406
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

A Brief Review on the Design, Synthesis and Biological Evaluation of Pyrazolo[c]coumarin Derivatives

&
Pages 818-859 | Received 11 Oct 2022, Accepted 10 Feb 2023, Published online: 23 Feb 2023

References

  • H. Kiyani, F. Albooyeh, and S. Fallahnezhad, “Synthesis of New Pyrazolyl-1,3-Diazabicyclo[3.1.0]Hexe-3-Ene Derivatives,” Journal of Molecular Structure1091 (2015): 163–9. doi:10.1016/j.molstruc.2015.02.069
  • P.-C. Lv, J. Sun, Y. Luo, Y. Yang, and H.-L. Zhu, “Design, Synthesis, and Structure-Activity Relationships of Pyrazole Derivatives as Potential FabH Inhibitors,” Bioorganic & Medicinal Chemistry Letters 20, no. 15 (2010): 4657–60. doi:10.1016/j.bmcl.2010.05.105
  • Said A. H. El-Feky, Zakaria K. Abd El-Samii, Nermine A. Osman, Jasmine Lashine, Mohamed A. Kamel, and Hamdy Kh Thabet, “Thabet, Bioorg,” Bioorganic Chemistry 58 (2015): 104–16. doi:10.1016/j.bioorg.2014.12.003
  • O. I. El-Sabbagh, M. M. Baraka, S. M. Ibrahim, C. Pannecouque, G. Andrei, R. Snoeck, J. Balzarini, and A. A. Rashad, “Synthesis and Antiviral Activity of New Pyrazole and Thiazole Derivatives,” European Journal of Medicinal Chemistry 44, no. 9 (2009): 3746–53. doi:10.1016/j.ejmech.2009.03.038
  • B. Insuasty, A. Tigreros, F. Orozco, J. Quiroga, R. Abonia, M. Nogueras, A. Sanchez, and J. Cobo, “Synthesis of Novel Pyrazolic Analogues of Chalcones and their 3-Aryl-4-(3-Aryl-4,5-Dihydro-1H-Pyrazol-5-yl)-1-Phenyl-1H-Pyrazole Derivatives as Potential Antitumor Agents,” Bioorganic & Medicinal Chemistry 18, no. 14 (2010): 4965–74. doi:10.1016/j.bmc.2010.06.013
  • V. Michon, C. H. Penhoat, F. Tombret, J. M. Gillardin, F. Lepage, and L. Berthon, “Preparation, Structural Analysis and Anticonvulsant Activity of 3- and 5-Aminopyrazole N-Benzoyl Derivatives,” European Journal of Medicinal Chemistry. 30, no. 2 (1995): 147–55. doi:10.1016/0223-5234(96)88220-1
  • J. B. Shi, W. J. Tang, X. B. Qi, R. Li, and X. H. Liu, “Novel Pyrazole-5-Carboxamide and Pyrazole-Pyrimidine Derivatives: Synthesis and Anticancer Activity,” European Journal of Medicinal Chemistry 90 (2015): 889–96. doi:10.1016/j.ejmech.2014.12.013
  • M. Mamaghani, R. Hossein Nia, F. Shirini, K. Tabatabaeian, and M. Rassa, “An Efficient and Eco-Friendly Synthesis and Evaluation of Antibactrial Activity of Pyrano[2,3-c]Pyrazole Derivatives,” Medicinal Chemistry Research 24, no. 5 (2015): 1916–26. doi:10.1007/s00044-014-1271-y
  • R. C. Khunt, V. M. Khedkar, R. S. Chawda, N. A. Chauhan, A. R. Parikh, and E. C. Coutinho, “Synthesis, Antitubercular Evaluation and 3D-QSAR Study of N-Phenyl-3-(4-Fluorophenyl)-4-Substituted Pyrazole Derivatives,” Bioorganic & Medicinal Chemistry Letters 22, no. 1 (2012): 666–78. doi:10.1016/j.bmcl.2011.10.059
  • V. Kumar, K. Kaur, G. K. Gupta, and A. K. Sharma, “Pyrazole Containing Natural Products: synthetic Preview and Biological Significance,” European Journal of Medicinal Chemistry 69 (2013): 735–53. doi:10.1016/j.ejmech.2013.08.053
  • G. Li, Y. Cheng, C. Han, C. Song, N. Huang, and Y. Du, “Pyrazole-containing pharmaceuticals: target, pharmacological activity, and their SAR studies,” RSC Med. Chem 13 (2022):1300-21. doi:10.1039/D2MD00206J
  • A. Ansari, A Ali, M. Asif, and S. Shamsuzzaman, “Review: Biologically Active Pyrazole Derivatives,” New Journal of Chemistry 41, no. 1 (2017): 16–41. doi:10.1039/C6NJ03181A
  • M. I. Hussain, Q. A. Syed, M. N. K. Khattak, B. Hafez, M. J. Reigosa, and A. El-Keblawy, “Natural Product Coumarins: Biological and Pharmacological Perspectives,” Biologia 74, no. 7 (2019): 863–88. doi:10.2478/s11756-019-00242-x
  • O. Mazimba, “Umbelliferone: Sources, chemistry and bioactivities review,”Bulletin of Faculty of Pharmacy, Cairo University 55 (2017): 223–32.
  • M. Wadelius, and M. Pirmohamed, “Pharmacogenetics of Warfarin: current Status and Future Challenges,” The Pharmacogenomics Journal 7, no. 2 (2007): 99–111. doi:10.1038/sj.tpj.6500417
  • C. Sun, W. Zhao, X. Wang, Y. Sun, and X. Chen, “A Pharmacological Review of Dicoumarol: An Old Natural Anticoagulant Agent,” Pharmacological Research 160 (2020): 105193. doi:10.1016/j.phrs.2020.105193
  • E. H. M. Hassanein, A. M. Sayed, O. E. Hussein, and M. Mahmoud, “Coumarins as Modulators of the Keap1/Nrf2/ARE Signaling Pathway,” Oxidative Medicine and Cellular Longevity 2020 (2020): 1675957. /doi:10.1155/2020/1675957
  • X. M. Peng, G. L. Damu, and C. Zhou, “Current Developments of Coumarin Compounds in Medicinal Chemistry,” Current Pharmaceutical Design 19, no. 21 (2013): 3884–930. doi:10.2174/1381612811319210013
  • J. R. Hwu, S. Y. Lin, S. C. Tsay, E. De Clercq, P. Leyssen, and J. Neyts, “Coumarin-Purine Ribofuranoside Conjugates as New Agents against Hepatitis C Virus,” Journal of Medicinal Chemistry 54, no. 7 (2011): 2114–26. doi:10.1021/jm101337v
  • E. B. B. Ong, N. Watanabe, A. Saito, Y. Futamura, K. H. A. El Galil, A. Koito, N. Najimudin, and H. Osada, “Vipirinin, a Coumarin-Based HIV-1 Vpr Inhibitor, Interacts with a Hydrophobic Region of VPR,” The Journal of Biological Chemistry 286, no. 16 (2011): 14049–56. doi:10.1074/jbc.M110.185397
  • Y. Bansal, P. Sethi, and G. Bansal, “Coumarin: A Potential Nucleus for anti-Inflammatory Molecules,” Medicinal Chemistry Research 22, no. 7 (2013): 3049–60. doi:10.1007/s00044-012-0321-6
  • G.-L. Xi, and Z.-Q. Liu, “Coumarin-Fused Coumarin: antioxidant Story from N,N-Dimethylamino and Hydroxyl Groups,” Journal of Agricultural and Food Chemistry 63, no. 13 (2015): 3516–23. doi:10.1021/acs.jafc.5b00399
  • F. Chimenti, B. Bizzarri, A. Bolasco, D. Secci, P. Chimenti, A. Granese, S. Carradori, D. Rivanera, A. Zicari, M. M. Scaltrito, et al, “Synthesis, Selective anti-Helicobacter pylori Activity, and Cytotoxicity of Novel N-Substituted-2-Oxo-2H-1-Benzopyran-3-Carboxamides,” Bioorganic & Medicinal Chemistry Letters 20, no. 16 (2010): 4922–6., doi:10.1016/j.bmcl.2010.06.048
  • P. Patra, G. K. Kar, A. Sarkar, J. K. Ray, T. Dasgupta, M. Ghosh, and S. Bhattacharya, “N -Aryl Modification in γ -Lactam: Design and Synthesis of Novel Monocyclic γ -Lactam Derivatives as Inhibitor for Bacterial Propagation,” Synthetic Communications. 42, no. 20 (2012): 3031–41. doi:10.1080/00397911.2011.574807
  • G. A. Gonçalves, A. R. Spillere, G. M. das Neves, L. P. Kagami, G. L. von Poser, R. Faria, S. Canto, and V. L. Eifler-Lima, “Natural and Synthetic Coumarins as Antileishmanial Agents: A Review,” European Journal of Medicinal Chemistry 203 (2020): 112514–627. doi:10.1016/j.ejmech.2020.112514
  • D. Cao, Z. Liu, P. Verwilst, S. Koo, P. Jangjili, J. S. Kim, and W. Lin, “Coumarin-Based Small-Molecule Fluorescent Chemosensors,” Chemical Reviews 119, no. 18 (2019): 10403–519. doi:10.1021/acs.chemrev.9b00145
  • P. Patra, “Thermolysis of Chlorovinyl Imines as an Alternate Route for the Synthesis of Pyranoquinolin-3-One and Pyranoacridin-3-One Derivatives,” Journal of Heterocyclic Chemistry 54, no. 6 (2017): 3656–62. doi:10.1002/jhet.2993
  • W. S. Hamama, M. E. Ibrahim, A. E. Metwalli, and H. H. Zoorob, “Recent Synthetic Aspects on the Chemistry of Aminocoumarins,” Research on Chemical Intermediates 43, no. 11 (2017): 5943–83. doi:10.1007/s11164-017-2973-9
  • Sumbulunnisan Shareef, Habibur Rahman, and Md Musawwer Khan, Saigal, “Aminocoumarins: A Privileged Precursor for the Synthesis of Fused Heterocycles,” Current Organic Chemistry 23, no. 9 (2019): 1045–75. doi:10.2174/1385272823666190514073610
  • L. Heide, “The Aminocoumarins: Biosynthesis and Biology,” Natural Product Reports 26, no. 10 (2009): 1241–50. doi:10.1039/b808333a
  • R. H. Flatman, A. Eustaquio, S.-M. Li, L. Heide, and A. Maxwell, “Structure-Activity Relationships of Aminocoumarin-Type Gyrase and Topoisomerase IV Inhibitors Obtained by Combinatorial Biosynthesis,” Antimicrobial Agents and Chemotherapy 50, no. 4 (2006): 1136–42. doi:10.1128/AAC.50.4.1136-1142.2006
  • D. C. Hooper, J. S. Wolfson, G. L. McHugh, M. B. Winters, and M. N. Swartz, “Effects of Novobiocin, Coumermycin A1, Clorobiocin, and Their Analogs on Escherichia coli DNA Gyrase and Bacterial Growth,” Antimicrobial Agents and Chemotherapy 22, no. 4 (1982): 662–71. doi:10.1128/AAC.22.4.662
  • M. G. Marcu, A. Chadli, I. Bouhouche, M. Catelli, and L. M. Neckers, “The Heat Shock Protein 90 Antagonist Novobiocin Interacts with a Previously Unrecognized ATP-Binding Domain in the Carboxyl Terminus of the Chaperone,” The Journal of Biological Chemistry 275, no. 47 (2000): 37181–6. doi:10.1074/jbc.M003701200
  • D. Audisio, D. Methy-Gonnot, C. Radanyi, J. M. Renoir, S. Denis, F. Sauvage, J. Vergnaud-Gauduchon, J. D. Brion, S. Messaoudi, and M. Alami, “Synthesis and Antiproliferative Activity of Novobiocin Analogues as Potential hsp90 Inhibitors,” European Journal of Medicinal Chemistry 83 (2014): 498–507. doi:10.1016/j.ejmech.2014.06.067
  • L. S. A. Carneiro, F. Almeida-Souza, Y. S. C. Lopes, R. C. V. Novas, K. B. A. Santos, C. B. P. Ligiero, K. D. S. Calabrese, and C. D. Buarque, “Synthesis of 3-Aryl-4-(N-Aryl)Aminocoumarins via Photoredox Arylation and the Evaluation of Their Biological Activity,” Bioorganic Chemistry 114 (2021): 105141. [ doi:10.1016/j.bioorg.2021.105141]
  • M. Trkovnik, V. Kalaj, and D. Kitan, “Synthesis of New Heterocyclocoumarins from 3,4-Diamino- and 4-Chloro-3-Nitrocoumarins,” Organic Preparations and Procedures International. 19, no. 6 (1987): 450–5. doi:10.1080/00304948709356209
  • E. M. Beccalli, A. Contini, and P. Trimarco, “3-Nitrocoumarin Amidines: A New Synthetic Strategy for Substituted [1]Benzopyrano[3,4-d]Imidazol-4(3H)-Ones,” European Journal of Organic Chemistry 2003, no. 20 (2003): 3976–84. doi:10.1002/ejoc.200300109
  • V. Colotta, D. Catarzi, F. Varano, L. Cecchi, G. Filacchioni, C. Martini, L. Giusti, and A. Lucacchini, “Tricyclic Heteroaromatic Systems. Synthesis and Benzodiazepine Receptor Affinity of 2-Substituted-1-Benzopyrano[3,4-d]Oxazol-4-Ones, -Thiazol-4-Ones, and -Imidazol-4-Ones,” Il Farmaco 53, no. 5 (1998): 375–81. doi:10.1016/S0014-827X(98)00028-7
  • J. L. Ramiro, A. G. Neo, and C. F. Marcos, “Synthesis of Imidazolocoumarins by the Amide-Directed Oxidative Cyclisation of enol-Ugi Derivatives,” Organic & Biomolecular Chemistry 20, no. 26 (2022): 5293–307. doi:10.1039/d2ob00518b
  • V. Jain, S. Bijani, Pratik. Ambasana, U. Bhoya, and A. Shah, “Development of Nitromethane catalyzed C-H activation for the preparation of chromeno[3,4-d]imidazol-4-ones as hybrid scaffolds Chemistry & Biology Interface,” Chem. Biol. Interface 5 (2015): 347–64.
  • X. Han, J. Luo, F. Wu, X. Y. Hou, G. Yan, M. Zhou, M. Zhang, C. Pu, and R. Li, “Synthesis and Biological Evaluation of Novel 2,3-Dihydrochromeno[3,4-d]Imidazol-4(1H)-One Derivatives as Potent Anticancer Cell Proliferation and Migration Agents,” European Journal of Medicinal Chemistry 114 (2016): 232–43. doi:10.1016/j.ejmech.2016.01.035
  • R. K. Mishra, R. Alokam, S. M. Singhal, G. Srivathsav, D. Sriram, N. Kaushik-Basu, D. Manvar, and P. Yogeeswari, “Design of Novel Rho Kinase Inhibitors Using Energy Based Pharmacophore Modeling, Shape-Based Screening, in Silico Virtual Screening, and Biological Evaluation,” Journal of Chemical Information and Modeling 54, no. 10 (2014): 2876–86. doi:10.1021/ci5004703
  • A. Dolsak, U. Svajger, S. Lesnik, J. Konc, S. Gobec, and M. Sova, “Selective Toll-like Receptor 7 Agonists with Novel Chromeno[3,4-d]Imidazol-4(1H)-One and 2-(Trifluoromethyl)Quinoline/ Quinazoline-4-Amine Scaffolds,” European Journal of Medicinal Chemistry 179 (2019): 109–22. doi:10.1016/j.ejmech.2019.06.030
  • U. Svajger, Z. Horvat, D. Knez, P. Rozman, S. Turk, and S. Gobec, “New Antagonists of Toll-like Receptor 7 Discovered through 3D Ligand-Based Virtual Screening,” Medicinal Chemistry Research 24, no. 1 (2015): 362–71. doi:10.1007/s00044-014-1127-5
  • K. N. Jadhav, R. B. Kale, S. M. Alam, B. V. Gaikwad, V. Prasad, and R. R. Kale, “Synthesis and Functionalization of Coumarin-Pyrazole Scaffold: Recent Development, Challenges, and Opportunities,” Current Organic Synthesis 18, no. 7 (2021): 685–710. doi:10.2174/1570179418666210301122322
  • F. A. Ragab, A. A. M. Eissa, S. H. Fahim, M. A. Salem, M. A. Gamal, and Y. M. Nissan, “Novel Coumarin–Pyrazoline Hybrids: synthesis, Cytotoxicity Evaluation and Molecular Dynamics Study,” New Journal of Chemistry 45, no. 40 (2021): 19043–55. doi:10.1039/D1NJ02862F
  • Asha V. Chate, Ankita A. Redlawar, Giribala M. Bondle, Aniket P. Sarkate, Shailee V. Tiwari, and Deepak K. Lokwani, “A New Efficient Domino Approach for the Synthesis of Coumarin-Pyrazolines as Antimicrobial Agents Targeting Bacterial d -Alanine- d -Alanine Ligase,” New Journal of Chemistry 43, no. 23 (2019): 9002–11. doi:10.1039/C9NJ00703B
  • R. Kenchappa, Y. D. Bodke, A. Chandrashekar, M. A. Sindhe, and S. K. Peethambar, “Synthesis of Coumarin Derivatives Containing Pyrazole and Indenone Rings as Potent Antioxidant and Antihyperglycemic Agents,” Arab. J. Chem 10 (2017): S3895–S3906. doi:10.1016/j.arabjc.2014.05.029
  • A. Benazzouz-Touami, A. Chouh, S. Halit, S. Terrachet-Bouaziz, M. Makhloufi-Chebli, K. Ighil-Ahriz, and A. M. S. Silva, “New Coumarin-Pyrazole Hybrids: Synthesis, Docking Studies and Biological Evaluation as Potential Cholinesterase Inhibitors,” Journal of Molecular Structure. 1249 (2022): 131591. doi:10.1016/j.molstruc.2021.131591
  • F. M. Aqlan, M. M. Alam, A. S. Al-Bogami, T. S. Saleh, A. M. Asiri, J. Uddin, and M. M. Rahman, “Synthesis of Novel Pyrazole Incorporating a Coumarin Moiety (PC) for Selective and Sensitive Co 2+ Detection,” New Journal of Chemistry 43, no. 31 (2019): 12331–9. doi:10.1039/C9NJ02176K
  • E. R. El-Sawy, A. B. Abdelwahab, and G. Kirsch, “Synthetic Routes to Coumarin(Benzopyrone)-Fused Five-Membered Aromatic Heterocycles Built on the α-Pyrone Moiety. Part II: Five-Membered Aromatic Rings with Multi Heteroatoms,” Molecules 26, no. 11 (2021): 3409. doi:10.3390/molecules26113409
  • F. Salehian, H. Nadri, L. Jalili-Baleh, L. Youseftabar-Miri, S. N. Abbas Bukhari, A. Foroumadi, T. T. Küçükkilin, M. Sharifzadeh, and M. Khoobi, “A Review: Biologically Active 3,4-Heterocycle-Fused Coumarins,” European Journal of Medicinal Chemistry 212 (2021): 113034. doi:10.1016/j.ejmech.2020.113034
  • P. Patra, and G. K. Kar, “The Synthesis, Biological Evaluation and Fluorescence Study of Chromeno[4,3- b ]Pyridin/Quinolin-One Derivatives, the Backbone of Natural Product Polyneomarline C Scaffolds: A Brief Review,” New Journal of Chemistry 45, no. 6 (2021): 2879–934. doi:10.1039/D0NJ04761A
  • K. Samanta, P. Patra, G. K. Kar, S. K. Dinda, and D. S. Mahanty, “Diverse Synthesis of Pyrrolo/Indolo[3,2- c ]Coumarins as isolamellarin-A Scaffolds: A Brief Update,” New Journal of Chemistry 45, no. 17 (2021): 7450–85. doi:10.1039/D0NJ06267G
  • P. Patra, “A short review on the synthesis of pyrrolo[3,4-c]coumarins an isolamellarin-B scaffolds,” Synthetic Communications 52 (2022): 1999–2018. (doi.org/ doi:10.1080/00397911.2022.2119413)
  • B. Chantegrel, A.-I. Nodi, and S. Gelin, “4-Oxo-1H-and-2H-[1]Benzopyrano[4,3-c]Pyrazoles. Preparation from 4-Hydroxycoumarin or 3-Chromonecarboxylic Acid Derivatives,” Tetrahedron Letters. 24, no. 4 (1983): 381–4. doi:10.1016/S0040-4039(00)81413-6
  • Milan ČAčIč, Mladen Trkovnik, and Elizabeta Has-Schön, “Synthesis of N 1 -Substituted Coumarino[4,3-c] Pyrazoles,” Journal of Heterocyclic Chemistry 40, no. 5 (2003): 833–6. doi:10.1002/jhet.5570400513
  • W. Stadlbauer, and G. Hojas, “Ring closure reactions of 3-arylhydrazonoalkyl-quinolin-2-ones to 1-aryl-pyrazolo[4,3-c]quinolin-2-ones,” J. Heterocycl. Chem., 41 (2004): 681–90. doi:10.1002/jhet.5570410505
  • A. Manvar, P. Bochiya, V. Virsodia, R. Khunt, and A. Shah, “Microwave-assisted and Zn[l-proline]2 catalyzed tandem cyclization under solvent free conditions: Rapid synthesis of chromeno[4,3-c]pyrazol-4-ones,” J. Mol. Catal. A Chem 275 (2007): 148–52. doi:10.1016/j.molcata.2007.05.039
  • A. M. El-Kazak, N. M. El-Gohary, A.-S. Badran, and M. A. Ibrahim, ”Synthesis and chemical reactivity of the novel 3-chloro-3-(4-chlorocoumarin-3-yl)prop-2-enal,” Tetrahedron 75 (2019): 3923–32. doi:10.1016/j.tet.2019.06.013
  • T. Fathi, N. D. An, G. Schmitt, E. Cerutti, and B. Laude, “Regiochemistry of the cycloadditions of diphenylnitrilimine to coumarin, 3-ethoxycarbonyl and 3-acetyl coumarins: A reinvestigation,” Tetrahedron 44 (1988): 4527–36. doi:10.1016/S0040-4020(01)86154-8
  • I. I. Padilla-Martinez, I. Y. Flores-Larios, E. V. Garcia-Baez, J. Gonzalez, A. Cruz, and F. J. Martinez-Martinez, “X-Ray Supramolecular Structure, NMR Spectroscopy and Synthesis of 3-Methyl-1-Phenyl-1H-Chromeno[4,3-c]Pyrazol-4-Ones Formed by the Unexpected Cyclization of 3-[1-(Phenyl-Hydrazono)Ethyl]-Chromen-2-Ones,” Molecules (Basel, Switzerland) 16, no. 1 (2011): 915–32. doi:10.3390/molecules16010915
  • G.-Y. Yang, C.-X. Wang, S.-F. Fan, L.-J. Zhao, D. Wang, and C.-L. Xu, “Study on the Cyclization Methods of 3-[1-(Phenyl-hydrazono)ethyl]-chromen-2-ones,” Synthetic Communications. 43 (2013): 1263–9. doi:10.1080/00397911.2011.630772
  • H.-Y. Wang, X.-C. Liu, Z.-B. Huang, and D.-Q. Shi, “Copper-catalyzed Cyclization of 3-Acylcoumarin Hydrazone using Air as the Oxidant: Efficient Synthesis of Pyrazole-Fused Coumarin Derivatives,” Journal of Heterocyclic Chemistry. 52 (2015): 380–5. doi:10.1002/jhet.2052
  • J. Grover, S. K. Roy, and S. M. Jachak, “Potassium Carbonate–Mediated Efficient and Convenient Synthesis of 3-Methyl-1-phenylchromeno[4,3-c]pyrazol-4(1H)-ones,” Synthetic Communications. 44 (2014): 1914–23.
  • J. Grover, V. Kumar, M. E. Sobhia, and S. M. Jachak, “Synthesis, Biological Evaluation and Docking Analysis of 3-Methyl-1-Phenylchromeno[4,3-c]Pyrazol-4(1H)-Ones as Potential Cyclooxygenase-2 (COX-2) Inhibitors,” Bioorganic & Medicinal Chemistry Letters 24, no. 19 (2014): 4638–42. doi:10.1016/j.bmcl.2014.08.050
  • A. Bonardi, M. Falsini, D. Catarzi, F. Varano, L. D. C. Mannelli, B. Tenci, C. Ghelardini, A. Angeli, C. T. Supuran, and V. Colotta, “Structural Investigations on Coumarins Leading to Chromeno[4,3-c]Pyrazol-4-Ones and Pyrano[4,3-c]Pyrazol-4-Ones: New Scaffolds for the Design of the Tumor-Associated Carbonic Anhydrase Isoforms IX and XII,” European Journal of Medicinal Chemistry 146 (2018): 47–59. doi:10.1016/j.ejmech.2018.01.033
  • B. Trimeche, R. Gharbi, S. E. Houla, M.-T. Martin, J. M. Nuzillard, and Z. Mighri, “Reactivity of [1]Benzopyrano[4,3-c][1,5]Benzodiazepin-7(8H)-Ones Towards Some N-Binucleophiles,” J. Chem. Res (2004): 170–3. doi:10.3184/0308234041640636
  • A. Hantschmann, M. Pietsch, and M. W. Denfels, “Heterocyclisch [c]-anellierte Cumarine aus 4-Azido-3-cumarincarbaldehyden,” Liebigs Annalen Der Chemie. (1992): 23–8. doi:10.1002/jlac.199219920106
  • I. Strakova, M. Petrova, S. Belyakov, and A. Strakovs, “Reactions of 4-Chloro-3-formylcoumarin with Arylhydrazines,” Chemistry of Heterocyclic Compounds. 39 (2003): 1608–16. doi:10.1023/B:COHC.0000018338.41222.a2
  • Q. Zhou, H.-Y. Yu, Y. Zhou, J.-R. Wei, and L. Wang, Organic & Biomolecular Chemistry. (2022) doi:10.1039/d2ob00639a
  • N. Hamdi, C. Fischmeister, M. C. Puerta, and P. Valerga, “A rapid access to new coumarinyl chalcone and substituted chromeno[4,3-c]pyrazol-4(1H)-ones and their antibacterial and DPPH radical scavenging activities,” Medicinal Chemistry Research. 20 (2011): 522–30. doi:10.1007/s00044-010-9326-1
  • A. S. Al-Ayed, “Synthesis of New Substituted Chromen[4,3-c]Pyrazol-4-Ones and Their Antioxidant Activities,” Molecules 16, no. 12 (2011): 10292–302. doi:10.3390/molecules161210292
  • V. O. Iaroshenko, F. Erben, S. Mkrtchyan, A. Hakobyan, M. Vilches-Herrera, S. Dudkin, A. Bunescu, A. Villinger, V. Y. Sosnovskikh, and P. Lange, “4-Chloro-3-(trifluoroacetyl)- and 4-chloro-3-(methoxalyl)coumarins as novel and efficient building blocks for the regioselective synthesis of 3,4-fused coumarins,” Tetrahedron 67 (2011): 7946–55. doi:10.1016/j.tet.2011.08.030
  • J. A. Kumar, G. Saidachary, G. Mallesham, B. Sridhar, N. Jain, S. V. Kalivendi, V. J. Rao, and B. C. Raju, “Synthesis, Anticancer Activity and Photophysical Properties of Novel Substituted 2-Oxo-2H-Chromenylpyrazolecarboxylates,” European Journal of Medicinal Chemistry 65 (2013): 389–402. doi:10.1016/j.ejmech.2013.03.042
  • Z. Sun, J. Khan, M. Makowska-Grzyska, M. Zhang, J. H. Cho, C. Suebsuwong, P. Vo, D. R. Gollapalli, Y. Kim, A. Joachimiak, et al, “Synthesis, in Vitro Evaluation and Cocrystal Structure of 4-Oxo-[1]Benzopyrano[4,3-c]Pyrazole Cryptosporidium Parvum Inosine 5'-Monophosphate Dehydrogenase (CpIMPDH) Inhibitors,” Journal of Medicinal Chemistry 57, no. 24 (2014): 10544–50. doi:10.1021/jm501527z
  • V. T. Angelova, V. Valcheva, T. Pencheva, Y. Voynikov, N. Vassilev, R. Mihaylova, G. Momekov, and B. Shivachev, “Synthesis, Antimycobacterial Activity and Docking Study of 2-Aroyl-[1]Benzopyrano[4,3-c]Pyrazol-4(1H)-One Derivatives and Related Hydrazide-Hydrazones,” Bioorganic & Medicinal Chemistry Letters 27, no. 13 (2017): 2996–3002. doi:10.1016/j.bmcl.2017.05.011
  • A. S. Shawali, B. E. Elanadoul, and H. A. Alba, “Cycloaddition of diphenylnitrilimine to coumarins. The synthesis of 3a,9b-dihydro-4-oxo-1H-benzopyrano [4 ,3-c]pyrazole derivatives,” Tetrahedron 41 (1985): 1877–84. doi:10.1016/S0040-4020(01)96550-0
  • N. M. Abunada, H. M. Hassaneen, A. S. M. Abu. Samaha, and Omar A. Miqda, “Synthesis and antimicrobial evaluation of some new pyrazole, pyrazoline and chromeno[3,4-c]pyrazole derivatives,” Journal of the Brazilian Chemical Society. 20 (2009): 975–87. doi:10.1590/S0103-50532009000500024
  • Jian-Wu Xie, Zheng Wang, Wei-Jun Yang, Li-Chun Kong, and Dong-Cheng Xu, “Efficient Method for the Synthesis of Functionalized Pyrazoles by Catalyst-Free One-Pot Tandem Reaction of Nitroalkenes with Ethyl Diazoacetate,” Organic & Biomolecular Chemistry 7, no. 21 (2009): 4352–4. doi:10.1039/b915231h
  • K. Ito, and J. Maruyama, “4‐Diazomethylcoumarins and related stable heteroaryldiazomethanes. Thermal conversion into condensed pyrazoles,” Journal of Heterocyclic Chemistry. 25 (1988): 1681–7. doi:10.1002/jhet.5570250614
  • J. Zhang, D. Shi, H. Zhang, Z. Xu, H. Bao, H. Jin, and Y. Liu, “Synthesis of dibenzopyranones and pyrazolobenzopyranones through copper(0)/Selectfluor system-catalyzed double C-H activation/oxygen insertion of 2-arylbenzaldehydes and 5-arylpyrazole-4-carbaldehydes,” Tetrahedron 73 (2017): 154–63. doi:10.1016/j.tet.2016.11.069
  • P. Lokhande, K. Hasanzadeh, and S. G. Konda, “A novel and efficient approach for the synthesis of new halo substituted 2-arylpyrazolo[4,3-c] coumarin derivatives,” Eur. J. Chem 2 (2011): 223–8. ‐doi:10.5155/eurjchem.2.2.223-228.336
  • K. S. Hariprasad, K. V. Prasad, and B. C. Raju, “La(OTf)3 catalyzed reaction of salicylaldehyde phenylhydrazones with β-ketoesters and activated alkynes: facile approach for the preparation of chromenopyrazolones,” RSC Advances. 6 (2016): 108654–61. doi:10.1039/C6RA21717F
  • K. S. Hariprasad, A. Anand, B. B. Rathod, A. Zehra, A. K. Tiwari, R. S. Prakasham, and B. C. Raju, “Neoteric Synthesis and Biological Activities of Chromenopyrazolones, Tosylchromenopyrazolones, Benzoylcoumarins,” ChemistrySelect 2 (2017): 10628–34. doi:10.1002/slct.201700587
  • S. H. Kurma, B. Sridhar, and C. R. Bhimapaka, “Direct Access for the Regio- and Stereoselective Synthesis of N-Alkenylpyrazoles and Chromenopyrazoles,” The Journal of Organic Chemistry 86, no. 3 (2021): 2271–82. doi:10.1021/acs.joc.0c02421
  • R. P. Bhaskaran, J. C. Janardhanan, and B. P. Babu, “Metal-Free Synthesis of Pyrazoles and Chromenopyrazoles from Hydrazones and Acetylenic Esters,” ChemistrySelect 5 (2020): 4822–5. doi:10.1002/slct.202000719
  • S. T. Kolla, N. R. Rayala, B. Sridhar, and C. R. Bhimapaka, “Unexpected Ring Opening of Pyrazolines with Activated Alkynes: synthesis of 1H-Pyrazole-4,5-Dicarboxylates and Chromenopyrazolecarboxylates,” Organic & Biomolecular Chemistry 20, no. 2 (2022): 334–8. doi:10.1039/d1ob01727f
  • B. Molnár, M. K. Gopisetty, D. I. Adamecz, M. Kiricsi, and É. Frank, “Multistep Synthesis and In Vitro Anticancer Evaluation of 2-Pyrazolyl-Estradiol Derivatives, Pyrazolocoumarin-Estradiol Hybrids and Analogous Compounds,” Molecules 25 (2020): 4039. doi:10.3390/molecules25184039
  • V. Colotta, L. Cecchi, F. Melani, G. Palazzino, and G. Filacchioni, “The correct synthesis of 2,3-dihydro-2-aryl-4-r-[1]benzopyrano[4,3-c]pyrazole-3-ones,” Tetrahedron Letters. 28 (1987): 5165–8. doi:10.1016/S0040-4039(00)95618-1
  • V. Y. Sosnovskikh, V. S. Moshkin, and M. I. Kodess, “On the reaction of 3-cyanochromones with phenyl- and methylhydrazines: Structural revision and a simple synthesis of chromeno[4,3-c]pyrazol-4-ones,” J. Heterocyclic Chem 47 (2010): 629–33.
  • M. Miernicka, and E. Budzisz, “Synthesis and structure of novel copper(II) complexes with pyrazole derived ligands and metal–ligand interaction in solution,” Polyhedron 26 (2007): 2589–96. doi:10.1016/j.poly.2006.12.043
  • E. Budzisz, I.-P. Lorenz, P. Mayer, P. Paneth, L. Szatkowski, U. Krajewska, M. Rozalskid, and M. Miernickaa, “Synthesis, crystal structure, theoretical calculation and cytotoxic effect of new Pt(ii), Pd(ii) and Cu(ii) complexes with pyridine-pyrazoles derivatives,” New Journal of Chemistry. 32 (2008): 2238–44. doi:10.1039/b808301k
  • V. Colotta, L. Cecchi, G. Filacchioni, C. Melani, G. Palazzino, and A. Lucacchini, “Additions and Corrections-Synthesis, Binding Studies, and Structure-Activity Relationships of 1-Aryl- and 2-Aryl[1]benzopyranopyrazol-4-ones, Central Benzodiazepine Receptor Ligands,” Journal of Medicinal Chemistry. 31 (1988): 700. doi:10.1021/jm00398a600
  • A. Thakur, M. Thakur, and P. Khadikar, “Topological Modeling of Benzodiazepine Receptor Binding,” Bioorganic & Medicinal Chemistry 11, no. 23 (2003): 5203–5207. doi:10.1016/j.bmc.2003.08.014
  • A. M. K. El-Dean, R. M. Zaki, A. A. Geies, S. M. Radwan, and M. S. Tolba, "Synthesis and antimicrobial activity of new heterocyclic compounds containing thieno[3,2-c]coumarin and pyrazolo[4,3-c]coumarin frameworks,"Russian Journal of Bioorganic Chemistry. 39 (2013): 553–564. doi:10.1134/S1068162013040079
  • Y. Yin, X. Wu, H.-W. Han, S. Sha, S.-F. Wang, F. Qiao, A.-M. Lu, P.-C. Lv, and H.-L. Zhu, “Discovery and Synthesis of a Novel Series of Potent, Selective Inhibitors of the PI3Kα: 2-Alkyl-Chromeno[4,3-c]Pyrazol-4(2H)-One Derivatives,” Organic & Biomolecular Chemistry 12, no. 45 (2014): 9157–9165. doi:10.1039/c4ob01589d
  • L. Lu, S. Sha, K. Wang, Y.-H. Zhang, Y.-D. Liu, G.-D. Ju, B. Wang, and H.-L. Zhu, “Discovery of Chromeno[4,3-c]Pyrazol-4(2H)-One Containing Carbonyl or Oxime Derivatives as Potential, Selective Inhibitors PI3Kα,” Chemical & Pharmaceutical Bulletin 64, no. 11 (2016): 1576–1581. doi:10.1248/cpb.c16-00388
  • M. Godumala, S. Choi, S. Y. Park, M. J. Cho, H. J. Kim, D. H. Ahn, J. S. Moon, J. H. Kwon, and D. H. Choi, “Chromenopyrazole-Based Bipolar Blue Host Materials for Highly Efficient Thermally Activated Delayed Fluorescence Organic Light-Emitting Diodes,” Chemistry of Materials. 30 (2018): 5005–5012. doi:10.1021/acs.chemmater.8b01207
  • M. Godumala, J. Yoon, C. Lee, J.-E. Jeong, S. Park, H. Y. Woo, M. J. Cho, and D. H. Choi, “Chromenopyrazole-Based Bipolar Host Materials for Solution-Processable Thermally Activated Delayed Fluorescence OLEDs Exhibiting High Efficiency and Low Roll-off,” Chemical Communications (Cambridge, England) 55, no. 86 (2019): 12952–12955. doi:10.1039/c9cc05983k
  • S. Chekir, M. Debbabi, A. Regazzetti, D. Dargere, O. Laprévote, H. B. Jannet, and R. Gharbi, “Design, Synthesis and Biological Evaluation of Novel 1,2,3-Triazole Linked Coumarinopyrazole Conjugates as Potent Anticholinesterase, anti-5-Lipoxygenase, anti-Tyrosinase and anti-Cancer Agents,” Bioorganic Chemistry 80 (2018): 189–194. doi:10.1016/j.bioorg.2018.06.005
  • Y. Yin, J.-Q. Hu, X. Wu, S. Sha, S.-F. Wang, F. Qiao, Z.-C. Song, and H.-L. Zhu, “Design, Synthesis and Biological Evaluation of Novel Chromeno[4,3-c]Pyrazol-4(2H)-One Derivates Containing Sulfonamido as Potential PI3Kα Inhibitors,” Bioorganic & Medicinal Chemistry 27, no. 11 (2019): 2261–2267. doi:10.1016/j.bmc.2019.04.021

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.