125
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Novel [1,2,3]triazoles, [1,2,3]triazolo[4,5-d]Pyrimidines, and Some of Their Glycoside Derivatives: Synthesis and Molecular Modeling as Potential Apoptotic Antitumor Agents

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 1470-1494 | Received 01 Sep 2022, Accepted 26 Mar 2023, Published online: 19 Apr 2023

References

  • M. M. Alam, “1, 2, 3‐Triazole Hybrids as Anticancer Agents: A Review,” Archiv Der Pharmazie 355, no. 1 (2022): 2100158. doi:10.1002/ardp.202100158
  • M. A. Said, D. J. Khan, F. F. Al-Blewi, N. S. Al-Kaff, A. A. Ali, N. Rezki, M. R. Aouad, and M. Hagar, “New 1, 2, 3-Triazole Scaffold Schiff Bases as Potential anti-COVID-19: Design, Synthesis, DFT-Molecular Docking, and Cytotoxicity Aspects,” Vaccines 9, no. 9 (2021): 1012. doi:10.3390/vaccines9091012
  • H. Li, R. Aneja, and I. Chaiken, “Click Chemistry in Peptide-Based Drug Design,” Molecules (Basel, Switzerland) 18, no. 8 (2013): 9797–817. doi:10.3390/molecules18089797
  • Y. L. Angell, and K. Burgess, “Peptidomimetics via Copper-Catalyzed Azide–Alkyne Cycloadditions,” Chemical Society Reviews 36, no. 10 (2007): 1674–89. doi:10.1039/b701444a
  • S. G. Agalave, S. R. Maujan, and V. S. Pore, “Click Chemistry: 1, 2, 3‐Triazoles as Pharmacophores,” Chemistry, an Asian Journal 6, no. 10 (2011): 2696–718. doi:10.1002/asia.201100432
  • T. Muller, and S. Bräse, “Click Chemistry Finds Its Way into Covalent Porous Organic Materials,” Angewandte Chemie 50, no. 50 (2011): 11844–5. doi:10.1002/anie.201105707
  • E. Bonandi, M. S. Christodoulou, G. Fumagalli, D. Perdicchia, G. Rastelli, and D. Passarella, “The 1, 2, 3-Triazole Ring as a Bioisostere in Medicinal Chemistry,” Drug Discovery Today 22, no. 10 (2017): 1572–81. doi:10.1016/j.drudis.2017.05.014
  • F. J. Smit, R. Seldon, J. Aucamp, A. Jordaan, D. F. Warner, and D. D. N’Da, “Synthesis and Antimycobacterial Activity of Disubstituted Benzyltriazoles,” Medicinal Chemistry Research 28, no. 12 (2019): 2279–93. doi:10.1007/s00044-019-02458-7
  • A. A. Ali, D. Gogoi, A. K. Chaliha, A. K. Buragohain, P. Trivedi, P. J. Saikia, P. S. Gehlot, A. Kumar, V. Chaturvedi, and D. Sarma, “Synthesis and Biological Evaluation of Novel 1, 2, 3-Triazole Derivatives as anti-Tubercular Agents,” Bioorganic & Medicinal Chemistry Letters 27, no. 16 (2017): 3698–703. doi:10.1016/j.bmcl.2017.07.008
  • S. Zhang, Z. Xu, C. Gao, Q.-C. Ren, L. Chang, Z.-S. Lv, and L.-S. Feng, “Triazole Derivatives and Their anti-Tubercular Activity,” European Journal of Medicinal Chemistry 138, no. 2017 (2017): 501–13. doi:10.1016/j.ejmech.2017.06.051
  • K. Zhang, P. Wang, L.-N. Xuan, X.-Y. Fu, F. Jing, S. Li, Y.-M. Liu, and B.-Q. Chen, “Synthesis and Antitumor Activities of Novel Hybrid Molecules Containing 1, 3, 4-Oxadiazole and 1, 3, 4-Thiadiazole Bearing Schiff Base Moiety,” Bioorganic & Medicinal Chemistry Letters 24, no. 22 (2014): 5154–6. doi:10.1016/j.bmcl.2014.09.086
  • B. R. Nemallapudi, D. R. Guda, N. Ummadi, B. Avula, G. V. Zyryanov, C. S. Reddy, and S. Gundala, “New Methods for Synthesis of 1, 2, 3-Triazoles: A Review,” Polycyclic Aromatic Compounds 42, no. 6 (2020): 1–19. doi:10.1080/10406638.2020.1866038
  • Z. Xu, S.-J. Zhao, and Y. Liu, “1, 2, 3-Triazole-Containing Hybrids as Potential Anticancer Agents: Current Developments, Action Mechanisms and Structure-Activity Relationships,” European Journal of Medicinal Chemistry 183, no. 2019 (2019): 111700. doi:10.1016/j.ejmech.2019.111700
  • I. Łakomska, M. Fandzloch, T. Muzioł, T. Lis, and J. Jezierska, “Synthesis, Characterization and Antitumor Properties of Two Highly Cytotoxic Ruthenium (III) Complexes with Bulky Triazolopyrimidine Ligands,” Dalton Transactions (Cambridge, England : 2003) 42, no. 17 (2013): 6219–26. doi:10.1039/c2dt32216a
  • Núbia Boechat, Luiz C. S. Pinheiro, Thiago S. Silva, Anna C. C. Aguiar, Alcione S. Carvalho, Monica M. Bastos, Carolina C. P. Costa, Sergio Pinheiro, Angelo C. Pinto, Jorge S. Mendonça, et al, “New Trifluoromethyl Triazolopyrimidines as anti-Plasmodium falciparum Agents,” Molecules (Basel, Switzerland) 17, no. 7 (2012): 8285–302. doi:10.3390/molecules17078285
  • H. N. Hafez, H.-A. Abbas, and A.-R. El-Gazzar, “Synthesis and Evaluation of Analgesic, anti-Inflammatory and Ulcerogenic Activities of Some Triazolo-and 2-Pyrazolyl-Pyrido [2, 3-d]-Pyrimidines,” Acta Pharmaceutica (Zagreb, Croatia) 58, no. 4 (2008): 359–78. doi:10.2478/v10007-008-0024-1
  • L.-H. Huang, Y.-F. Zheng, Y.-Z. Lu, C.-J. Song, Y.-G. Wang, B. Yu, and H.-M. Liu, “Synthesis and Biological Evaluation of Novel Steroidal [17, 16-d][1, 2, 4] Triazolo [1, 5-a] Pyrimidines,” Steroids 77, no. 6 (2012): 710–5. (2012) doi:10.1016/j.steroids.2012.03.002
  • Shuai Wang, Li-Jie Zhao, Yi-Chao Zheng, Dan-Dan Shen, Er-Fei Miao, Xue-Peng Qiao, Li-Juan Zhao, Ying Liu, Ruilei Huang, Bin Yu, et al, “Design, Synthesis and Biological Evaluation of [1, 2, 4] Triazolo [1, 5-a] Pyrimidines as Potent Lysine Specific Demethylase 1 (LSD1/KDM1A) Inhibitors,” European Journal of Medicinal Chemistry 125 (2017): 940–51. doi:10.1016/j.ejmech.2016.10.021
  • M. A. Radwan, F. M. Alminderej, H. E. Tolan, and H. M. Awad, “One-Pot Three-Component Synthesis of New Triazolopyrimidine Derivatives Bearing Indole Moiety as Antiproliferative Agents,” Journal of Applied Pharmaceutical Science 10, (2020): 12–22. doi:10.7324/japs.2020.10902
  • A. M. Mohamed, M. Abdelwahab, D. H. Elnaggar, N. A. Abde lHafez, S. F. Mahmoud, M. El-Bayaa, D. S. El-Kady, M. M. Omran, and W. A. El-Sayed, “Synthesis, Cytotoxic Activity and Molecular Modelling of Novel 1, 2, 3] triazolo [4,5-d] Pyrimidine Compounds, Their Glycoside Derivatives and Acyclic Analogs." Egyptian Journal of Chemistry 65, no. 1 (2022): 645–656. doi:10.21608/ejchem.2021.84371.4127
  • T. A. Farghaly, I. M. Abbas, M. M. Abdalla, and R. O. Mahgoub, “Synthesis of New Pentaheterocyclic Ring Systems as anti-Androgene, anti-HCV and anti-H1N1 Agents,” Arkivoc 6 (2012): 57–70. doi:10.3998/ark.5550190.0013.606
  • T. A. Farghaly, and H. M. Hassaneen, “Synthesis of Pyrido [2, 3-d][1, 2, 4] Triazolo [4, 3-a] Pyrimidin-5-Ones as Potential Antimicrobial Agents,” Archives of Pharmacal Research 36, no. 5 (2013): 564–72. doi:10.1007/s12272-013-0045-2
  • S. M. Gomha, E. M. Abbas, and T. A. Farghaly, “Antimicrobial Activity of Novel Tetra‐and Penta‐Azaheterocyclic Ring Systems,” Journal of Heterocyclic Chemistry 54, no. 1 (2017): 610–7. doi:10.1002/jhet.2632
  • Abd. El-Meguid, E. A. G. O. Moustafa, H. M. Awad, E. R. Zaki, and E. S. Nossier, “Novel Benzothiazole Hybrids Targeting EGFR: Design, Synthesis, Biological Evaluation and Molecular Docking Studies,” Journal of Molecular Structure 1240, no. 2021 (2021): 130595. doi:10.1016/j.molstruc.2021.130595
  • R. R. Khattab, A. A. Hassan, D. A A. Osman, F. M. Abdel-Megeid, H. M. Awad, E. S. Nossier, and W. A. El-Sayed, “Synthesis, Anticancer Activity and Molecular Docking of New Triazolo [4, 5-d] Pyrimidines Based Thienopyrimidine System and Their Derived N-Glycosides and Thioglycosides,” Nucleosides, Nucleotides & Nucleic Acids 40, no. 11 (2021): 1090–113. “No,” doi:10.1080/15257770.2021.1975297
  • R. R. Khattab, A. K. Alshamari, A. A. Hassan, H. H. Elganzory, W. A. El-Sayed, H. M. Awad, E. S. Nossier, and N. A. Hassan, “Click Chemistry Based Synthesis, Cytotoxic Activity and Molecular Docking of Novel Triazole-Thienopyrimidine Hybrid Glycosides Targeting EGFR,” Journal of Enzyme Inhibition and Medicinal Chemistry 36, no. 1 (2021): 504–16. “No,” doi:10.1080/14756366.2020.1871335
  • G. Elgemeie, M. Abou-Zeid, S. Alsaid, A. Hebishy, and H. Essa, “Novel Nucleoside Analogues: first Synthesis of Pyridine-4-Thioglycosides and Their Cytotoxic Evaluation,” Nucleosides, Nucleotides & Nucleic Acids 34, no. 10 (2015): 659–73. doi:10.1080/15257770.2015.1071843
  • G. H. Elgemeie, and D. H. El-Naggar, “Novel Dihydropyridine Thioglycosides and Their Corresponding Dehydrogenated Forms as Potent anti-Hepatocellular Carcinoma Agents,” Nucleosides, Nucleotides & Nucleic Acids 37, no. 4 (2018): 199–216. doi:10.1080/15257770.2018.1457161
  • F. M. Alminderej, H. H. Elganzory, M. N. El-Bayaa, H. M. Awad, and W. A. El-Sayed, “Synthesis and Cytotoxic Activity of New 1, 3, 4-Thiadiazole Thioglycosides and 1, 2, 3-Triazolyl-1, 3, 4-Thiadiazole N-Glycosides,” Molecules (Basel, Switzerland) 24, no. 20 (2019): 3738. doi:10.3390/molecules24203738
  • V. N. Toan, and N. D. Thanh, “Synthesis and Antiproliferative Activity of Hybrid Thiosemicarbazone Derivatives Bearing Coumarin and D-Galactose Moieties with EGFR Inhibitory Activity and Molecular Docking Study,” Medicinal Chemistry Research 30, no. 10 (2021): 1868–85. doi:10.1007/s00044-021-02773-y
  • D. H. Elnaggar, A. M. Mohamed, N. A. Abdel Hafez, M. E. Azab, M. E. Elasasy, H. M. Awad, T. A. Farghaly, and A. E.-G. E. Amr, “Antiproliferative Activity of Some Newly Synthesized Substituted Nicotinamides Candidates Using Pyridine-2 (1 H) Thione Derivatives as Synthon,” ACS Omega 7, no. 12 (2022): 10304–16. doi:10.1021/acsomega.1c06951
  • M. Elasasy, D. Elnaggar, N. Hafez, M. Azab, A. Amr, M. Omran, and A. Mohamed, “Synthesis and Antiproliferative Activity of Novel Hydrazono Thiazolidene and Thiazole Derivatives Bearing Rhodanine Moiety,” Russian Journal of General Chemistry 91, no. 5 (2021): 915–25. doi:10.1134/S1070363221050236
  • A. M. Mohamed, W. A. El-Sayed, A. A. Ibrahim, N. A. Abdel-Hafez, K. A. Ali, and S. F. Mohamed, “Recent Trends in the Chemistry of [1, 2, 4] Triazole [1, 5-a] Pyrimidines,” Organic Preparations and Procedures International 53, no. 3 (2021): 211–39. doi:10.1080/00304948.2020.1871310
  • H. S. Khalaf, H. E. Tolan, M. A. Radwan, A. M. Mohamed, H. M. Awad, and W. A. El-Sayed, “Design, Synthesis and Anticancer Activity of Novel Pyrimidine and Pyrimidine-Thiadiazole Hybrid Glycosides,” Nucleosides, Nucleotides & Nucleic Acids 39, no. 7 (2020): 1036–56. doi:10.1080/15257770.2020.1748649
  • A. Hassan, M. M. Ali, M. Diaa, M. O. Germoush, A. M. Mohamed, and W. El-Sayed, “Oxidative Stress of Some Triazolopyrimidine Derivatives and Their Nucleoside Analogues on Mcf-7 and A549 Cell Lines,” Egyptian Journal of Chemistry 63, no. 1 (2020): 247–53. doi:10.21608/ejchem.2019.18248.2136
  • B. G. Youssif, A. M. Mohamed, E. E. A. Osman, O. F. Abou-Ghadir, D. H. Elnaggar, M. H. Abdelrahman, L. Treamblu, and H. A. Gomaa, “5-Chlorobenzofuran-2-Carboxamides: From Allosteric CB1 Modulators to Potential Apoptotic Antitumor Agents,” European Journal of Medicinal Chemistry 177 (2019): 1–11. doi:10.1016/j.ejmech.2019.05.040
  • W. A. El-Sayed, A. M. Mohamed, H. S. Khalaf, D. S. EL-Kady, and M. Al-Manawaty, “Synthesis, Docking Studies and Anticancer Activity of New Substituted Pyrimidine and Triazolopyrimidine Glycosides,” Journal of Applied Pharmaceutical Science 7, no. 09 (2017): 001–11. doi:10.7324/japs.2017.70901
  • A. Mohamed, N. Abdel-Hafez, A. Kassem, E. Abbas, and M. Mounier, “Synthesis of Some New Thiazole Derivatives and Their Cytotoxicity on Different Human Tumor Cell Lines,” Russian Journal of General Chemistry 87, no. 10 (2017): 2391–400. doi:10.1134/S1070363217100218
  • E. M. Flefel, W. A. El-Sayed, A. M. Mohamed, W. I. El-Sofany, and H. M. Awad, “Synthesis and Anticancer Activity of New 1-Thia-4-Azaspiro [4.5] Decane, Their Derived Thiazolopyrimidine and 1, 3, 4-Thiadiazole Thioglycosides,” Molecules (Basel, Switzerland) 22, no. 1 (2017): 170. doi:10.3390/molecules22010170
  • A. M. Mohamed, H. R. Al-Qalawi, W. A. El-Sayed, W. A. Arafa, M. S. Alhumaimess, and A. K. Hassan, “Anticancer Activity of Newly Synthesized Triazolopyrimidine Derivatives and Their Nucleoside Analogs,” Acta Poloniae Pharm. Drug Res 72 (2015): 307–18.
  • Jun-Jie Yang, Wei-Wei Yu, Long-Long Hu, Wen-Juan Liu, Xian-Hua Lin, Wei Wang, Qiansen Zhang, Pei-Li Wang, Shuo-Wen Tang, Xin Wang, et al, “Discovery and Characterization of 1 H-1, 2, 3-Triazole Derivatives as Novel Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy,” Journal of Medicinal Chemistry 63, no. 2 (2020): 569–90. (2019) doi:10.1021/acs.jmedchem.9b01269
  • Ahmed Kamal, Syed Mohammed Ali Hussaini, Shaikh Faazil, Y. Poornachandra, G. Narender Reddy, C. Ganesh Kumar, Vikrant Singh Rajput, Chitra Rani, Rashmi Sharma, Inshad Ali Khan, et al, “Anti-Tubercular Agents. Part 8: synthesis, Antibacterial and Antitubercular Activity of 5-Nitrofuran Based 1, 2, 3-Triazoles,” Bioorganic & Medicinal Chemistry Letters 23, no. 24 (2013): 6842–6. doi:10.1016/j.bmcl.2013.10.010
  • S. M. A. Hussaini, P. Yedla, K. S. Babu, T. B. Shaik, G. K. Chityal, and A. Kamal, “Synthesis and Biological Evaluation of 1, 2, 3‐Triazole Tethered Pyrazoline and Chalcone Derivatives,” Chemical Biology & Drug Design 88, no. 1 (2016): 97–109. doi:10.1111/cbdd.12738
  • K. Kiran, D. Ashok, B. A. Rao, M. Sarasija, and A. S. Rao, “Synthesis of Novel Pyrazoline Based Bis (1, 2, 3-Triazole) Scaffolds via Click Chemistry,” Journal of the Serbian Chemical Society 82, no. 3 (2017): 241–51. doi:10.2298/JSC160216076A
  • Giuliana Biagi, Anna Maria Bianucci, Alessio Coi, Barbara Costa, Laura Fabbrini, Irene Giorgi, Oreste Livi, Iolanda Micco, Federica Pacchini, Edoardo Santini, et al, “2, 9-Disubstituted-N6-(Arylcarbamoyl)-8-Azaadenines as New Selective A3 Adenosine Receptor Antagonists: Synthesis, Biochemical and Molecular Modelling Studies,” Bioorganic & Medicinal Chemistry 13, no. 15 (2005): 4679–93. doi:10.1016/j.bmc.2005.04.063
  • G. Biagi, . I. Giorgi, O. Livi, C. Manera, and V. Scartoni, “1, 2, 3-Triazolo [4, 5-e]-1, 2, 4-triazolo [3, 4-c] pyrimidines,” Journal of Heterocyclic Chemistry 36, no. 5 (1999): 1195–98., doi:10.1002/jhet.5570360514
  • B. P. George, and H. Abrahamse, “Increased Oxidative Stress Induced by Rubus Bioactive Compounds Induce Apoptotic Cell Death in Human Breast Cancer Cells,” Oxidative Medicine and Cellular Longevity 2019 (2019): 6797921. doi:10.1155/2019/6797921
  • V. Krystof, and S. Uldrijan, “Cyclin-Dependent Kinase Inhibitors as Anticancer Drugs,” Current Drug Targets 11, no. 3 (2010): 291–302. doi:10.2174/138945010790711950
  • J. Mason, A. Good, and E. Martin, “3-D Pharmacophores in Drug Discovery,” Current Pharmaceutical Design 7, no. 7 (2001): 567–97. doi:10.2174/1381612013397843
  • Molecular Operation Environment. MOE Molecular Operating Environment, Chemical Computing Group, Montreal, Quebec, Canada Chap. 2015. Retrieved from http://www.chemcomp.com.
  • P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney, and M. R. Boyd, “New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening,” Journal of the National Cancer Institute 82, no. 13 (1990): 1107–12. “Jnci,” doi:10.1093/jnci/82.13.1107
  • K. M. Miranda, M. G. Espey, and D. A. Wink, “A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and Nitrite,” Nitric Oxide : biology and Chemistry 5, no. 1 (2001): 62–71. doi:10.1006/niox.2000.0319

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.