112
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computation of Wiener Descriptor for Melamine Cyanuric Acid Structure

ORCID Icon & ORCID Icon
Pages 1057-1071 | Received 16 Mar 2022, Accepted 21 Feb 2023, Published online: 03 Apr 2023

References

  • F. Huang, and E. V. Anslyn, “Introduction: Supramolecular Chemistry,” Chemical Reviews 115, no. 15 (2015): 6999–7000. doi:10.1021/acs.chemrev.5b00352
  • L. Brunsveld, B. J. B. Folmer, E. W. Meijer, and R. P. Sijbesma, “Supramolecular Polymers,” Chemical Reviews 101, no. 12 (2001): 4071–98. doi:10.1021/cr990125q
  • N. Mehra, L. Mu, T. Ji, X. Yang, J. Kong, J. Gu, and J. Zhu, “Thermal Transport in Polymeric Materials and across Composite Interfaces,” Applied Materials Today. 12 (2018): 92–130. doi:10.1016/j.apmt.2018.04.004
  • N. Mehra, M. A. Kashfipour, and J. F. Zhu, “Free Technology for Enhanced Thermally Conductive Optically Transparent Polymeric Materials Using Low Thermally Conductive Organic Linkers,” Applied Materials Today 13 (2018): 207–16. doi:10.1016/j.apmt.2018.09.007
  • G. H. Kim, D. Lee, A. Shanker, L. Shao, M. S. Kwon, D. Gidley, J. Kim, and K. P. Pipe, “High Thermal Conductivity in Morphous Polymer Blends by Engineered Interchain Interactions,” Nature Materials 14, no. 3 (2015): 295–300. doi:10.1038/nmat4141
  • L. Mu, T. Ji, L. Chen, N. Mehra, Y. Shi, and J. Zhu, “Paving the Thermal Highway with Self-Organized Nanocrystals in Transparent Polymer Composites,” ACS Applied Materials & Interfaces 8, no. 42 (2016): 29080–87. doi:10.1021/acsami.6b10451
  • C. T. Seto and G. M. Whitesides, “Self-Assembly Based on the Cyanuric Acid-Melamine Lattice,” Journal of the American Chemical Society. 12 (1990): 6409–11.
  • M. Penescu, V. Purcarea, I. Sisu, and E. Sisu, “Mass Spectrometry and Renal Calculi,” Journal of Medicine and Life 3 (2010): 128–36.
  • A. K. Hau, T. H. Kwan, and P. K. Li, “Melamine Toxicity and Kidney,” Journal of the American Society of Nephrology 20, no. 2 (2009): 245–50. doi:10.1681/ASN.2008101065
  • Y. Xie, Y. Huang, W. Wang, G. Liu, and R. Zhao, “Dynamic Interaction between Melamine and Cyanuric Acid in Artificial Urine Investigated by Quartz Crystal Microbalance,” The Analyst 136, no. 12 (2011): 2482–88. doi:10.1039/c1an15119c
  • E. Canelli, “Chemical, Bacteriological and Toxicological Properties of Cyanuric Acid and Chlorinated Isocyanurates as Applied to Swimming Pool Disinfection: A Review,” American Journal of Public Health 64, no. 2 (1974): 155–62.
  • H. A. Baskin, “Production of Cyanuric Acid from Urea,” U. S. Patent 236, no. 3 (1996): 845.
  • M. Cignitti and L. Paoloni, “Tautomeric Forms of Oxy-Derivatives of 1,3,5-Triazine. I. infrared Spectra, Rend,” Annali dell'Istituto Superiore di Sanità 23 (1960): 1037–47.
  • M. Cignitti and L. Paoloni, “Tautomeric Forms of Oxy-and Oxo-Derivatives of 1,3,5-Triazine. II. The Ultraviolet Absorption of 2,4,6-Trimethoxy-1,3,5-Triazine and 2,4,6–Trioxo-1,3,5-Trimethylhexahydrotriazine, Spec-Trochim,” Acta 20 (1964): 211–18.
  • M. Cignitti and L. Paoloni, “Tautomeric Forms of Oxygenated Derivatives of 1,3,5-Triazine. IV. Electronic Structure of Trimethoxy-s-Triazine and Its Triamide Tautomeric Form, Gazz,” Chimica Italiana 96 (1966): 413–26.
  • R. L. McBrayer and N. S. Nichols, “Preparation of Cyanuric Acid” (US Patent 336, no. 3 (1967): 309).
  • W. M. Padgett and W. F. Hamner, “The Infrared Spectra of Some Derivatives of 1,3,5-Triazine,” Journal of the American Chemical Society 80, no. 4 (1958): 803–808. doi:10.1021/ja01537a014
  • L. Paoloni and M. L. Tosato, “Tautomeric Forms of Oxygenated Derivatives of 1,3,5-Triazines. III. kinetics of the Tautomeric Rearrangement of 2,4,6-Trime-Thoxy-1,3,5-Triazine,” Annali di Chimica. 54 (1964): 897–922.
  • C. G. Skinner, J. D. Thomas, and J. D. Osterloh, “Melamine Toxicity,” Journal of Medical Toxicology 6, no. 1 (2010): 50–55. doi:10.1007/s13181-010-0038-1
  • Y. Wei and D. Liu, “Review of Melamine Scandal: Still a Long Way Ahead,” Toxicology and Industrial Health 28, no. 7 (2012): 579–82. doi:10.1177/0748233711416950
  • Shokoufeh Hassani, Fatemeh Tavakoli, Mohsen Amini, Farzad Kobarfard, Amir Nili-Ahmadabadi, and Omid Sabzevari, “Occurrence of Melamine Contamination in Powder and Liquid Milk in Market of Iran,” Food Additives and Contaminants 30, no. 3 (2013): 413–20. doi:10.1080/19440049.2012.761730
  • S. Taksinoros and H. Murata, “Effects of Serum Proteins on in Vitro Melamine-Cyanurate Crystal Formation,” The Journal of Veterinary Medical Science 74, no. 12 (2012): 1569–73.
  • T. J. Prior, J. A. Armstrong, D. M. Benoit, and K. L. Marshall, “The Structure of the Melamine-Cyanuric Acid Co-Crystal,” CrystEngComm 15, no. 29 (2013): 5838–43. doi:10.1039/c3ce40709h
  • M. Arockiaraj, J. Clement, and K. Balasubramanian, “Topological Indices and Their Application to Circumcised Donut Benzonoid Systems, Kekulenes and Drugs,” Polycyclic Aromatic Compounds 40, no. 2 (2020): 280–303. doi:10.1080/10406638.2017.1411958
  • B. Gute, G. Grunwald, and S. C. Basak, “Prediction of the Dermaland Penetration of Polycyclic Aromatics: A Hierachical QSAR Approach,” SAR and QSAR in Environmental Research 10, no. 1 (1999): 1–15. doi:10.1080/10629369908039162
  • V. N. Viswanadhan, G. A. Mueller, S. C. Basak, and J. N. Weinstein, “Comparison of a Neural Net-Based QSAR Algorithm (PCANN) with Hologram-and Multiple Linear Regression-Based QSAR Approaches: Application to 1,4-Dihydropyridine-Based Calcium Channel Antagonists,” Journal of Chemical Information and Computer Sciences 41, no. 3 (2001): 505–11. doi:10.1021/ci000072+
  • H. Wiener, “Structural Determination of Paraffin Boiling Points,” Journal of the American Chemical Society 69, no. 1 (1947): 17–20. doi:10.1021/ja01193a005
  • O. E. Polansky and D. Bonchev, “The Wiener Number of Graphs. I. General Theory and Changes Due to Some Graph Operations,” MATCH Communications in Mathematical and in Computer Chemistry 21 (1986): 133–86.
  • S. Govardhan, S. Roy, S. Prabhu, and M. K. Siddiqui, “Computation of Neighborhood M-Polynomial of Three Classes of Polycyclic Aromatic Hydrocarbons,” Polycyclic Aromatic Compounds (2022). doi:10.1080/10406638.2022.2103576
  • M. Arulperumjothi, S. Prabhu, J.-B. Liu, P. Y. Rajasankar, and V. Gayathri, “On Counting Polynomials of Certain Classes of Polycyclic Aromatic Hydrocarbons,” Polycyclic Aromatic Compounds (2022). doi:10.1080/10406638.2022.2094969
  • B. Saravanan, S. Prabhu, M. Arulperumjothi, K. Julietraja, and M. K. Siddiqui, “Molecular Structural Characterization of Supercorenene and Triangle-Shaped Discotic Graphene,” Polycyclic Aromatic Compounds (2022). doi:10.1080/10406638.2022.2039224
  • T. Augustine, S. Roy, J. Sahaya Vijay, J. Maria Thomas, and P. Shanmugam, “Topological Study on Degree Based Molecular Descriptors of Fullerene Cages,” Molecular Physics (2023). doi:10.1080/00268976.2023.2179858
  • M. Radhakrishnan, S. Prabhu, M. Arockiaraj, and M. Arulperumjothi, “Molecular Structural Characterization of Superphenalene and Supertriphenylene,” International Journal of Quantum Chemistry. 122, no. 2 (2022): e26818.
  • S. Prabhu, Y. Sherlin Nisha, M. Arulperumjothi, D. Sagaya Rani Jeba, and V. Manimozhi, “On Detour Index of Cycloparaphenylene and Polyphenylene Molecular Structures,” Scientific Reports 11, no. 1 (2021): 15264. doi:10.1038/s41598-021-94765-6
  • S. Prabhu, G. Murugan, S. K. Therese, M. Arulperumjothi, and S. K. Siddiqui, “Molecular Structural Characterization of Cycloparaphenylene and Its Variants,” Polycyclic Aromatic Compounds 42 no. 8 (2021): 5550–66.
  • S. Prabhu, G. Murugan, M. Cary, M. Arulperumjothi, and J.-B. Liu, “On Certain Distance and Degree Based Topological Indices of Zeolite LTA Frameworks,” Materials Research Express 7, no. 5 (2020): 055006. doi:10.1088/2053-1591/ab8b18
  • M. Arockiaraj, S. Prabhu, M. Arulperumjothi, S. R. J. Kavitha, and K. Balasubramanian, “Topological Characterization of Hexagonal and Rectangular Tessellations of Kekulenes as Traps for Toxic Heavy Metal Ions,” Theoretical Chemistry Accounts 140, no. 4 (2021): 43. doi:10.1007/s00214-021-02733-0
  • O. E. Polansky and D. Bonchev, “Theory of the Wiener Number of Graphs. II. Transfer Graphs and Some of Their Metric Properties,” MATCH Communications in Mathematical and in Computer Chemistry 25 (1990): 3–39.
  • D. Bonchev, Ov Mekenyan, and N. Trinajsti?, “Topological Characterization of Cyclic Structures,” International Journal of Quantum Chemistry 17, no. 5 (1980): 845–93. doi:10.1002/qua.560170504
  • A. A. Dobrynin, “Formula for Calculating the Wiener Index of Catacondensed Benzenoid Graphs,” Journal of Chemical Information and Computer Sciences 38, no. 5 (1998): 811–14. doi:10.1021/ci970450j
  • A. A. Dobrynin and E. Estaji, “Wiener Index of Hexagonal Chains under Some Transformations,” Open Journal of Discrete Applied Mathematics 3, no. 1 (2020): 28–36. doi:10.30538/psrp-odam2020.0027
  • M. Eliasi and B. Taeri, “Four New Sums of Graphs and Their Wiener Indices,” Discrete Applied Mathematics 157, no. 4 (2009): 794–803. doi:10.1016/j.dam.2008.07.001
  • M. Eliasi, G. Raeisi, and B. Taeri, “Wiener Index of Some Graph Operations,” Discrete Applied Mathematics 160, no. 9 (2012): 1333–44. doi:10.1016/j.dam.2012.01.014
  • L. Xu and X. Guo, “Catacondensed Hexagonal Systems with Large Wiener Numbers,” MATCH Communications in Mathematical and in Computer Chemistry 55 (2006): 137–58.
  • Y. N. Yeh and I. Gutman, “On the Sum of All Distances in Composite Graphs,” Discrete Mathematics 135, no. 1-3 (1994): 359–65. doi:10.1016/0012-365X(93)E0092-I
  • H. Ji and X. Xu, “Hexagonal Organic Nanopillar Array from Melamine-Cyanuric Acid Complex,” Langmuir 26, no. 7 (2010): 4620–22. doi:10.1021/la100364v
  • S. Klavžar and I. Gutman, “Wiener Number of Vertex-Weighted Graphs and a Chemical Application,” Discrete Applied Mathematics 80, no. 1 (1997): 73–81. doi:10.1016/S0166-218X(97)00070-X
  • B. E. Sagan, Y. N. Yeh, and P. Zhang, “The Wiener Polynomial of a Graph,” International Journal of Quantum Chemistry 60, no. 5 (1996): 959–69. doi:10.1002/(SICI)1097-461X(1996)60:5<959::AID-QUA2>3.0.CO;2-W
  • D. Bonchev and O. Mekenyan, “A Topologycal Approach to the Calculation of the π-Electron Energy and Energy Gap of Infinite Conjugated Polimers, Z,” Naturforsch 35a (1980): 739–47.
  • F. Cataldo, O. Ori, and S. Iglesias–Groth, “Topological Lattice Descriptors of Graphene Sheets with Fullerene-like Nanostructures,” Molecular Simulation 36, no. 5 (2010): 341–53. doi:10.1080/08927020903483262
  • D. Vukičević, F. Cataldo, O. Ori, and A. Graovac, “Topological Efficiency of C66 Fullerene,” Chemical Physics Letters 501, no. 4-6 (2011): 442–5. doi:10.1016/j.cplett.2010.11.055
  • O. Ori, F. Cataldo, S. Iglesias–Groth, and A. Graovac, “Topological Modeling of C60H36hydrides,” in Fulleranes: The Hydrogenated Fullerenes, edited by F. Cataldo and S. Iglesias-Groth (Dordrecht: Springer, 2010), 251–72.
  • D. Djoković, “Distance Preserving Sub Graphs of Hyper Cubes,” Journal of Combinatorial Theory, Series B 14, no. 3 (1973): 263–67. doi:10.1016/0095-8956(73)90010-5
  • I. Gutman, S. Klavžar, and B. Mohar, “Fiftieth Anniversary of the Wiener Index,” Discrete Applied Mathematics 80 (1997): 1–113.
  • P. Winkler, “Isometric Embeddings in Products of Complete Graphs,” Discrete Applied Mathematics 7, no. 2 (1984): 221–25. doi:10.1016/0166-218X(84)90069-6
  • S. Klavžar and M. J. Nadjafi-Arani, “Wiener Index in Weighted Graphs via Unification of Θ*-Classes,” European Journal of Combinatorics 36 (2014): 71–76. doi:10.1016/j.ejc.2013.04.008
  • S. Klavžar, P. Manuel, M. J. Nadjafi-Arani, R. S. Rajan, C. Grigorious, and S. Stephen, “Average Distance in Interconnection Networks via Reduction Theorems for Vertex-Weighted Graphs,” The Computer Journal 59, no. 12 (2016): 1900–10. doi:10.1093/comjnl/bxw046
  • N. Tratnik, “The Edge-Szeged Index and the PI Index of Benzenoid Systems in Linear Time,” MATCH Communications in Mathematical and in Computer Chemistry 77 (2017): 393–406.
  • M. Črepnjak and N. Tratnik, “The Szeged Index and the Wiener Index of Partial Cubes with Applications to Chemical Graphs,” Applied Mathematics and Computation 309 (2017): 324–33. doi:10.1016/j.amc.2017.04.011
  • National Center for Biotechnology Information. PubChem Compound Summary for Melamine-cyanuric acid compound CID 46878591 (2023). https://pubchem.ncbi.nlm.nih.gov/compound/Melamine-cyanuric-acid-compd

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.