacology 133 (2017): 4–19. doi:10.1016/j.bcp.2016.10.001
  • N. D. Friedman, D. Levit, E. Taleb, G. Marcus, L. Michaeli, M. Broide, B. Mengesha, R. Zaidenstein, T. Lazarovitch, M. Dadon, et al, “Towards a Definition for Health Care-Associated Infection,” Open Forum Infect Dis 5, no. 6 (2018): 116–22.
  • P. Mohanty, S. Behera, R. Behura, L. Shubhadarshinee, P. Mohapatra, A. K. Barick, and B. R. Jali, “Antibacterial Activity of Thiazole and Its Derivatives: A Review,” Biointerface Research in Applied Chemistry 12, no. 2 (2022): 2171–95.
  • Isha Mishra, Raghav Mishra, Somdutt Mujwar, Phool Chandra, and Neetu Sachan, “A Retrospect on Antimicrobial Potential of Thiazole Scaffold,” Journal of Heterocyclic Chemistry 57, no. 6 (2020): 2304–29. doi:10.1002/jhet.3970
  • Y. K. Abhale, A. V. Sasane, A. P. Chavan, S. H. Shekh, K. K. Deshmukh, S. Bhansali, L. Nawale, D. Sarkar, and P. C. Mhaske, “Synthesis and Antimycobacterial Screening of New Thiazolyl-Oxazole Derivatives,” European Journal of Medicinal Chemistry. 132 (2017): 333–40. doi:10.1016/j.ejmech.2017.03.065
  • S. M. Jagadale, Y. K. Abhale, H. R. Pawar, A. Shinde, V. D. Bobade, A. P. Chavan, D. Sarkar, and P. C. Mhaske, “Synthesis of New Thiazole and Pyrazole Clubbed 1, 2, 3-Triazol Derivatives as Potential Antimycobacterial and Antibacterial Agents,” Polycyclic Aromatic Compounds 42, no. 6 (2022): 3216–37. doi:10.1080/10406638.2020.1857272
  • Y. Li, N. Sun, H. Ser, W. Long, Y. Li, C. Chen, B. Zheng, X. Huang, Z. Liu, and Y. Lu, “Antibacterial Activity Evaluation and Mode of Action Study of Novel Thiazole-Quinolinium Derivatives,” RSC Advances 10, no. 25 (2020): 15000–14. doi:10.1039/d0ra00691b
  • Y. K. Abhale, A. Shinde, K. K. Deshmukh, L. Nawale, D. Sarkar, and P. C. Mhaske, “Synthesis, Antitubercular and Antimicrobial Potential of Some New Thiazole Substituted Thiosemicarbazide Derivatives,” Medicinal Chemistry Research 26, no. 10 (2017): 2557–67. doi:10.1007/s00044-017-1955-1
  • Haroon Mohammad, Hassan E. Eldesouky, Tony Hazbun, Abdelrahman S. Mayhoub, and Mohamed N. Seleem, “Identification of a Phenylthiazole Small Molecule with Dual Antifungal and Antibiofilm Activity against Candida albicans and Candida auris,” Scientific Reports 9, no. 1 (2019): 18941. doi:10.1038/s41598-019-55379-1
  • N. D. Gaikwad, S. V. Patil, and V. D. Bobade, “Synthesis and Biological Evaluation of Some Novel Thiazole Substituted Benzotriazole Derivatives,” Bioorganic & Medicinal Chemistry Letters 22, no. 10 (2012): 3449–54. doi:10.1016/j.bmcl.2012.03.094
  • M. Kumar, V. Kumar, V. Singh, and S. Thakral, “Synthesis, in Silico Studies and Biological Screening of (E)-2-(3-(Substitutedstyryl)-5-(Substitutedphenyl)-4, 5-Dihydropyrazol-1-yl) Benzo [d] Thiazole Derivatives as an anti-Oxidant, anti-Inflammatory and Antimicrobial Agents,” BMC Chemistry 16, no. 1 (2022): 1–19. doi:10.1186/s13065-022-00901-2
  • Ekaterina Pivovarova, Alina Climova, Marcin Świątkowski, Marek Staszewski, Krzysztof Walczyński, Marek Dziȩgielewski, Marta Bauer, Wojciech Kamysz, Anna Krześlak, Paweł Jóźwiak, et al, “Synthesis and Biological Evaluation of Thiazole-Based Derivatives with Potential against Breast Cancer and Antimicrobial Agents,” International Journal of Molecular Sciences 23, no. 17 (2022): 9844. doi:10.3390/ijms23179844
  • V. Kartsev, A. Geronikaki, A. Zubenko, A. Petrou, M. Ivanov, J. Glamočlija, M. Sokovic, L. Divaeva, A. Morkovnik, and A. Klimenko, “Synthesis and Antimicrobial Activity of New Heteroaryl (Aryl) Thiazole Derivatives Molecular Docking Studies,” Antibiotics 11, no. 10 (2022): 1337. doi:10.3390/antibiotics11101337
  • (a) M. Ojika, Y. Suzuki, A. Tsukamoto, Y. Sakagami, R. Fudou, T. Yoshimura, and S. Yamanaka, “Cystothiazoles a and B, New Bithiazole-Type Antibiotics from the Myxobacterium Cystobacter fuscus,” The Journal of Antibiotics 51, no. 3 (1998): 275–81. doi:10.7164/antibiotics.51.275 (b) M. Ojika, Y. Suzuki, A. Tsukamoto, Y. Sakagami, R. Fudou, T. Yoshimura, and S. Yamanaka, “Cystothiazoles C-F, New Bithiazole-Type Antibiotics from the Myxobacterium Cystobacter fuscus,” The Journal of Antibiotics 51, no. 3 (1998): 275–81. doi:10.7164/antibiotics.51.275
  • (a) K. Gerzt, H. Irschik, H. Reichenbach, and W. Trowitzsch, “Myxothiazol, an Antibiotic from Myxococcusfulvus (Myxobacterales). I. Cultivation, Isolation, Physico-Chemical and Biological Properties,” Antibiot 33, no. 12 (1980): 1474–9. (b) W. Trowitzsch, G. Reifenstahl, V. Wray, and K. Gerth, “Myxothiazole, an Antibiotic from myxococcus fulvus (Myxobacterales) ii. structure Elucidation,” The Journal of Antibiotics 33, no. 12 (1980): 1480–90, and 33. doi:10.7164/antibiotics.33.1480 (c) W. Trowitzsch, G. Höfle, and W. S. Sheldrick, “The Stereochemistry of Myxothiazol,” Tetrahedron Letters. 22, no. 39 (1981): 3829–32. doi:10.1016/S0040-4039(01)91320-6 (d) J. M. Clough, “The Strobilurins, Oudemansins, and Myxothiazols, Fungicidal Derivatives of β-Methoxyacrylic Acid,” Natural Product Reports. 10 (1993): 565.
  • C. Araniciu, M. Palage, S. Oniga, A. Pirnau, P. Verite, and O. Oniga, “Synthesis and Characterization of Some Novel 5, 2-and 4, 2-Bisthiazoles Derivatives,” Rev. Chim. Buchar 64, no. 10 (2013): 1067–71.
  • C. Araniciu, L. Marutescu, S. Oniga, O. Oniga, M. C. Chifiriuc, and M. Palage, “Evaluation of the Antimicrobial and anti-Biofilm Activity of Some 4,2 and 5,2 Bisthiazoles Derivatives,” Digest Journal of Nanomaterials and Biostructures 9 (2014): 123–31.
  • T. Rozsa, M. Duma, L. Vlase, I. Ionut¸, A. Pîrnău, B. Tiperciuc, and O. Oniga, “Synthesis and Antimicrobial Evaluation of Some New 4,5′‐Bisthiazoles,” Journal of Heterocyclic Chemistry 52, no. 4 (2015): 999–1006. doi:10.1002/jhet.2054
  • L. Costea, O. Oniga, M. Ionescu, B. Tiperciuc, and D. Ghiran, “Synthesis and Antimicrobial Activity of Some New 2'-Arylideneamino-Dithiazoles and 2'-Arylidenehydrazino-5,4'- Dithiazole Compounds,” Farmacia (Bucharest, Romania) 53, no. 2 (2005): 67–75.
  • M. C. Bagley, J. W. Dale, E. A. Merritt, and X. Xiong, “Thiopeptide Antibiotics,” Chemical Reviews 105, no. 2 (2005): 685–714. doi:10.1021/cr0300441
  • (a) J. Kettenring, L. Colombo, P. Ferrari, P. Tavecchia, M. Nebuloni, K. Vekey, G. G. Gallo, and E. Selva, “Antibiotic GE2270A: A Novel Inhibitor of Bacterial Protein Synthesis. II. Structure Elucidation,” The Journal of Antibiotics 44, no. 7 (1991): 702–15. doi:10.7164/antibiotics.44.702. (b) K. I. Suzumura, T. Yokoi, M. Funatsu, K. Nagai, K. Tanaka, H. Zhang, and K. Suzuki, “YM266183 and YM-266184, Novel Thiopeptide Antibiotics Produced by Bacillus cereus Isolated from a Marine Sponge II. Structure Elucidation,” Journal of Antibiotics. 56 (2003): 129–34. doi:10.7164/antibiotics.44.702
  • R. Hughes, and C. Moody, “From Amino Acids to Heteroaromatics-Thiopeptide Antibiotics, Nature’s Heterocyclic Peptides,” Angewandte Chemie (International ed. in English) 46, no. 42 (2007): 7930–54. doi:10.1002/anie.200700728
  • P. Makam, and T. Kannan, “2-Aminothiazole Derivatives as Antimycobacterial Agents: Synthesis, Characterization, in Vitro and in Silicostudies,” European Journal of Medicinal Chemistry. 87 (2014): 643–56. doi:10.1016/j.ejmech.2014.09.086
  • A. Meissner, H. I. Boshoff, M. Vasan, B. P. Duckworth, C. E. Barry, and C. C. Aldrich, “Structure-Activity Relationships of 2-Aminothiazoles Effective against Mycobacterium tuberculosis,” Bioorganic & Medicinal Chemistry 21, no. 21 (2013): 6385–97. doi:10.1016/j.bmc.2013.08.048
  • M. Bonnet, J. Flanagan, D. Chan, E. Lai, P. Nguyen, A. Giaccia, and M. Hay, “SAR Studies of 4-Pyridyl Heterocyclic Anilines That Selectively Induce Autophagic Cell Death in Von Hippel-Lindau-Deficient Renal Cell Carcinoma Cells,” Bioorganic & Medicinal Chemistry 19, no. 11 (2011): 3347–56. doi:10.1016/j.bmc.2011.04.042
  • M. P. Hay, S. Turcotte, J. U. Flanagan, M. Bonnet, D. A. Chan, P. D. Sutphin, P. Nguyen, A. J. Giaccia, and W. A. Denny, “4-Pyridylanilinothiazoles That Selectively Target Von Hippel-Lindau Deficient Renal Cell Carcinoma Cells by Inducing Autophagic Cell Death,” Journal of Medicinal Chemistry 53, no. 2 (2010): 787–97. doi:10.1021/jm901457w
  • S. Oniga, M. Duma, O. Oniga, B. Tiperciuc, A. Pirnau, C. Araniciu, and M. Palage, “Synthesis of Some New 4-Methyl-2-(4-Pyridyl)-Thiazole-5-yl-Azoles as Potential Antimicrobial Agents,” Farmacia 63 (2015): 171–8.
  • W. Zhou, W. Tang, Z. Sun, Y. Li, Y. Dong, H. Pei, Y. Peng, J. Wang, T. Shao, Z. Jiang, et al, “Discovery and Optimization of n-Substituted 2-(4-Pyridinyl) Thiazolecarboxamides against Tumor Growth through Regulating Angiogenesis Signaling Pathways,” Scientific Reports 6 (2016): 33434. doi:10.1038/srep33434
  • A. M. Alqahtani, and A. A. Bayazeed, “Synthesis and Antiproliferative Activity Studies of New Functionalized Pyridine Linked Thiazole Derivatives,” Arabian Journal of Chemistry 14, no. 1 (2021): 102914. doi:10.1016/j.arabjc.2020.11.020
  • Naime Funda Tay, Barkın Berk, Murat Duran, İsmail Kayagil, Leyla Yurttaş, Sevde Nur Biltekin Kaleli, Mustafa Yamaç, Ayşe Betül Karaduman, and Şeref Demirayak, “Synthesis, Antimicrobial Activity and Modeling Studies of Thiazoles Bearing Pyridyl and Triazolyl Scaffolds,” Zeitschrift Für Naturforschung C 77, no. 9-10 (2022): 429–46. doi:10.1515/znc-2022-0002
  • Naime Funda Tay, Murat Duran, İsmail Kayagil, Leyla Yurttaş, Gamze Göger, Fatih Göger, Fatih Demirci, and Şeref Demirayak, “Synthesis, Antimicrobial and Antioxidant Activities of Pyridyl Substituted Thiazolyl Triazole Derivatives,” Brazilian Journal of Pharmaceutical Sciences 58, e191026 (2022). doi:10.1590/s2175-97902022e191026
  • Y. K. Abhale, A. V. Sasane, A. P. Chavan, K. K. Deshmukh, S. S. Kotapalli, R. Ummanni, S. F. Sayyad, and P. C. Mhaske, “Synthesis and Biological Screening of 2-Aryl/Benzyl-2-Aryl-4-Methyl-4,5-Bithiazolyls as Possible anti-Tubercular and Antimicrobial Agents,” European Journal of Medicinal Chemistry 94, no. 2015 (2015): 340–7. doi:10.1016/j.ejmech.2015.03.016
  • Y. K. Abhale, A. D. Shinde, K. K. Deshmukh, L. Nawale, D. Sarkar, P. B. Choudhari, S. S. Kumbhar, and P. C. Mhaske, “Synthesis, Antimycobacterial Screening and Molecular Docking Studies of 4-Aryl-4′-Methyl-2′-Aryl-2,5′-Bisthiazole Derivatives,” Medicinal Chemistry Research 26, no. 11 (2017): 2889–99. doi:10.1007/s00044-017-1988-5
  • NCCLS (National Committee for Clinical Laboratory Standards) method for dilution antimicrobial susceptibility tests of bacteria that grow aerobically,” P.A. Wayne 2002.
  • NCCLS Approval Standard Document M2-A7, National Committee for Clinical Laboratory Standards, USA, Vilanova, PA, 2000.
  • A. W. Bauer, W. M. Kirby, J. C. Sherris, and M. Turck, “Antibiotic Susceptibility Testing by a Standardized Single Disk Method,” American Journal of Clinical Pathology 45, no. 4 (1966): 493–6. doi:10.1093/ajcp/45.4_ts.493
  • S. H. Shelke, P. C. Mhaske, P. Hande, and V. D. Bobade, “Synthesis and Antimicrobial Activities of Novel Series of 1-((4-Methyl-2-Substituted Thiazol-5-yl)Methyleneamino)-2-Substituted Isothiourea Derivatives,” Phosphorus, Sulfur, and Silicon and the Related Elements 188, no. 9 (2013): 1262–70. doi:10.1080/10426507.2012.745542

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.