217
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Topological, Spectroscopic and Energetic Properties of Cycloparaphenylene Series

ORCID Icon, , , & ORCID Icon
Pages 1072-1094 | Received 16 Sep 2021, Accepted 23 Feb 2023, Published online: 13 Mar 2023

References

  • A. K. Geim, and K. S. Novoselov, “The Rise of Graphene,” Nature Materials 6, no. 3 (2007): 183–91. doi:10.1038/nmat1849
  • S. Ahmad, “Carbon Nanostructures Fullerenes and Carbon Nanotubes,” IETE Technical Review 16, no. 3-4 (1999): 297–310. doi:10.1080/02564602.1999.11416845
  • M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Nanotechnology in Carbon Materials (New York: Springer, 1999), 285–329.
  • H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, “C60: buckminsterfullerene,” Nature 318, no. 6042 (1985): 162–3. doi:10.1038/318162a0
  • K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, no. 5696 (2004): 666–9. doi:10.1126/science.1102896
  • S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature 354, no. 6348 (1991): 56–8. doi:10.1038/354056a0
  • I. M. Afanasov, V. A. Morozov, A. V. Kepman, S. G. Ionov, A. N. Seleznev, G. V. Tendeloo, and V. V. Avdeev, “Preparation, Electrical and Thermal Properties of New Exfoliated Graphite-Based Composites,” Carbon 47, no. 1 (2009): 263–70. doi:10.1016/j.carbon.2008.10.004
  • M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties,” Physical Review Letters 84, no. 24 (2000): 5552–5. doi:10.1103/PhysRevLett.84.5552
  • W. A. D. Heer, A. Châtelain, and D. Ugarte, “A Carbon Nanotube Field-Emission Electron Source,” Science 270, no. 5239 (1995): 1179–80. doi:10.1126/science.270.5239.1179
  • G. Overney, W. Zhong, and D. TomáNek, “Structural Rigidity and Low Frequency Vibrational Modes of Long Carbon Tubules,” Zeitschrift für Physik D Atoms, Molecules and Clusters 27, no. 1 (1993): 93–6. doi:10.1007/BF01436769
  • S. Iijima, and T. Ichihashi, “Single-Shell Carbon Nanotubes of 1-nm Diameter,” Nature 363, no. 6430 (1993): 603–5. doi:10.1038/363603a0
  • D. S. Bethune, C. H. Kiang, M. S. D. Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, “Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls,” Nature 363, no. 6430 (1993): 605–7. doi:10.1038/363605a0
  • C. Shen, A. H. Brozena, and Y. Wang, “Double-Walled Carbon Nanotubes: Challenges and Opportunities,” Nanoscale 3, no. 2 (2011): 503–18. doi:10.1039/c0nr00620c
  • J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes,” Accounts of Chemical Research 32, no. 5 (1999): 435–45. doi:10.1021/ar9700365
  • P. G. Collins, M. S. Arnold, and P. Avouris, “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown,” Science 292, no. 5517 (2001): 706–9. doi:10.1126/science.1058782
  • A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic Circuits with Carbon Nanotube Transistors,” Science 294, no. 5545 (2001): 1317–20.
  • X. P. Gao, Y. Zhang, X. Chen, G. L. Pan, J. Yan, F. Wu, H. T. Yuan, and D. Y. Song, “Carbon Nanotubes Filled with Metallic Nanowires,” Carbon 42, no. 1 (2004): 47–52. doi:10.1016/j.carbon.2003.09.015
  • M. K. Singh, E. Titus, P. K. Tyagi, U. Palnitkar, D. S. Misra, M. Roy, A. K. Dua, C. S. Cojocaru, and F. Le. Normand, “Ni and Ni/Pt Filling inside Multiwalled Carbon Nanotubes,” Journal of Nanoscience and Nanotechnology 3, no. 1 (2003): 165–70. doi:10.1166/jnn.2003.200
  • G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. C. Bradley, and K. G. Kornev, “Carbon Nanotubes Loaded with Magnetic Particles,” Nano Letters 5, no. 5 (2005): 879–84. doi:10.1021/nl0502928
  • Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, et al, “Transparent, Conductive Carbon Nanotube Films,” Science 305, no. 5688 (2004): 1273–6.
  • M. Karami, M. A. Akhavan Bahabadi, S. Delfani, and A. Ghozatloo, “A New Application of Carbon Nanotubes Nanofluid as Working Fluid of Low-Temperature Direct Absorption Solar Collector, Sol,” Solar Energy Materials and Solar Cells 121 (2014): 114–8. doi:10.1016/j.solmat.2013.11.004
  • J. Simon, E. Flahaut, and M. Golzio, “Overview of Carbon Nanotubes for Biomedical Applications,” Materials 12, no. 4 (2019): 624. doi:10.3390/ma12040624
  • A. Muhulet, F. Miculescu, S. I. Voicu, F. Schütt, V. K. Thakur, and Y. K. Mishra, “Fundamentals and Scopes of Doped Carbon Nanotubes towards Energy and Biosensing Applications,” Materials Today Energy. 9 (2018): 154–86. doi:10.1016/j.mtener.2018.05.002
  • K. Matsui, Y. Segawa, and K. Itami, “Synthesis and Properties of Cycloparaphenylene-2,5-Pyridylidene: A Nitrogen-Containing Carbon Nanoring,” Organic Letters 14, no. 7 (2012): 1888–91. doi:10.1021/ol3005112
  • R. Friederich, M. Nieger, and F. Vögtle, “Auf Dem Weg zu Makrocyclischen Para-Phenylenen,” Chemische Berichte 126, no. 7 (1993): 1723–32. doi:10.1002/cber.19931260732
  • R. Jasti, J. Bhattacharjee, J. B. Neaton, and C. R. Bertozzi, “Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures,” Journal of the American Chemical Society 130, no. 52 (2008): 17646–7. doi:10.1021/ja807126u
  • H. Takaba, H. Omachi, Y. Yamamoto, J. Bouffard, and K. Itami, “Selective Synthesis of [12]Cycloparaphenylene,” Angewandte Chemie International Edition 48, no. 33 (2009): 6112–6. doi:10.1002/anie.200902617
  • S. Yamago, Y. Watanabe, and T. Iwamoto, “Synthesis of [8]Cycloparaphenylene from a Square-Shaped Tetranuclear Platinum Complex,” Angewandte Chemie International Edition. 49, no. 4 (2010): 757–9. doi:10.1002/anie.200905659
  • E. R. Darzi, T. J. Sisto, and R. Jasti, “Selective Syntheses of [7]– [12]Cycloparaphenylenes Using Orthogonal Suzuki-Miyaura Cross-Coupling Reactions,” The Journal of Organic Chemistry 77, no. 15 (2012): 6624–8. doi:10.1021/jo3011667
  • Y. Ishii, Y. Nakanishi, H. Omachi, S. Matsuura, K. Matsui, H. Shinohara, Y. Segawa, and K. Itami, “Size-Selective Synthesis of [9]–[11] and [13] Cycloparaphenylenes,” Chemical Science 3, no. 7 (2012): 2340–5. doi:10.1039/c2sc20343j
  • T. J. Sisto, X. Tian, and R. Jasti, “Synthesis of Tetraphenyl-Substituted [12] Cycloparaphenylene: Toward a Rationally Designed Ultrashort Carbon Nanotube,” The Journal of Organic Chemistry 77, no. 14 (2012): 5857–60. doi:10.1021/jo301024g
  • Y. Xu, R. Kaur, B. Wang, M. B. Minameyer, S. Gsänger, B. Meyer, T. Drewello, D. M. Guldi, and M. V. Delius, “Concave–Convex π–π Template Approach Enables the Synthesis of [10] Cycloparaphenylene–Fullerene [2] Rotaxanes,” Journal of the American Chemical Society 140, no. 41 (2018): 13413–20. doi:10.1021/jacs.8b08244
  • D. Lu, G. Zhuang, H. Jia, J. Wang, Q. Huang, S. Cui, and P. Du, “A Novel Symmetrically Multifunctionalized Dodecamethoxy-Cycloparaphenylene: synthesis, Photophysical, and Supramolecular Properties,” Organic Chemistry Frontiers 5, no. 9 (2018): 1446–51. doi:10.1039/C8QO00033F
  • D. Lu, H. Wu, Y. Dai, H. Shi, X. Shao, S. Yang, J. Yang, and P. Du, “A Cycloparaphenylene Nanoring with Graphenic Hexabenzocoronene Sidewalls,” Chemical Communications 52, no. 44 (2016): 7164–7. doi:10.1039/C6CC03002E
  • A. Yagi, G. Venkataramana, Y. Segawa, and K. Itami, “Synthesis and Properties of Cycloparaphenylene-2,7- Pyrenylene: A Pyrene-Containing Carbon Nanoring,” ChemComm 50, no. 8 (2014): 957–9.
  • M. Chen, K. S. Unikela, R. Ramalakshmi, B. Li, C. Darrigan, A. Chrostowska, and S.-Y. Liu, “A BN-Doped Cycloparaphenylene Debuts,” Angewandte Chemie International Edition 60, no. 3 (2021): 1556–60. doi:10.1002/anie.202010556
  • T. Kawase, and H. Kurata, “Ball-, Bowl-, and Belt-Shaped Conjugated Systems and Their Complexing Abilities: Exploration of the Concave-Convex π-π Interaction,” Chemical Reviews 106, no. 12 (2006): 5250–73. doi:10.1021/cr0509657
  • K. Tahara, and Y. Tobe, “Molecular Loops and Belts,” Chemical Reviews 106, no. 12 (2006): 5274–90. doi:10.1021/cr050556a
  • Y. Noguchi, and O. Sugino, “Molecular Size Insensitivity of Optical Gap of [n]Cycloparaphenylenes (n = 3-16),” Journal of Chemical Physics. 146, no. 14 (2017): 144304. doi:10.1063/1.4979911
  • M. Ball, and C. Nuckolls, “Stepping into the Light: Conjugated Macrocycles with Donor–Acceptor Motifs,” ACS Central Science 1, no. 8 (2015): 416–7. doi:10.1021/acscentsci.5b00339
  • E. J. Leonhardt, and R. Jasti, “Emerging Applications of Carbon Nanohoops,” Nature Reviews Chemistry 3, no. 12 (2019): 672–86. doi:10.1038/s41570-019-0140-0
  • T. Iwamoto, Y. Watanabe, T. Sadahiro, T. Haino, and S. Yamago, “Size-Selective Encapsulation of C60 by [10]Cycloparaphenylene: Formation of the Shortest Fullerene-Peapod,” Angewandte Chemie International Edition 50, no. 36 (2011): 8342–4. doi:10.1002/anie.201102302
  • J. Xia, J. W. Bacon, and R. Jasti, “Gram-Scale Synthesis and Crystal Structures of [8]- and [10]CPP, and the Solid-State Structure of C60@[10],” Chemical Science 3, no. 10 (2012): 3018–21. doi:10.1039/c2sc20719b
  • H. Ueno, T. Nishihara, Y. Segawa, and K. Itami, “Cycloparaphenylene-Based Ionic Donor–Acceptor Supramolecule: Isolation and Characterization of Li+@C60 ⊂ [10] CPP,” Angewandte Chemie International Edition 127, no. 12 (2015): 3778–82.
  • A. Florence, T. Van, E. Huxol, J. M. Basler, M. Neuburger, J. J. Adjizian, C. P. Ewels, and H. A. Wegner, “Synthesis of Substituted [8]Cycloparaphenylenes by [2 + 2+2] Cycloaddition,” Organic Letters 16, no. 6 (2014): 1594–7.
  • Y. Kuroda, Y. Sakamoto, T. Suzuki, E. Kayahara, and S. Yamago, “Tetracyclo(2,7-Carbazole)s: Diatropicity and Paratropicity of Inner Regions of Nanohoops,” The Journal of Organic Chemistry 81, no. 8 (2016): 3356–63. doi:10.1021/acs.joc.6b00425
  • E. Kayahara, X. Zhai, and S. Yamago, “Synthesis and Physical Properties of [4]Cyclo-3,7-Dibenzo[b,d]Thiophene and Its S,S-Dioxide,” Canadian Journal of Chemistry 95, no. 4 (2017): 351–6. doi:10.1139/cjc-2016-0474
  • H. Omachi, Y. Segawa, and K. Itami, “Synthesis and Racemization Process of Chiral Carbon Nanorings: A Step toward the Chemical Synthesis of Chiral Carbon Nanotubes,” Organic Letters 13, no. 9 (2011): 2480–3. doi:10.1021/ol200730m
  • Bryan M. Wong, and Jonathan W. Lee, “Anomalous Optoelectronic Properties of Chiral Carbon Nanorings and One Ring to Rule Them All,” The Journal of Physical Chemistry Letters 2, no. 21 (2011): 2702–6. doi:10.1021/jz2012534
  • N. K. Mirta, H. H. Corzo, and B. L. Merner, “A Macrocyclic 1,4-Diketone Enables the Synthesis of a p-Phenylene Ring That is More Strained than a Monomer Unit of [4]Cycloparaphenylene,” Organic Letters 18, no. 13 (2016): 3278–81.
  • Y. Segawa, A. Yagi, and K. Itami, “Chemical Synthesis of Cycloparaphenylenes,” Physical Sciences Reviews 2, no. 1 (2017): 20160102.
  • Y. Tsuchido, R. Abe, T. Ide, and K. Osakada, “A Macrocyclic Gold(I)–Biphenylene Complex: Triangular Molecular Structure with Twisted Au2(Diphosphine) Corners and Reductive Elimination of [6]Cycloparaphenylene,” Angewandte Chemie International Edition 59, no. 51 (2020): 22928–32. doi:10.1002/anie.202005482
  • S. S. Lehrer, “Pyrene Excimer Fluorescence as a Probe of Protein Conformational Change, Subcell,” Sub-Cellular Biochemistry 24 (1995): 115–32.
  • G. Bains, A. B. Patel, and V. Narayanaswami, “Pyrene: A Probe to Study Protein Conformation and Conformational Changes,” Molecules 16, no. 9 (2011): 7909–35. doi:10.3390/molecules16097909
  • M. Baba, M. Saitoh, Y. Kowaka, K. Taguma, K. Yoshida, Y. Semba, S. Kasahara, T. Yamanaka, Y. Ohshima, Y. C. Hsu, et al, “Vibrational and Rotational Structure and Excited-State Dynamics of Pyrene,” Journal of Chemical Physics. 131, no. 22 (2009): 224318. doi:10.1063/1.3270136
  • J. B. Birks, and Excimers Rep, “Excimers,” Reports on Progress in Physics 38, no. 8 (1975): 903–74. doi:10.1088/0034-4885/38/8/001
  • Xin Yan, and Liang-shi Li, “Solution-Chemistry Approach to Graphene Nanostructures,” Journal of Materials Chemistry 21, no. 10 (2011): 3295–300. doi:10.1039/c0jm02827d
  • J. Wu, W. Pisula, and K. Müllen, “Graphenes as Potential Material for Electronics,” Chemical Reviews 107, no. 3 (2007): 718–47. doi:10.1021/cr068010r
  • H. Seyler, B. Purushothaman, D. J. Jones, A. B. Holmes, and W. W. H. Wong, “Hexa-Peri-Hexabenzocoronene in Organic Electronics,” Pure and Applied Chemistry 84, no. 4 (2012): 1047–67. doi:10.1351/PAC-CON-11-09-24
  • M. Nagase, K. Kato, A. Yagi, Y. Segawa, and K. Itami, “Six-Fold C-H Borylation of Hexa-Peri- Hexabenzocoronene,” Beilstein Journal of Organic Chemistry 16 (2020): 391–7. doi:10.3762/bjoc.16.37
  • C. Gao, Z. Qiao, K. Shi, S. Chen, Y. Li, G. Yu, X. Li, and H. Wang, “Hexa-Peri-Hexabenzocoronene and Diketopyrrolopyrrole Based D-a Conjugated Copolymers for Organic Field Effect Transistor and Polymer Solar Cells, Org,” Electron 38 (2016): 245–55.
  • K. Balasubramanian, “Combinatorial Enumeration of Isomers of Superaromatic Polysubstituted Cycloarenes and Coronoid Hydrocarbons with Applications to NMR,” The Journal of Physical Chemistry A 122, no. 41 (2018): 8243–57. doi:10.1021/acs.jpca.8b08784
  • R. Carbó-Dorca, and T. Chakraborty, “Divagations about the Periodic Table: Boolean Hypercube and Quantum Similarity Connections,” Journal of Computational Chemistry 40, no. 30 (2019): 2653–63. doi:10.1002/jcc.26044
  • J.-I. Aihara, “Macrocyclic Conjugation Pathways in Porphyrins,” The Journal of Physical Chemistry A 112, no. 23 (2008): 5305–11. doi:10.1021/jp8014996
  • M. Arockiaraj, J. Clement, and K. Balasubramanian, “Topological Indices and Their Applications to Circumcised Donut Benzenoid Systems, Kekulenes and Drugs,” Polycyclic Aromatic Compounds 40, no. 2 (2020): 280–303. doi:10.1080/10406638.2017.1411958
  • M. Arockiaraj, S. Prabhu, M. Arulperumjothi, S. R. J. Kavitha, and K. Balasubramanian, “Topological Characterization of Hexagonal and Rectangular Tessellations of Kekulenes as Traps for Toxic Heavy Metal Ions,” Theoretical Chemistry Accounts 140 (2021): 1–24.
  • S. Mondal, A. Dey, and N. De, Pal, “QSPR Analysis of Some Novel Neighbourhood Degree-Based Topological Descriptors,” Complex & Intelligent Systems 7 (2021): 977–96.
  • P. V. Khadikar, S. Karmarkar, and V. K. Agrawal, “A Novel PI Index and Its Applications to QSPR/QSAR Studies,” Journal of Chemical Information and Computer Sciences 41, no. 4 (2001): 934–49. doi:10.1021/ci0003092
  • D. M. Hawkins, S. C. Basak, and X. Shi, “QSAR with Few Compounds and Many Features,” Journal of Chemical Information and Computer Sciences 41, no. 3 (2001): 663–70. doi:10.1021/ci0001177
  • M. Randić, “Quantitative Structure-Property Relationship. Boiling Points of Planar Benzenoids,” New Journal of Chemistry. 20 (1996): 1001–9.
  • M. I. Huilgol, V. Sriram, and K. Balasubramanian, “Structure-Activity Relations for Antiepileptic Drugs through Omega Polynomials and Topological Indices,” Molecular Physics. 120, no. 3 (2022): e1987542. doi:10.1080/00268976.2021.1987542
  • M. Črepnjak, and N. Tratnik, “The Szeged Index and the Wiener Index of Partial Cubes with Applications to Chemical Graphs,” Journal of Applied Mathematics and Computing. 309 (2017): 324–33.
  • T. Došlić, I. Martinjak, R. Škrekovski, S. T. Spužević, and I. Zubac, “Mostar Index,” Journal of Mathematical Chemistry 56, no. 10 (2018): 2995–3013. doi:10.1007/s10910-018-0928-z
  • M. Arockiaraj, J. Clement, and N. Tratnik, “Mostar Indices of Carbon Nanostructures and Circumscribed Donut Benzenoid Systems,” International Journal of Quantum Chemistry. 119, no. 24 (2019): e26043.
  • M. Arockiaraj, S. Klavžar, J. Clement, S. Mushtaq, and K. Balasubramanian, “Edge Distance-Based Topological Indices of Strength-Weighted Graphs and Their Application to Coronoid Systems, Carbon Nanocones and SiO2 Nanostructures,” Molecular Informatics 38, no. 11-12 (2019): 1900039. doi:10.1002/minf.201900039
  • M. Arockiaraj, S. R. J. Kavitha, S. Mushtaq, and K. Balasubramanian, “Relativistic Topological Molecular Descriptors of Metal Trihalides,” Journal of Molecular Structure 1217 (2020): 128368. doi:10.1016/j.molstruc.2020.128368
  • S. R. J. Kavitha, J. Abraham, M. Arockiaraj, J. Jency, and K. Balasubramanian, “Topological Characterization and Graph Entropies of Tessellations of Kekulene Structures: Existence of Isentropic Structures and Applications to Thermochemistry, NMR and ESR,” The Journal of Physical Chemistry A 125, no. 36 (2021): 8140–58. doi:10.1021/acs.jpca.1c06264
  • S. Mondal, and B. Mandal, “Sum of Characteristic Polynomial Coefficients of Cycloparaphenylene Graphs as Topological Index,” Molecular Physics. 118, no. 13 (2020): e1685693. doi:10.1080/00268976.2019.1685693
  • S. Basu, P. Ghosh, and B. Mandal, “Algorithms to Calculate the Distance Numbers and the Wiener Indices of Linear and Cylindrical Poly (p-Phenylene) in Terms of Number of Hexagonal Rings,” Molecular Physics 106, no. 21-23 (2008): 2507–13.
  • S. Prabhu, G. Murugan, S. K. Therese, M. Arulperumjothi, and M. K. Siddiqui, “Molecular Structural Characterization of Cycloparaphenylene and Its Variants,” Polycyclic Aromatic Compounds 42, no. 8 (2022): 5550–66. doi:10.1080/10406638.2021.1942082
  • S. Klavžar, and M. J. Nadjafi-Arani, “Cut Method: Update on Recent Developments and Equivalence of Independent Approaches,” Current Organic Chemistry 19, no. 4 (2015): 348–58. doi:10.2174/1385272819666141216232659
  • S. Klavžar, I. Gutman, and B. Mohar, “Labeling of Benzenoid Systems Which Reflects the Vertex-Distance Relation,” Journal of Chemical Information and Computer Sciences 35, no. 3 (1995): 590–3. doi:10.1021/ci00025a030
  • D. Bonchev, and O. Mekenyan, “A Topological Approach to the Calculation of the n-Electron Energy and Energy Gap of Infinite Conjugated Polymers,” Zeitschrift Für Naturforschung A 35, no. 7 (1980): 739–47. doi:10.1515/zna-1980-0713
  • F. Cataldo, O. Ori, and S. Iglesias-Groth, “Topological Lattice Descriptors of Graphene Sheets with Fullerene-like Nanostructures,” Molecular Simulation. 36, no. 5 (2010): 341–53. doi:10.1080/08927020903483262
  • M. Song, W. Luo, S. Feng, W. Jiang, Y. Ge, and T. Liu, “Effect of Viscoelasticity on the Foaming Behaviour of Long-Chain Branched Polypropylene with Different Branching Degrees Analysed by Using Bubble-Growth Modelling,” Polymer 238 (2022): 124397. doi:10.1016/j.polymer.2021.124397
  • S. C. Basak, D. Mills, M. M. Mumtaz, and K. Balasubramanian, “Use of Topological Indices in Predicting Aryl Hydrocarbon Receptor Binding Potency of Dibenzofurans: A Hierarchical QSAR Approach,” Indian Journal of Chemistry 42A (2003): 1385–91.
  • K. Balasubramanian, “Combinatorial and Quantum Techniques for Large Data Sets: hypercubes and Halocarbons,” in Big Data Analytics in Chemoinformatics and Bioinformatics, edited by S.C. Basak, M. Vračko, (Amsterdam: Elsevier, 2023), 187–218.
  • P. V. Khadikar, S. Karmarkar, V. K. Agrawal, J. Singh, A. Shrivastava, I. Lukovits, and M. V. Diudea, “Szeged Index-Applications for Drug Modeling,” Drug Design and Discovery 2, no. 8 (2005): 606–24.
  • W. C. Herndon, and M. L. Ellzey, Jr, “Resonance Theory. V. Resonance Energies of Benzenoid and Nonbenzenoid π Systems,” Journal of the American Chemical Society 96, no. 21 (1974): 6631–42. doi:10.1021/ja00828a015
  • G. S. Bloom, J. W. Kennedy, and L. V. Quintas, “Some Problems concerning Distance and Path Degree Sequences,” in Graph Theory. Lecture Notes in Mathematics, edited by M. Borowiecki, J.W. Kennedy, M.M. Syslo, vol. 1018, (Berlin: Springer, 1983), 179–90.
  • K. Balasubramanian, Topochemie-2020-A computational package for computing topological indices, spectral polynomials, walks and distance degree sequences and combinatorial generators. 2020.
  • K. Balasubramanian, “Operator and Algebraic Methods for NMR-Spectroscopy.I. Generation of NMR Spin Species,” Journal of Chemical Physics. 78, no. 11 (1983): 6358–68. doi:10.1063/1.444695
  • K. Balasubramanian, “Symmetry, Combinatorics, Artificial Intelligence, Music and Spectroscopy,” Symmetry 13, no. 10 (2021): 1850–44. doi:10.3390/sym13101850
  • K. Balasubramanian, “Graph-Theory and the PPP Method,” Journal of Mathematical Chemistry 7, no. 1 (1991): 353–62. doi:10.1007/BF01200832
  • K. Balasubramanian, “Enumeration of Internal Rotation Reactions and Their Reaction Graphs,” Theor. Chim. Acta 53, (1979): 129–146. doi:10.1007/BF00548826

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.