67
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An Interesting and Highly Efficient Route to 2-(Arylethynyl)Selanyl-Azoles: Fe3O4-Serine-CuI Nanocomposite Catalyzed Three-Component Coupling Reaction of Azoles, Se Powder, and Alkynes

, , , , &
Pages 930-946 | Received 28 Nov 2022, Accepted 13 Feb 2023, Published online: 27 Feb 2023

References

  • L. Zhang, X. Yang, L. Zhang, H. Shu, Y. Jia, L. Qi, Y. Han, and R. Wang, “Preparation of Nano-Hollow Sphere Hydrolytic Catalyst and Study on Its COS Removal Performance,” Journal of Nanoparticle Research 24, no. 12 (2022): 268. doi:10.1007/s11051-022-05641-x
  • Y. Yang, M. Zhao, and L. Lai, “Surface Activity, Micellization, and Application of Nano-Surfactants—Amphiphilic Carbon Dots,” Carbon 202 (2023): 398–413. doi:10.1016/j.carbon.2022.11.012
  • Z. Huang, J. Ding, X. Yang, H. Liu, P. Song, Y. Guo, Y. Guo, L. Wang, and W. Zhan, “Highly Efficient Oxidation of Propane at Low Temperature over a Pt-Based Catalyst by Optimization Support,” Environmental Science & Technology 56, no. 23 (2022): 17278–87. doi:10.1021/acs.est.2c05599
  • N. Zhang, Y. Guo, Y. Guo, Q. Dai, L. Wang, S. Dai, and W. Zhan, “Synchronously Constructing the Optimal Redox-Acidity of Sulfate and RuOx Co-Modified CeO2 for Catalytic Combustion of Chlorinated VOCs,” Chemical Engineering Journal 454, no. 3 (2023): 140391. doi:10.1016/j.cej.2022.140391
  • X. Zhang, X. Sun, T. Lv, L. Weng, Chi M. Shi, and J. Zhang, “S. Preparation of PI Porous Fiber Membrane for Recovering Oil-Paper Insulation Structure,” Journal of Materials Science: Materials in Electronics 31 (2020): 13344–51. doi:10.1007/s10854-020-03888-5
  • Z. Liu, B. Fan, J. Zhao, B. Yang, and X. Zheng, “Benzothiazole Derivatives-Based Supramolecular Assemblies as Efficient Corrosion Inhibitors for Copper in Artificial Seawater: Formation, Interfacial Release and Protective Mechanisms,” Corrosion Science 212 (2023): 110957. doi:10.1016/j.corsci.2022.110957
  • J. Luo, Y. Liu, H. Wang, C. Gong, Z. Zhou, and Q. Zhou, “Chiral 1,2-Diaminocyclohexane-α-Amino Acid-Derived Amidphos/Ag(I)-Catalyzed Divergent Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides,” Heterocycles 104, no. 1 (2022): 123–39. doi:10.3987/COM-21-14561
  • K. Q. Zhang, Q. F. Deng, J. Luo, C. L. Gong, Z. G. Chen, W. Zhong, S. Q. Hu, and H. F. Wang, “Multifunctional Ag (I)/CAAA-Amidphos Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of α-Substituted Acrylamides,” ACS Catalysis 11, no. 9 (2021): 5100–7. doi:10.1021/acscatal.1c00913
  • Y. Liang, J. Li, Y. Xue, T. Tan, Z. Jiang, Y. He, W. Shangguan, J. Yang, and Y. Pan, “Benzene Decomposition by Non-Thermal Plasma: A Detailed Mechanism Study by Synchrotron Radiation Photoionization Mass Spectrometry and Theoretical Calculations,” Journal of Hazardous Materials 420 (2021): 126584. doi:10.1016/j.jhazmat.2021.126584
  • X. Chen, X. Chen, L. Zhu, W. Liu, and L. Jiang, “Programming an Orthogonal Self-Assembling Protein Cascade Based on Reactive Peptide–Protein Pairs for in Vitro Enzymatic Trehalose Production,” Journal of Agricultural and Food Chemistry 70, no. 15 (2022): 4690–700. doi:10.1021/acs.jafc.2c01118
  • D. Yang, X. Zhu, W. Wei, N. Sun, L. Yuan, M. Jiang, J. You, and H. Wang, “Magnetically Recoverable and Reusable CuFe2O4 Nanoparticle-Catalyzed Synthesis of Benzoxazoles, Benzothiazoles and Benzimidazoles Using Dioxygen as Oxidant,” RSC Adv. 4, no. 34 (2014): 17832–9. doi:10.1039/C4RA00559G
  • Z.-L. Wang, “Magnetically Separable CuFe2O4 Nanoparticles as a Recoverable Catalyst for the Addition Reaction of C(sp 3)–H Bond of Azaarenes to Aldehydes,” RSC Advances 5, no. 8 (2015): 5563–6. doi:10.1039/C4RA14486D
  • L. Shiri, A. Ghorbani-Choghamarani, and M. Kazemi, “S–S Bond Formation: Nanocatalysts in the Oxidative Coupling of Thiols,” Australian Journal of Chemistry 70, no. 1 (2017): 9. doi:10.1071/CH16318
  • M. Kazemi, M. Ghobadi, and A. Mirzaie, “Cobalt Ferrite Nanoparticles (CoFe2O4 MNPs) as Catalyst and Support: magnetically Recoverable Nanocatalysts in Organic Synthesis,” Nanotechnology Reviews 7, no. 1 (2018): 43–68. doi:10.1515/ntrev-2017-0138
  • L. Shiri, A. Ghorbani-Choghamarani, and M. Kazemi, “Sulfides Synthesis: Nanocatalysts in C–S Cross-Coupling Reactions,” Australian Journal of Chemistry 69, no. 6 (2016): 585. doi:10.1071/CH15528
  • I. Fatimah, G. Fadillah, G. Purwiandono, I. Sahroni, D. Purwaningsih, H. Riantana, A. N. Avif, and S. Sagadevan, “Magnetic-Silica Nanocomposites and the Functionalized Forms for Environment and Medical Applications: A Review,” Inorganic Chemistry Communications 137 (2022): 109213. doi:10.1016/j.inoche.2022.109213
  • V. K. Booramurthy, R. Kasimani, S. Pandian, and D. Subramanian, “Magnetic Nano-Catalyzed Synthesis of Biodiesel from Tannery Sludge: Characterization, Optimization and Kinetic Studies,” Arabian Journal for Science and Engineering 47, no. 5 (2022): 6341–53. doi:10.1007/s13369-021-06020-9
  • A. Maleki, “Green Oxidation Protocol: Selective Conversions of Alcohols and Alkenes to Aldehydes, Ketones and Epoxides by Using a New Multiwall Carbon Nanotube-Based Hybrid Nanocatalyst via Ultrasound Irradiation,” Ultrasonics Sonochemistry 40, no. Pt A (2018): 460–4. doi:10.1016/j.ultsonch.2017.07.020
  • A. Maleki, “One-Pot Three-Component Synthesis of Pyrido [2′,1′:2,3]Imidazo[4,5-c]Isoquinolines Using Fe3O4@SiO2–OSO3H as an Efficient Heterogeneous Nanocatalyst,” RSC Advances 4, no. 109 (2014): 64169–73 doi:10.1039/C4RA10856F
  • A. Maleki, “One-Pot Multicomponent Synthesis of Diazepine Derivatives Using Terminal Alkynes in the Presence of Silica-Supported Superparamagnetic Iron Oxide Nanoparticles,” Tetrahedron Letters 54, no. 16 (2013): 2055–9. doi:10.1016/j.tetlet.2013.01.123
  • Ali Maleki, /“SiO2 Nanoparticles: An Efficient and Magnetically Recoverable Nanocatalyst for the One-Pot Multicomponent Synthesis of Diazepines,” Tetrahedron 68, no. 38 (2012): 7827–33. doi:10.1016/j.tet.2012.07.034
  • S.-J. Sun, P. Deng, C.-E. Peng, H.-Y. Ji, L.-F. Mao, and L.-Z. Peng, “Selenium-Modified Chitosan Induces HepG2 Cell Apoptosis and Differential Protein Analysis,” Cancer Management and Research 14 (2022): 3335–45. doi:10.2147/CMAR.S382546
  • S. Gupta, “Magnetic Nanoparticles Supported Sulfuric Acid as a Green and Efficient Nanocatalyst for Oxidation of Sulfides and Oxidative Coupling of Thiols,” Journal of Synthetic Chemistry 1, no. 1 (2022): 16–21. doi:10.22034/jsc.2022.149217
  • R. Mohammadi, “Magnetic Copper Ferrite Nanoparticles Catalyzed Synthesis of Benzimidazole, Benzoxazole and Benzothiazole Derivatives,” Journal of Synthetic Chemistry 1, no. 1 (2022): 22–6. doi:10.22034/jsc.2022.149220
  • S. M. Devi, A. Nivetha, and I. Prabha, “Superparamagnetic Properties and Significant Applications of Iron Oxide Nanoparticles for Astonishing Efficacy,” Journal of Superconductivity and Novel Magnetism 32, no. 2 (2019): 127–44. doi:10.1007/s10948-018-4929-8
  • J. Choi, A. Cho, J. H. Cho, and B. M. Kim, “Bimetallic PdRh-Fe3O4 Nanoparticle-Catalyzed Highly Selective Quinoline Hydrogenation Using Ammonia Borane,” Applied Catalysis A 642 (2022): 118709. doi:10.1016/j.apcata.2022.118709
  • R. Dalpozzo, “Magnetic Nanoparticle Supports for Asymmetric Catalysts,” Green Chemistry 17, no. 7 (2015): 3671–86. doi:10.1039/C5GC00386E
  • G. Pal, S. Paul, and A. R. Das, “A Facile and Efficient Synthesis of Functionalized 4-Oxo-2-(Phenylimino)Thiazolidin-5-Ylideneacetate Derivatives via a CuFe2O4 Magnetic Nanoparticles Catalyzed Regioselective Pathway,” New Journal of Chemistry 38, no. 7 (2014): 2787–91. doi:10.1039/C3NJ01608K
  • Q. Zhang, X. Yang, and J. Guan, “Applications of Magnetic Nanomaterials in Heterogeneous Catalysis,” ACS Applied Nano Materials 2, no. 8 (2019): 4681–97. doi:10.1021/acsanm.9b00976
  • H. Alinezhad, M. Tajbakhsh, B. Maleki, and P. Oushibi, “F. Acidic Ionic Liquid [H-NP] HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno [1, 2-b] Pyridines and Polysubstituted Imidazoles,” Polycyclic Aromatic Compounds 40, no. 5 (2020): 1485–500. doi:10.1080/10406638.2018.1557707
  • M. Ghani, Z. Zayeri, and B. Maleki, “Glutathione‐Stabilized Fe3O4 Nanoparticles as the Sorbent for Magnetic Solid‐Phase Extraction of Diazepam and Sertraline from Urine Samples through Quantitation via High‐Performance Liquid Chromatography,” Journal of Separation Science 44, no. 6 (2021): 1195–202. doi:10.1002/jssc.202000938
  • A. Jamshidi, M. Zonoz, and F. Maleki, “B. Synthesis and Characterization of a New Nano Ionic Liquid Based on Dawson-Type Polyoxometalate and Its Application in the Synthesis of Symmetrical N, N′-Alkylidene Bisamides,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 875–88. doi:10.1080/10406638.2018.1504094
  • F. Hajizadeh, B. Maleki, F. M. Zonoz, and A. Amiri, “Application of Structurally Enhanced Magnetite Cored Polyamidoamine Dendrimer for Knoevenagel Condensation,” Journal of the Iranian Chemical Society 18, no. 4 (2021): 793–804. doi:10.1007/s13738-020-02071-1
  • S. Darvishy, H. Alinezhad, M. Vafaeezadeh, S. Peiman, and B. Maleki, “S-(+) Camphorsulfonic Acid Glycine (CSAG) as Surfactant-Likes Brønsted Acidic Ionic Liquid for One-Pot Synthesis of ß-Amino Carbonyl,” Polycyclic Aromatic Compounds (2022): 1–13. doi:10.1080/10406638.2022.2094419
  • B. Maleki, H. Natheghi, R. Tayebee, H. Alinezhad, A. Amiri, S. A. Hossieni, and S. M. Nouri, “Synthesis and Characterization of Nanorod Magnetic Co–Fe Mixed Oxides and Its Catalytic Behavior towards One-Pot Synthesis of Polysubstituted Pyridine Derivatives,” Polycyclic Aromatic Compounds 40, no. 3 (2020): 633–43. doi:10.1080/10406638.2018.1469519
  • M. Tarahomi, H. Alinezhad, and B. Maleki, “Immobilizing Pd Nanoparticles on the Ternary Hybrid System of Graphene Oxide, Fe3O4 Nanoparticles, and PAMAM Dendrimer as an Efficient Support for Catalyzing Sonogashira Coupling Reaction,” Applied Organometallic Chemistry 33, no. 11 (2019): e5203. doi:10.1002/aoc.5203
  • S. S. Karbasaki, G. Bagherzade, B. Maleki, and M. Ghani, “Fabrication of Sulfamic Acid Functionalized Magnetic Nanoparticles with Denderimeric Linkers and Its Application for Microextraction Purposes, One-Pot Preparation of Pyrans Pigments and Removal of Malachite Green,” Journal of the Taiwan Institute of Chemical Engineers 118 (2021): 342–54. doi:10.1016/j.jtice.2020.12.025
  • F. Laffafchi, M. Tajbakhsh, Y. Sarrafi, B. Maleki, and M. Ghani, “Cu-Modified Magnetic Creatine as an Efficient Catalyst for Regioselective Preparation of 1, 2, 3-Triazoles Derivatives,” Polycyclic Aromatic Compounds (2022): 1–17. doi:10.1080/10406638.2022.2070224
  • F. Laffafchi, M. Tajbakhsh, Y. Sarrafi, M. Ghani, and B. Maleki, “Creatine@ SiO2@ Fe3O4 Nanocomposite as an Efficient Sorbent for Magnetic Solid‐Phase Extraction of Escitalopram and Chlordiazepoxide from Urine Samples through Quantitation via HPLC–UV,” Journal of Separation Science 45, no. 15 (2022): 3005–13. doi:10.1002/jssc.202200305
  • A. Maleki, M. Panahzadeh, and R. Eivazzadeh-Keihan, “Agar: A Natural and Environmentally-Friendly Support Composed of Copper Oxide Nanoparticles for the Green Synthesis of 1,2,3–Triazoles,” Green Chemistry Letters and Reviews 12, no. 4 (2019): 395–406. doi:10.1080/17518253.2019.1679263
  • S. Bahrami, F. Hassanzadeh‐Afruzi, and A. Maleki, “Synthesis and Characterization of a Novel and Green Rod‐like Magnetic ZnS/CuFe2O4/Agar Organometallic Hybrid Catalyst for the Synthesis of Biologically‐Active 2‐Amino‐Tetrahydro‐4H‐Chromene‐3‐Carbonitrile Derivatives,” Applied Organometallic Chemistry 34, no. 11 (2020): e5949. doi:10.1002/aoc.5949
  • R. Eivazzadeh-Keihan, H. A. Moghim Aliabadi, F. Radinekiyan, M. Sobhani, A. Maleki, H. Madanchi, M. Mahdavi, and A. E. Shalan, Farzane Khalili, “Investigation of the Biological Activity, Mechanical Properties and Wound Healing Application of a Novel Scaffold Based on Lignin–Agarose Hydrogel and Silk Fibroin Embedded Zinc Chromite Nanoparticles,” RSC Advances 11, no. 29 (2021): 17914–23. doi:10.1039/D1RA01300A
  • A. Maleki, R. Taheri-Ledari, R. Ghalavand, and R. Firouzi-Haji, “Palladium-Decorated o-Phenylenediamine-Functionalized Fe3O4/SiO2 Magnetic Nanoparticles: A Promising Solid-State Catalytic System Used for Suzuki–Miyaura Coupling Reactions,” Journal of Physics and Chemistry of Solids 136 (2020): 109200. doi:10.1016/j.jpcs.2019.109200
  • A. Maleki, R. Taheri-Ledari, and R. Ghalavand, “Design and Fabrication of a Magnetite-Based Polymer-Supported Hybrid Nanocomposite: A Promising Heterogeneous Catalytic System Utilized in Known Palladium-Assisted Coupling Reactions,” Combinatorial Chemistry & High Throughput Screening 23, no. 2 (2020): 119–25. doi:10.2174/1386207323666200128152136
  • A. Maleki, and S. Azadegan, “Amine-Functionalized Silica-Supported Magnetic Nanoparticles: preparation, Characterization and Catalytic Performance in the Chromene Synthesis,” Journal of Inorganic and Organometallic Polymers and Materials 27, no. 3 (2017): 714–9. doi:10.1007/s10904-017-0514-z
  • T. Guo, Z. Li, L. Bi, L. Fan, and P. Zhang, “Recent Advances in Organic Synthesis Applying Elemental Selenium,” Tetrahedron 112 (2022): 132752. doi:10.1016/j.tet.2022.132752
  • G. Wu, X. Zhou, and C. Wang, “Copper-Catalyzed Decarboxylative Se Insertion Coupling of Indoles and Propiolic Acids,” Chinese Chemical Letters 33, no. 10 (2022): 4531–5. doi:10.1016/j.cclet.2022.01.044
  • J. Jang, R. Kim, and D. Y. Kim, “Photocatalyst-Free Photoredox Synthesis of Diaryl Selenides by Reaction of Diselenides with Aryldiazo Sulfones,” Synthetic Communications 51, no. 5 (2021): 720–6. doi:10.1080/00397911.2020.1850796
  • S. Redon, V. Remusat, and P. Vanelle, “Green Synthesis of Diaryl Selenides from Arylboronic Acids and Arylseleninic Acids,” Synlett 33, no. 05 (2022): 483–7. doi:10.1055/a-1733-7607
  • Y. Kobiki, S. Kawaguchi, T. Ohe, and A. Ogawa, “Photoinduced Synthesis of Unsymmetrical Diaryl Selenides from Triarylbismuthines and Diaryl Diselenides,” Beilstein Journal of Organic Chemistry 9 (2013): 1141–7. doi:10.3762/bjoc.9.127
  • Y. Yamamoto, F. Sato, Q. Chen, S. Kodama, A. Nomoto, and A. Ogawa, “Transition-Metal-Free Synthesis of Unsymmetrical Diaryl Tellurides via SH2 Reaction of Aryl Radicals on Tellurium,” Molecules 27, no. 3 (2022): 809. doi:10.3390/molecules27030809
  • M. Matsumura, K. Shibata, and S. Ozeki, “Synthesis of Unsymmetrical Diaryl Selenides: Copper-Catalyzed Se-Arylation of Diaryl Diselenides with Triarylbismuthanes,” Synthesis 48, no. 05 (2015): 730–6. doi:10.1055/s-0035-1561280
  • H. Wang, S. Chen, G. Liu, H. Guan, D. Zhong, J. Cai, Z. Zheng, J. Mao, and P. J. Walsh, “Synthesis of Diaryl Selenides via Palladium-Catalyzed Debenzylative Cross-Coupling of Aryl Benzyl Selenides with Aryl Bromides,” Organometallics 37, no. 21 (2018): 4086–91. doi:10.1021/acs.organomet.8b00644
  • C. S. Freitas, A. M. Barcellos, V. G. Ricordi, J. M. Pena, G. Perin, R. G. Jacob, E. J. Lenardão, and D. Alves, “Synthesis of Diaryl Selenides Using Electrophilic Selenium Species and Nucleophilic Boron Reagents in Ionic Liquids,” Green Chemistry 13, no. 10 (2011): 2931. doi:10.1039/c1gc15725f
  • M. A. Bodaghifard, and S. Shafi, “Ionic Liquid-Immobilized Hybrid Nanomaterial: An Efficient Catalyst in the Synthesis of Benzimidazoles and Benzothiazoles via Anomeric-Based Oxidation,” Journal of the Iranian Chemical Society 18, no. 3 (2021): 677–87. doi:10.1007/s13738-020-02055-1
  • A. Monga, S. Bagchi, R. K. Soni, and A. Sharma, “Synthesis of Benzothiazoles via Photooxidative Decarboxylation of α‐Keto Acids,” Advanced Synthesis & Catalysis 362, no. 11 (2020): 2232–7. doi:10.1002/adsc.201901617
  • S. S. Malunavar, S. M. Sutar, H. M. Savanur, R. G. Kalkhambkar, and K. K. Laali, “Facile Access to Libraries of Diversely Substituted 2-Aryl-Benzoxazoles/Benzothiazoles from Readily Accessible Aldimines via Cyclization/Cross Coupling in imidazolium-ILs with Pd(OAc)2 or NiCl2 (Dppp) as Catalyst,” Tetrahedron Letters 61, no. 6 (2020): 151509. doi:10.1016/j.tetlet.2019.151509
  • H. Qi, Y. Zhao, W. Li, and S. Chen, “Synthesis of 1,4-Benzoxazines via Y(OTf)3 -Catalyzed Ring Opening/Annulation Cascade Reaction of Benzoxazoles with Propargylic Alcohols,” Chemical Communications 58, no. 65 (2022): 9120–3. doi:10.1039/D2CC03080B
  • L. Liu, Z. Xu, T. Liu, C. Xu, W. Zhang, X. Hua, F. Ling, and W. Zhong, “Electrosynthesis of 2-Substituted Benzoxazoles via Intramolecular Shono-Type Oxidative Coupling of Glycine Derivatives,” The Journal of Organic Chemistry 87, no. 17 (2022): 11379–86. doi:10.1021/acs.joc.2c00856
  • B. Xu, and W. Su, “A Tandem Dehydrogenation‐Driven Cross‐Coupling between Cyclohexanones and Primary Amines for Construction of Benzoxazoles,” Angewandte Chemie International Edition 61, no. 30 (2022): e202203365. doi:10.1002/anie.202203365
  • Y. I. Asiri, A. Alsayari, A. B. Muhsinah, Y. N. Mabkhot, and M. Z. Hassan, “Benzothiazoles as Potential Antiviral Agents,” The Journal of Pharmacy and Pharmacology 72, no. 11 (2020): 1459–80. doi:10.1111/jphp.13331
  • S. Mahmoudi-Gom Yek, M. Nasrollahzadeh, D. Azarifar, A. Rostami-Vartooni, M. Ghaemi, and M. Shokouhimehr, “Grafting Schiff Base Cu(II) Complex on Magnetic Graphene Oxide as an Efficient Recyclable Catalyst for the Synthesis of 4H-Pyrano[2,3-b]Pyridine-3-Carboxylate Derivatives,” Materials Chemistry and Physics 284 (2022): 126053. doi:10.1016/j.matchemphys.2022.126053
  • C. Gao, G. Wu, L. Min, M. Liu, W. Gao, J. Ding, J. Chen, X. Huang, and H. Wu, “Copper-Catalyzed Three-Component Coupling Reaction of Azoles, Se Powder, and Aryl Iodides,” The Journal of Organic Chemistry 82, no. 1 (2017): 250–5. doi:10.1021/acs.joc.6b02388
  • G. Balakishan, G. Kumaraswamy, V. Narayanarao, and P. Shankaraiah, “Lewis Acid/Base-Free Strategy for the Synthesis of 2-Arylthio and Selenyl Benzothiazole/Thiazole and Imidazole,” Heterocyclic Communications 27, no. 1 (2021): 17–23. doi:10.1515/hc-2020-0119
  • D. Luo, G. Wu, H. Yang, M. Liu, W. Gao, X. Huang, J. Chen, and H. Wu, “Copper-Catalyzed Three-Component Reaction for Regioselective Aryl-and Heteroarylselenation of Indoles Using Selenium Powder,” The Journal of Organic Chemistry 81, no. 11 (2016): 4485–93. doi:10.1021/acs.joc.6b00229

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.