380
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In-silico Molecular Docking and ADMET predictions of Pyrido[2,3-d]pyrimidine-2,4(1H,3H)-Dione Analogues as promising Antimicrobial, Antioxidant and Anticancer agents

ORCID Icon & ORCID Icon
Pages 1273-1290 | Received 03 Nov 2022, Accepted 12 Mar 2023, Published online: 02 Apr 2023

Reference

  • S. Pallerla, A. R. M. Abdul, J. Comeau, and S. Jois, “Cancer Vaccines, Treatment of the Future: With Emphasis on HER2-Positive Breast Cancer,” International Journal of Molecular Sciences 22, no. 2 (2021): 779–16. doi:10.3390/ijms22020779
  • F. J. Alipoor, M. H. Asadi, and M. Torkzadeh-Mahani, “Miat lncRNA is Overexpressed in Breast Cancer and Its Inhibition Triggers Senescence and G1 Arrest in MCF7 Cell Line,” Journal of Cellular Biochemistry 119, no. 8 (2018): 6470–81. doi:10.1002/jcb.26678
  • A. Moshfegh, A. Jalali, A. Salehzadeh, and A. Sadeghi Jozani, “Biological Synthesis of Silver Nanoparticles by Cell-Free Extract of Polysiphonia Algae and Their Anticancer Activity against Breast Cancer MCF-7 Cell Lines,” Micro & Nano Letters 14, no. 5 (2019): 581–4. doi:10.1049/mnl.2018.5260
  • D. Daddiouaissa, A. Amid, N. A. Kabbashi, F. A. A. Fuad, A. A. M. Elnour, and M. A. K. M. S. Epandy, “Antiproliferative Activity of Ionic Liquid-Graviola Fruit Extract against Human Breast Cancer (MCF-7) Cell Lines Using Flow Cytometry Techniques,” Journal of Ethnopharmacology 236 (2019): 466–73. doi:10.1016/j.jep.2019.03.003
  • S. E. S. Abbas, R. F. George, E. M. Samir, M. M. A. Aref, and H. A. Abdel-Aziz, “Synthesis and Anticancer Activity of Some Pyrido[2,3-d]Pyrimidine Derivatives as Apoptosis Inducers and Cyclin-Dependent Kinase Inhibitors,” Future Medicinal Chemistry 11, no. 18 (2019): 2395–414. doi:10.4155/fmc-2019-0050
  • Gülhan Turan-Zitouni, Mehlika Dilek Altıntop, Zafer Asım Kaplancıklı, Ahmet Özdemir, Fatih Demirci, Sinem Ilgın, Özlem Atlı, and Gamze Göger, “Synthesis and Evaluation of Thiazole – Pyrimidine Derivatives as New Anticandidal and Cytotoxic Agents,” Pharmaceutical Chemistry Journal 48, no. 7 (2014): 452–5. doi:10.1007/s11094-014-1130-7
  • M. D. Altıntop, Z. A. Kaplancıklı, G. A. Ciftci, and R. Demirel, “Synthesis and Biological Evaluation of Thiazoline Derivatives as New Antimicrobial and Anticancer Agents,” European Journal of Medicinal Chemistry 74 (2014): 264–77. doi:10.1016/j.ejmech.2013.12.060
  • C. Mallikarjunaswamy, L. Mallesha, D. G. Bhadregowda, and Othbert. Pinto, “Studies on Synthesis of Pyrimidine Derivatives and Their Antimicrobial Activity,” Arabian Journal of Chemistry 10 (2017): S484–S490. doi:10.1016/j.arabjc.2012.10.008
  • A. Al-Mulla, “A Review: Biological Importance of Heterocyclic Compounds,” Der Pharma Chemica 9, no. 13 (2017): 141–7.
  • Y. Huang, J. Liao, W. Wang, H. Liu, and H. Guo, “Synthesis of Heterocyclic Compounds through Nucleophilic Phosphine Catalysis,” Chemical Communications 56, no. 97 (2020): 15235–81. doi:10.1039/D0CC05699E
  • A. B. A. El-Gazzar, A. M. Gaafar, and A. S. Aly, “Synthesis of Some New Thiazolo[3,2-a]Pyrido[2,3-d]Pyrimidinones and Isoxazolo[5’,4’:4,5]Thiazolo[3,2-a]Pyrido[2,3-d]Pyrimidinone,” Bioorganic and Medicinal Chemistry Letters 19, no. 13 (2009): 3392–7. doi:10.1016/j.bmcl.2009.05.044
  • M. J. Shanmugam, and T. M. Das, “A Concise Pathway to Synthesize a Novel Class of Pyrido(2,3-d)pyrimidine-C-b-D-Glycosides,” Carbohydrate Research 368 (2013): 40–6. doi:10.1016/j.carres.2012.11.013
  • A. Ashraf, M. Khalid, M. N. Tahir, M. Yaqub, M. M. Naseer, G. M. Kamal, B. Saifullah, A. A. C. Braga, Z. Shafiq, and W. Rauf, “A Facile and Concise Route to (Hydroxybenzoyl) Pyrido[2,3-d]Pyrimidine Heterocycle Derivatives: synthesis, and Structural, Spectral and Computational Exploration,” RSC Advances 9, no. 59 (2019): 34567–80. doi:10.1039/C9RA05415D
  • Nuran Kahriman, Kıvanç Peker, Vildan Serdaroğlu, Ali Aydın, Asu Usta, Seda Fandaklı, and Nurettin Yaylı, “Novel 2-Amino-4-Aryl-6-Pyridopyrimidines and N-Alkyl Derivatives: Synthesis, Characterization and Investigation of Anticancer, Antibacterial Activities and DNA/BSA Binding Affinities,” Bioorganic Chemistry 99 (2020): 103805. doi:10.1016/j.bioorg.2020.103805
  • R. Dummer, P. A. Ascierto, H. J. Gogas, A. Arance, M. Mandala, G. Liszkay, C. Garbe, D. Schadendorf, I. Krajsova, R. Gutzmer, et al, “Encorafenib plus Binimetinib versus Vemurafenib or Encorafenib in Patients with BRAF-Mutant Melanoma (COLUMBUS): a Multicentre, Open-Label, Randomised Phase 3 Trial,” The Lancet Oncology 19, no. 5 (2018): 603–15. doi:10.1016/S1470-2045(18)30142-6
  • J. Larkin, P. A. Ascierto, B. Dréno, V. Atkinson, G. Liszkay, M. D. M. Maio, M. Mandalà, L. Demidov, D. Stroyakovskiy, L. Thomas, et al, “Combined Vemurafenib and Cobimetinib in BRAF-Mutated Melanoma,” New England Journal of Medicine 371, no. 20 (2014): 1867–76. doi:10.1056/NEJMoa1408868
  • G. V. Long, D. Stroyakovskiy, H. Gogas, E. Levchenko, F. de Braud, J. Larkin, C. Garbe, T. Jouary, A. Hauschild, J. J. Grob, et al, “Dabrafenib and Trametinib versus Dabrafenib and Placebo for Val600 BRAF-Mutant Melanoma: A Multicentre, Double-Blind, Phase 3 Randomised Controlled Trial,” The Lancet Oncology 386, no. 9992 (2015): 444–51. doi:10.1016/S0140-6736(15)60898-4
  • A. O. Abdelhamid, S. M. Gomha, N. A. Abdelriheem, and S. M. Kandeel, “Synthesis of New 3-Heteroarylindoles as Potential Anticancer Agents,” Molecules 21, no. 7 (2016): 929. doi:10.3390/molecules21070929
  • E. M. Grivsky, S. Lee, C. W. Sigel, D. S. Duch, and C. A. Nichol, “Synthesis and Antitumor Activity of 2,4-Diamino-6-(2,5-Dimethoxybenzyl)-5-Met Hylpyrido[2,3-d] Pyrimidine,” Journal of Medicinal Chemistry 23, no. 3 (1980): 327–9. doi:10.1021/jm00177a025
  • M. Font, Á. González, J. A. Palop, and C. Sanmartín, “New Insights into the Structural Requirements for Pro-Apoptotic Agents Based on 2,4-Diaminoquinazoline, 2,4-Diaminopyrido[2,3-d]Pyrimidine and 2,4-Diaminopyrimidine Derivatives,” European Journal of Medicinal Chemistry 46, no. 9 (2011): 3887–99. doi:10.1016/j.ejmech.2011.05.060
  • I. 0. Donkor, C. L. Klein, L. Liang, N. Zhu, E. Bradley And, and A. M. Clark, “Synthesis and Antimicrobial Activity of 6,7-Annulated Pyrid0[2,3-d]Pyrimidines,” Journal of Pharmaceutical Sciences 84, no. 5 (1995): 661–4. doi:10.1002/jps.2600840526
  • S. Ohno, N. Matsumoto, M. Watanabe, and S. Nakajin, “Flavonoid Inhibition of Overexpressed Human 3β-Hydroxysteroid Dehydrogenase Type II,” Journal of Steroid Biochemistry & Molecular Biology 88, no. 2 (2004): 175–82. doi:10.1016/j.jsbmb.2003.11.007
  • R. V. Chikhale, R. P. Bhole, P. B. Khedekar, and K. P. Bhusari, “Synthesis and Pharmacological Investigation of 3-(substituted1-Phenylethanone)-4-(Substitutedphenyl)-1,2,3,4-Tetrahydropyrimidine-5-Carboxylates,” European Journal of Medicinal Chemistry 44, no. 9 (2009): 3645–53. doi:10.1016/j.ejmech.2009.02.021
  • Sham M. Sondhi, Nirupma Singh, Monika Johar, and Ashok Kumar, “Synthesis, anti-Inflammatory and Analgesic Activities Evaluation of Some Mono, bi and Tricyclic Pyrimidine Derivatives,” Bioorganic & Medicinal Chemistry 13, no. 22 (2005): 6158–66. doi:10.1016/j.bmc.2005.06.063
  • Anu Agarwal, Neena Goyal, Prem M. S. Chauhan, and Suman Gupta, Ramesh Ashutosh, “Dihydropyrido[2,3-d]Pyrimidines as a New Class of Antileishmanial Agents,” Bioorganic & Medicinal Chemistry 13, no. 24 (2005): 6678–84. doi:10.1016/j.bmc.2005.07.043
  • A. Pastor, R. Alajarin, J. J. Vaquero, J. Alvarez-Builla, M. Casa-Juana, C. Sunkel, J. G. Priego, I. Fonseca, and J. Sanz-Aparicio, “Synthesis and Structure of New Pyrido[2,3-Dlpyrimidine Derivatives with Calcium Channel Antagonist Activity,” Tetrahedron 50, no. 27 (1994): 8085–98. doi:10.1016/S0040-4020(01)85291-1
  • S. Prachayasittikul, R. Pingaew, A. Worachartcheewan, N. Sinthupoom, V. Prachayasittikul, S. Ruchirawat, and V. Prachayasittikul, “Roles of Pyridine and Pyrimidine Derivatives as Privileged Scaffolds in Anticancer Agents,” Mini-Reviews in Medicinal Chemistry 17, no. 10 (2017): 869–901. doi:10.2174/1389557516666160923125801
  • A. Ayati, S. Moghimi, M. Toolabi, and A. Foroumadi, “Pyrimidine-Based EGFR TK Inhibitors in Targeted Cancer Therapy,” European Journal of Medicinal Chemistry 221 (2021): 113523. doi:10.1016/j.ejmech.2021.113523
  • J. Zhuang, and S. Ma, “Recent Development of Pyrimidine Containing Antimicrobial Agents,” Chemmedchem. 15, (2020): 1875–1886.
  • N. T. El-Shamy, A. M. Alkaoud, R. K. Hussein, M. A. Ibrahim, A. G. Alhamzani, and M. M. Abou-Krisha, “DFT, ADMET and Molecular Docking Investigations for the Antimicrobial Activity of 6,6’-Diamino-1,1′,3,3’-Tetramethyl-5,5’-(4- Chlorobenzylidene)Bis[Pyrimidine-2,4(1H,3H)-Dione],” Molecules 27, no. 3 (2022): 620–1-17. doi:10.3390/molecules27030620
  • K. M. Rana, J. Maowa, A. Alam, S. Dey, A. Hosen, I. Hasan, Y. Fujii, Y. Ozeki, and S. M. A. Kawsar, “In Silico DFT Study, Molecular Docking, and ADMET Predictions of Cytidine Analogs with Antimicrobial and Anticancer Properties,” In,” In Silico Pharmacology 9, no. 1 (2021): 1–24. doi:10.1007/s40203-021-00102-0
  • G. Palermoa, and M. Vivoa, “Computational Chemistry for Drug Discovery,” Encyclopedia of Nanotechnology (2015).
  • H. Hadni, and M. Elhallaoui, “3D-QSAR, Docking and ADMET Properties of Aurone Analogues as Antimalarial Agents,” Heliyon 6, no. 4 (2020): e03580–11. doi:10.1016/j.heliyon.2020.e03580
  • S. B. Olasupo, A. Uzairu, G. Shallangwa, and S. Uba, “QSAR Modeling, Molecular Docking and ADMET/Pharmacokinetic Studies: A Chemometrics Approach to Search for Novel Inhibitors of Norepinephrine Transporter as Potent Antipsychotic Drugs,” Journal of the Iranian Chemical Society 17, no. 8 (2020): 1953–66. doi:10.1007/s13738-020-01902-5
  • G. Moroy, V. Y. Martiny, P. Vayer, B. O. Villoutreix, and M. A. Miteva, “Toward in Silico Structure-Based ADMET Prediction in Drug Discovery,” Drug Discovery Today. 17, no. 1-2 (2012): 44–55. doi:10.1016/j.drudis.2011.10.023
  • M. A. Ejalonibu, A. A. Elrashedy, M. M. Lawal, M. E. Soliman, S. C. Sosibo, H. M. Kumalo, and N. N. Mhlongo, “Dual Targeting Approach for Mycobacterium tuberculosis Drug Discovery: insights from DFT Calculations and Molecular Dynamics Simulations,” Structural Chemistry 31, no. 2 (2019): 1–15.
  • E. Shirbhate Divya, P. Patel, V. K. Patel, R. Veerasamy, and H. Rajak, “Exploration of Anticancer Potential of Hydroxamate Derivatives as Selective HDAC8 Inhibitors Using Integrated Structure and Ligand Based Molecular Modeling Approach,” Indian Journal of Chemistry 60B 1 (2021): 136–47.
  • Sibel Eken Korkut, Erem Ahmetali, Mesut Bilgi, Özgül Karataş, Yusuf Yerli, Ayşegül Peksel, and M. Kasım Şener, “Synthesis and Antioxidant Activity of Zinc(II) Phthalocyanine Tetranitroxide,” Polyhedron 197 (2021): 115045–17. doi:10.1016/j.poly.2021.115045
  • V. A. Verma, B. Halu, A. R. Saundane, and R. S. Meti, “Synthesis, Biological Validation, and Docking Studies of Novel Purine Derivatives Containing Pyridopyrimidine, Pyrazolopyridine, and Pyranonapthyridine Rings,” Polycyclic Aromatic Compounds 42, no. 6 (2022): 3694–716. doi:10.1080/10406638.2020.1871384
  • S. Balachandar, M. Dhandapani, I. V. M. V. Enoch, and S. Suganthi, “Structural Analysis, Molecular Docking and DFT Calculations of Bis(Pyrazolium Picrate) Monohydrate Interaction with Calf Thymus DNA and Microbes,” ChemistrySelect 2, no. 29 (2017): 9298–311. doi:10.1002/slct.201701484
  • F. Denizot, and R. Lang, “Rapid Colorimetric Assay for Cell Growth and Survival: Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability,” Journal of Immunological Methods 89, no. 2 (1986): 271–7. doi:10.1016/0022-1759(86)90368-6
  • M. Erola, I. Celika, E. Uzunhisarciklic, and G. Kuyucuklu, “Synthesis, Molecular Docking, and DFT Studies of Some New 2,5-Disubstituted Benzoxazoles as Potential Antimicrobial and Cytotoxic Agents,” Polycyclic Aromatic Compound 42, no. 4 (2020): 1–19.
  • N. P. Kumar, S. Thatikonda, R. Tokala, S. S. Kumari, U. J. Lakshmi, C. Godugu, N. Shankaraiah, and A. Kamal, “Sulfamic Acid Promoted One-Pot Synthesis of Phenanthrene Fused-Dihydrodibenzo-Quinolinones: Anticancer Activity, Tubulin Polymerization Inhibition and Apoptosis Inducing Studies,” Bioorganic & Medicinal Chemistry 26, no. 8 (2018): 1996–2008. doi:10.1016/j.bmc.2018.02.050
  • N. K. Duddukuri, S. Thatikonda, C. Godugu, R. A. Kumar, and N. Doijad, “Synthesis of Novel Thiophene-Chalcone Derivatives as Anticancer- and Apoptosis-Inducing Agents,” ChemistrySelect 3, no. 24 (2018): 6859–64. doi:10.1002/slct.201800613
  • R. Verma, I. Bairy, M. Tiwari, G. V. Bhat, and G. G. Shenoy, “In Silico Studies, Synthesis and Anticancer Activity of Novel Diphenyl Ether-Based Pyridine Derivatives,” Molecular Diversity 23, no. 3 (2018): 1–14.
  • K. S. Bhullar, N. O. Lagarón, E. M. McGowan, I. Parmar, A. Jha, B. P. Hubbard, and H. P. V. Rupasinghe, “Kinase-Targeted Cancer Therapies: progress, Challenges and Future Directions,” Molecular Cancer 17, no. 1 (2018): 1–20. doi:10.1186/s12943-018-0804-2
  • I. M. Khana, M. Islama, S. Shakyaa, N. Alamb, S. Imtiaza, and M. R. Islam, “Synthesis, Spectroscopic Characterization, Antimicrobial Activity, Molecular Docking and DFT Studies of Proton Transfer (H-Bonded) Complex of 8-Aminoquinoline (Donor) with Chloranilic Acid (Acceptor),” Journal of Biomolecular Structure and Dynamics 40 (2021): 12194–208.
  • M. Shweta, and D. Rashmi, “In-Vitro ADME Studies of TUG-891, a GPR-120 Inhibitor Using Swiss ADME Predictor,” Journal of Drug Delivery & Therapeutics 9, no. 3 (2019): 266–369.
  • M. Erol, I. Celik, E. Uzunhisarcikli, and G. Kuyucuklu, “Synthesis, Molecular Docking and DFT Studies of Some New 2,5-Disubstituted Benzoxazoles as Potential Antimicrobial and Cytotoxic Agents,” Polycyclic Aromatic Compounds 42 (2020): 1679–96.
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Druglikeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7, no. 1 (2017): 1–13. doi:10.1038/srep42717
  • R. Bhutani, D. P. Pathak, G. Kapoor, A. Husain, R. Kant, and M. A. Iqbal, “Synthesis, Molecular Modelling Studies and ADME Prediction of Benzothiazole Clubbed oxadiazole-Mannich Bases, and Evaluation of Their anti-Diabetic Activity through in Vivo Model,” Bioorganic Chemistry 77 (2018): 6–15. doi:10.1016/j.bioorg.2017.12.037
  • A. Ali, M. E. I. Badawy, R. Shah, W. Rehman, and Y. El, “Synthesis, Characterization and in-Silico ADMET Screening of Mono- and Di- Hydrazides and Hydrazones,” Pelagia Res. Libr. Der 8 (2017): 446–60.
  • C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development q Settings,” Advanced Drug Delivery Reviews 64 (2012): 4–17. doi:10.1016/j.addr.2012.09.019
  • A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, “A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases,” Journal of Combinatorial Chemistry 1, no. 1 (1999): 55–68. doi:10.1021/cc9800071
  • W. J. Egan, K. M. Merz, and J. J. Baldwin, “Prediction of Drug Absorption Using Multivariate Statistics,” Journal of Medicinal Chemistry 43, no. 21 (2000): 3867–77. doi:10.1021/jm000292e
  • I. Muegge, S. L. Heald, and D. Brittelli, “Simple Selection Criteria for Drug-like Chemical Matter,” Journal of Medicinal Chemistry 44, no. 12 (2001): 1841–6. doi:10.1021/jm015507e
  • D. F. Veber, S. R. Johnson, H. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple, “Molecular Properties That Influence the Oral Bioavailability of Drug Candidates,” Journal of Medicinal Chemistry 45, no. 12 (2002): 2615–23. doi:10.1021/jm020017n
  • C. P. Chen, C. C. Chen, C. W. Huang, and Y. C. Chang, “Evaluating Molecular Properties Involved in Transport of Small Molecules in Stratum Corneum: A Qualitative Structure- Activty Relationship for Skin Permeation,” Molecules 23, no. 4 (2018): 1–17.
  • G. Zhang, S. Guo, H. Cui, and J. Qi, “Virtual Screening of Small Molecular Inhibitors against DprE1,” Molecules 23, no. 3 (2018): 1–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.