199
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comprehensive Review on One-pot Green Synthesis of Pyran and Chromene Fused Benzo[α]phenazines

, , , &
Pages 1697-1721 | Received 08 Aug 2022, Accepted 11 Apr 2023, Published online: 02 May 2023

References

  • A. Deiters and S.F. Martin, “Synthesis of Oxygen- and Nitrogen-containing Heterocycles by Ring-closing Metathesis,” Chemical 104, no. 5 (2004): 2199–2238. doi:10.1021/cr0200872
  • X. Wu, H. Neumann, and M. Beller, “Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations,” Chemical Reviews 113, no. 1 (2013): 1–35. doi:10.1021/cr300100s
  • A.S. Dudnik and V. Gevorgyan, “Transition Metal-catalyzed Synthesis of Monocyclic Five-membered Aromatic Heterocycles,” Catalyzed Carbon-Heteroatom Bond Form (2010): 227–316.
  • X. Pang, C. Chen, X. Su, M. Li, and L. Wen, “Diverse Tandem Cyclization Reactions of o -Cyanoanilines and Diaryliodonium Salts with Copper Catalyst for the Construction of Quinazolinimine and Acridine Scaffolds,” Organic Letters 16, no. 23 (2014): 6228–31. doi:10.1021/ol503156g
  • S. Sadjadi and M.M. Heravi, “Recent Application of Isocyanides in Synthesis of Heterocycles,” Tetrahedron 67, no. 15 (2011): 2707–52. doi:10.1016/j.tet.2011.01.086
  • D.A. Horton, G.T. Bourne, and M.L. Smythe, “The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures,” Chemical Reviews 103, no. 3 (2003): 893–930. doi:10.1021/cr020033s
  • Molina P and M. J. Vilaplana. "Iminophosphoranes: useful building blocks for the preparation of nitrogen-containing heterocycles," Synthesis, no. 12 (1994): 1197–1218.
  • X. Zhu, Q. Wu, and J. Li, “Research Progress of Phenazine-1-Carboxylic Acid and Its Analogue,” Chinese Journal of Organic Chemistry 39, no. 10 (2019): 2744–58. doi:10.6023/cjoc201904023
  • A. Price-Whelan, L.E.P. Dietrich, and D.K. Newman, “Rethinking “Secondary” Metabolism: Physiological Roles for Phenazine Antibiotics,” Nature Chemical Biology 2, no. 2 (2006): 71–8. doi:10.1038/nchembio764
  • D.V. Mavrodi, W. Blankenfeldt, and L.S. Thomashow, “Phenazine Compounds in Fluorescent Pseudomonas spp. biosynthesis and Regulation,” Annual Review of Phytopathology 44 (2006): 417–45. doi:10.1146/annurev.phyto.44.013106.145710
  • C. Neves-Pinto, V.R.S. Malta, C.F.R. Pinto M do, R.H.A. Santos, S.L. De Castro, and A.V. Pinto, “A Trypanocidal Phenazine Derived from β-Lapachone,” Journal of Medicinal Chemistry 45, no. 10 (2002): 2112–5. doi:10.1021/jm010377v
  • D.K. Cartwright, W.S. Chilton, and D.M. Benson, “Pyrrolnitrin and Phenazine Production by,” Applied Microbiology and Biotechnology 43, no. 2 (1995): 211–6. doi:10.1007/BF00172814
  • J.M. Ligon, D.S. Hill, P.E. Hammer, N.R. Torkewitz, D. Hofmann, H.-J. Kempf, and K.-H. van Pée, “Natural Products with Antifungal Activity from Pseudomonas Biocontrol Bacteria,” Pest Management Science 56, no. 8 (2000): 688–95. doi:https://doi.org/10.1002/1526-4998(200008)56:8<688::AID-PS186>3.0.CO;2-V
  • M. Muller and T.C. Sorrell, “Inhibition of the Human Platelet Cyclooxygenase Response by the Naturally Occurring Phenazine Derivative, 1-Hydroxyphenazine,” Prostaglandins 50, no. 5-6 (1995): 301–11. doi:10.1016/0090-6980(95)00133-6
  • R. Mohebat, P. Dehgan, and A. Yazdani-Elah-Abadi, “Green Synthesis of Novel Pyrazolo-fused Benzophenazines Using H3PW12O40 as Efficient and Recyclable Catalyst under Microwave Irradiation,” Journal of the Chinese Chemical Society 65, no. 10 (2018): 1259–65. doi:10.1002/jccs.201800071
  • Le-Nhat-Thuy, G., Dang Thi, T.A., Nguyen Thi, Q.G., Hoang Thi, P., Nguyen, T.A., Nguyen, H.T., Nguyen Thi, T.H., Nguyen, H.S., and Van Nguyen, T., “Synthesis and Biological Evaluation of Novel Benzo[a]Pyridazino[3,4-c]Phenazine Derivatives,” Bioorganic & Medicinal Chemistry Letters 43 (2021): 128054. doi:10.1016/j.bmcl.2021.128054
  • M. Taheri, R. Mohebat, and M.H. Moslemin, “Synthesis of Benzo[a]Furo[2, 3-c]Phenazine Derivatives through an Efficient, Rapid and via Microwave Irradiation under Solvent-fFree Conditions Catalyzed by H3PW12O40@Fe3O4-ZnO for High-performance Removal of Methylene Blue,” Artificial Cells, Nanomedicine, and Biotechnology 49, no. 1 (2021): 250–60. doi:10.1080/21691401.2021.1894163
  • G. Khanna, A. Chaudhary, and J.M. Khurana, “An Efficient Catalyst-free Synthesis of Novel Benzo[a][1,3]Oxazino[6,5-c]Phenazine Derivatives via One Pot Four-component Domino Protocol in Water,” Tetrahedron Letters 55, no. 49 (2014): 6652–4. doi:10.1016/j.tetlet.2014.10.067
  • R. Mohebat and A. Yazdani-Elah-Abadi, “Caffeine Catalyzed Green Synthesis of Novel Benzo[a][1,3]Oxazino[6,5-c]Phenazines via a One-pot Multi-component Sequential Protocol in a Basic Ionic Liquid,” Chinese Chemical Letters 28, no. 6 (2017): 1340–4. doi:10.1016/j.cclet.2017.01.024
  • M. Tabibian, R. Mohebat, and M. Tabatabaee, “A Novel One-pot and Rapid Synthesis of Polyfunctionalized Benzo[a]Pyrimido[5’,4’:5,6] Pyrido[2,3-c]Phenazine Derivatives under Microwave Irradiation,” Turkish Journal of Chemistry 42, no. 4 (2018): 1008–17. doi:10.3906/kim-1710-13
  • P. Dehghan and R. Mohebat, “A Highly Efficient and Green Synthesis of Pyrimido-fused Benzophenazines via Microwave-assisted and H3PW12O40@Nano-ZnO Catalyzed a Sequential One-pot Cyclization in Aqueous Medium,” Polycyclic Aromatic Compounds 40, no. 4 (2020): 1164–74. doi:10.1080/10406638.2018.1533874
  • M. Ghasemian Dazmiri, H. Alinezhad, Z. Hossaini, and A.R. Bekhradnia, “Green Synthesis of Fe3O4/ZnO Magnetic Core-shell Nanoparticles by Petasites Hybridus Rhizome Water Extract and Their Application for the Synthesis of Pyran Derivatives: Investigation of Antioxidant and Antimicrobial Activity,” Applied Organometallic Chemistry 34, no. 9 (2020): 1–13. doi:10.1002/aoc.5731
  • S. Ahmad, I.G. Rathish, S. Bano, M.S. Alam, and K. Javed, “Synthesis and Biological Evaluation of Some Novel 6-Aryl-2-(p- Sulfamylphenyl)-4,5-Dihydropyridazin-3(2H)-Ones as Anti-cancer, Antimicrobial, and anti-Inflammatory Agents,” Journal of Enzyme Inhibition and Medicinal Chemistry 25, no. 2 (2010): 266–71. doi:10.3109/14756360903155781
  • P.S. Nayak, B. Narayana, B.K. Sarojini, S. Sheik, K.S. Shashidhara, and K.R. Chandrashekar, “Design, Synthesis, Molecular Docking and Biological Evaluation of Imides, Pyridazines, and Imidazoles Derived from Itaconic Anhydride for Potential Antioxidant and Antimicrobial Activities,” Journal of Taibah University for Science 10, no. 6 (2016): 823–38. doi:10.1016/j.jtusci.2014.09.005
  • X. Yu, M. Zhao, F. Liu, S. Zeng, and J. Hu, “Identification of 2,3-Dihydro-3,5-Dihydroxy-6-Methyl-4H-Pyran-4-One as a Strong Antioxidant in Glucose-histidine Maillard Reaction Products,” Food Research International 51, no. 1 (2013): 397–403. doi:10.1016/j.foodres.2012.12.044
  • P. Gurunanjappa, M.B. Ningappa, and A.K. Kariyappa, “Synthesis of Pyrazole Fused Pyran Analogues: Antimicrobial, Antioxidant and Molecular Docking Studies,” Chemical Data Collections 5-6 (2016): 1–11. doi:10.1016/j.cdc.2016.09.002
  • S. Fustero, R. Román, J.F. Sanz-Cervera, A. Simón-Fuentes, J. Bueno, and S. Villanova, “Synthesis of New Fluorinated Tebufenpyrad Analogs with Acaricidal Activity through Regioselective Pyrazole Formation,” The Journal of Organic Chemistry 73, no. 21 (2008): 8545–52. doi:10.1021/jo801729p
  • G. Varvounis, "Pyrazol-3-Ones. Part IV: Synthesis and Applications", Advances in Heterocyclic Chemistry vol. 98 (Elsevier, 2009) 143–224.
  • M. Kamal, A. Shakya, and T. Jawaid, “Benzofurans: A New Profile of Biological Activities,” International Journal of Medical & Pharmaceutical Sciences 1 (2011): 1–15.
  • H.E. Hashem, D.S.A. Haneen, K.F. Saied, and A.S.A. Youssef, “Synthesis of New Annulated Pyridazine Derivatives and Studying Their Antioxidant and Antimicrobial Activities,” Synthetic Communications 49, no. 22 (2019): 3169–80. doi:10.1080/00397911.2019.1658786
  • A. Mishra, Y.K. Pandey, F. Tufail, J. Singh, and J. Singh, “A Convenient and Green Synthetic Approach for Benzo[a]Pyrano[2,3-c]Phenazines via Supramolecular Catalysis,” Catalysis Letters 150, no. 6 (2020): 1659–68. doi:10.1007/s10562-019-03057-2
  • T. Bao-Shu, L.-K. Wang, and X.-L. Xu, “DNA Topoisomerase I from Human Spleen,” Journal of Bioactive and Compatible Polymers 5, no. 1 (n.d): 65–79. doi:10.1177/088391159000500107
  • P.S. Morahan, J.A. Munson, L.G. Baird, A.M. Kaplan, and W. Regelson, “Antitumor Action of Pyran Copolymer and Tilorone against Lewis Lung Carcinoma and B-16 Melanoma1,” Cancer Research 34 (1974): 506–11.
  • R.M. Mohareb, E.M. Khalil, A.E. Mayhoub, and A.E.M. Abdallah, “Novel Synthesis of Pyran, Thiophene, and Pyridine Derivatives Incorporating Thiazole Ring and Their Antitumor Evaluation,” Journal of Heterocyclic Chemistry 57, no. 3 (2020): 1330–43. doi:10.1002/jhet.3870
  • P. Nagaraju, P.N. Reddy, P. Padmaja, and V.G. Ugale, “Synthesis, Antiproliferative Activity and Molecular Docking Studies of Novel Benzo[a]Pyrano-[2,3-c]Phenazine Derivatives,” Chemical Data Collections 30 (2020): 100541. doi:10.1016/j.cdc.2020.100541
  • F. Safari, H. Hosseini, M. Bayat, and A. Ranjbar, “Synthesis and Evaluation of Antimicrobial Activity, Cytotoxic and Pro-apoptotic Effects of Novel Spiro-4 H -Pyran Derivatives,” RSC Advances 9, no. 43 (2019): 24843–51. doi:10.1039/c9ra03196k
  • M.Y. Jaballah, R.A.T. Serya, N. Saad, S.M. Khojah, M. Ahmed, K. Barakat, and K.A.M. Abouzid, “Towards Discovery of Novel Scaffold with Potent Antiangiogenic Activity; Design, Synthesis of Pyridazine Based Compounds, Impact of Hinge Interaction, and Accessibility of Their Bioactive Conformation on VEGFR-2 Activities,” Journal of Enzyme Inhibition and Medicinal Chemistry 34, no. 1 (2019): 1573–89. doi:10.1080/14756366.2019.1651723
  • J.C. Chen, L. Qian, W.J. Wu, L.M. Chen, and K.C. Zheng, “A QSAR Study of Substituted Benzo[a]Phenazines as Potential Anticancer Agents,” Journal of Molecular Structure: Theochem 756, no. 1-3 (2005): 167–72. doi:10.1016/j.theochem.2005.09.010
  • Z.X. He, Y.P. Gong, X. Zhang, L.Y. Ma, and W. Zhao, “Pyridazine as a Privileged Structure: An Updated Review on Anticancer Activity of Pyridazine Containing Bioactive Molecules,” European Journal of Medicinal Chemistry 209 (2021): 112946. doi:10.1016/j.ejmech.2020.112946
  • Y. Saito, M. Kishimoto, Y. Yoshizawa, and S. Kawaii, “Synthesis and Structure - Activity Relationship Studies of Furan-ring Fused Chalcones as Antiproliferative Agents,” Anticancer Research 35 (2015): 811–7.
  • L. Moreno, N. Cabedo, A. Boulangé, J. Párraga, A. Galán, S. Leleu, M.J. Sanz, D. Cortes, and X. Franck, “Synthesis of Pyrido[2,1-a]Isoquinolin-4-Ones and Oxazino[2,3-a]Isoquinolin- 4-Ones: New Inhibitors of Mitochondrial Respiratory Chain,” European Journal of Medicinal Chemistry 69 (2013): 69–76. doi:10.1016/j.ejmech.2013.08.013
  • A. Zerroug, S. Belaidi, I. BenBrahim, L. Sinha, and S. Chtita, “Virtual Screening in Drug-likeness and Structure/Activity Relationship of Pyridazine Derivatives as Anti-Alzheimer Drugs,” Journal of King Saud University - Science 31, no. 4 (2019): 595–601. doi:10.1016/j.jksus.2018.03.024
  • Y. Boukharsa, B. Meddah, R.Y. Tiendrebeogo, A. Ibrahimi, J. Taoufik, Y. Cherrah, A. Benomar, M.E.A. Faouzi, and M. Ansar, “Synthesis and Antidepressant Activity of 5-(Benzo[b]Furan-2-Ylmethyl)-6-Methylpyridazin-3(2H)-One Derivatives,” Medicinal Chemistry Research 25, no. 3 (2016): 494–500. doi:10.1007/s00044-015-1490-x
  • S. Jiang, S.R. Tala, H. Lu, P. Zou, I. Avan, T.S. Ibrahim, N.E. Abo-Dya, A. Abdelmajeid, A.K. Debnath, and A.R. Katritzky, “Design, Synthesis, and Biological Activity of a Novel Series of 2,5-Disubstituted Furans/Pyrroles as HIV-1 Fusion Inhibitors Targeting gp41,” Bioorganic & Medicinal Chemistry Letters 21, no. 22 (2011): 6895–8. doi:10.1016/j.bmcl.2011.08.081
  • E.H. El-Sayed and A.A. Fadda, “Synthesis and Antimicrobial Activity of Some Novel Bis Polyfunctional Pyridine, Pyran, and Thiazole Derivatives,” Journal of Heterocyclic Chemistry 55, no. 10 (2018): 2251–60. doi:10.1002/jhet.3276
  • A.S.M. Hossan, H.M.A. Abu-Melha, M.A. Al-Omar, and A.E.G.E. Amr, “Synthesis and Antimicrobial Activity of Some New Pyrimidinone and Oxazinone Derivatives Fused with Thiophene Rings Using 2-Chloro-6-Ethoxy-4-Acetylpyridine as Starting Material,” Molecules 17, no. 11 (2012): 13642–55. doi:10.3390/molecules171113642
  • A. Evidente, A. Cabras, L. Maddau, S. Serra, A. Andolfi, and A. Motta, “Viridepyronone, a New Antifungal 6-Substituted 2H-Pyran-2-One Produced by Trichoderma Viride,” Journal of Agricultural and Food Chemistry 51, no. 24 (2003): 6957–60. doi:10.1021/jf034708j
  • T.K. Chattapadhyay and P. Dureja, “Antifungal Activity of 4-Methyl-6-Alkyl-2H-Pyran-2-Ones,” Journal of Agricultural and Food Chemistry 54, no. 6 (2006): 2129–33. doi:10.1021/jf052792s
  • G. Küçükgüzel and S. ŞenkardeŞ, “Recent Advances in Bioactive Pyrazoles,” European Journal of Medicinal Chemistry 97 (2015): 786–815. doi:10.1016/j.ejmech.2014.11.059
  • K. Ajay Kumar and M. Govindaraju, “Pyrazolines: Versatile Molecules of Synthetic and Pharmaceutical Applications-A Review,” International Journal of ChemTech Research 8 (2015): 313–22.
  • Y. Matsuya, K. Sasaki, M. Nagaoka, H. Kakuda, N. Toyooka, N. Imanishi, H. Ochiai, and H. Nemoto, “Synthesis of a New Class of Furan-fused Tetracyclic Compounds Using o-Quinodimethane Chemistry and Investigation of Their Antiviral Activity,” The Journal of Organic Chemistry 69, no. 23 (2004): 7989–93. doi:10.1021/jo0486995
  • C. Liu, J. Lin, R. Moslin, J.S. Tokarski, J. Muckelbauer, C.Y. Chang, J. Tredup, D. Xie, H. Park, P. Li, et al, “Identification of Imidazo[1,2- b]Pyridazine Derivatives as Potent, Selective, and Orally Active Tyk2 JH2 Inhibitors,” ACS Medicinal Chemistry Letters 10, no. 3 (2019): 383–8. doi:10.1021/acsmedchemlett.9b00035
  • T. Tsuji, M. Yamaguchi, J. Kuroyanagi, S. Furuzono, M. Konishi, K. Terayama, J. Tanaka, M. Saito, and Y. Kobayashi, “Discovery of Novel Pyridazine Derivatives as Glucose Transporter Type 4 (GLUT4) Translocation Activators,” Bioorganic & Medicinal Chemistry Letters 29, no. 14 (2019): 1785–90. doi:10.1016/j.bmcl.2019.05.013
  • P.M. Cox and N.N. Bumpus, “Structure-activity Studies Reveal the Oxazinone Ring Is a Determinant of Cytochrome P450 2B6 Activity toward Efavirenz,” ACS Medicinal Chemistry Letters 5, no. 10 (2014): 1156–61. doi:10.1021/ml500297n
  • A. Modak, U. Dutta, R. Kancherla, S. Maity, M. Bhadra, S.M. Mobin, and D. Maiti, “Predictably Selective (sp3)C-O Bond Formation through Copper Catalyzed Dehydrogenative Coupling: Facile Synthesis of Dihydro-oxazinone Derivatives,” Organic Letters 16, no. 10 (2014): 2602–5. doi:10.1021/ol500670h
  • F. Slowinski, O. Ben Ayad, O. Ziyaret, C. Botuha, L. Le Falher, K. Aouane, and S. Thorimbert, “Expeditive Access to 2-Substituted 4 h -Pyrido[1,3]Oxazin-4-Ones via an Intramolecular O-Arylation,” Organic Letters 15, no. 14 (2013): 3494–7. doi:10.1021/ol401516e
  • A.M. El-Agrody, A.M. Fouda, M.A. Assiri, A. Mora, T.E. Ali, M.M. Alam, and M.Y. Alfaifi, “In Vitro Anticancer Activity of Pyrano[3, 2-c]Chromene Derivatives with Both Cell Cycle Arrest and Apoptosis Induction,” Medicinal Chemistry Research 29, no. 4 (2020): 617–29. doi:10.1007/s00044-019-02494-3
  • S. Banerjee, A. Horn, H. Khatri, and G. Sereda, “A Green One-pot Multicomponent Synthesis of 4H-Pyrans and Polysubstituted Aniline Derivatives of Biological, Pharmacological, and Optical Applications Using Silica Nanoparticles as Reusable Catalyst,” Tetrahedron Letters 52, no. 16 (2011): 1878–81. doi:10.1016/j.tetlet.2011.02.031
  • J.A. Tanna, R.G. Chaudhary, N.V. Gandhare, A.R. Rai, S. Yerpude, and H.D. Juneja, “Copper Nanoparticles Catalysed an Efficient One-pot Multicomponents Synthesis of Chromenes Derivatives and Its Antibacterial Activity,” Journal of Experimental Nanoscience 11, no. 11 (2016): 884–900. doi:10.1080/17458080.2016.1177216
  • J.M. Batista, A.A. Lopes, D.L. Ambrósio, L.O. Regasini, M.J. Kato, V.D.S. Bolzani, R.M.B. Cicarelli, and M. Furlan, “Natural Chromenes and Chromene Derivatives as Potential Anti-trypanosomal Agents,” Biological & Pharmaceutical Bulletin 31, no. 3 (2008): 538–40. doi:10.1248/bpb.31.538
  • J.F. Cheng, A. Ishikawa, Y. Ono, T. Arrhenius, and A. Nadzan, “Novel Chromene Derivatives as TNF-α Inhibitors,” Bioorganic & Medicinal Chemistry Letters 13, no. 21 (2003): 3647–50. doi:10.1016/j.bmcl.2003.08.025
  • M.M. Kandeel, A.M. Kamal, E.K.A. Abdelall, and H.A.H. Elshemy, “Synthesis of Novel Chromene Derivatives of Expected Antitumor Activity,” European Journal of Medicinal Chemistry 59 (2013): 183–93. doi:10.1016/j.ejmech.2012.11.011
  • N.S. Moorthy, V. Pratheepa, M. Ramos, V. Vasconcelos, and P. Fernandes, “Fused Aryl-phenazines: Scaffold for the Development of Bioactive Molecules,” Current Drug Targets 15, no. 7 (2014): 681–8. doi:10.2174/1389450115666140205152007
  • T. Yamagishi, S. Nakaike, T. Ikeda, H. Ikeya, and S. Otomo, “A Novel Antitumor Compound, NC-190, Induces Topoisomerase II-Dependent DNA Cleavage and DNA Fragmentation,” Cancer Chemotherapy and Pharmacology 38, no. 1 (1996): 29–34. doi:10.1007/s002800050443
  • M.S. Abdelfattah, T. Kazufumi, and M. Ishibashi, “Izumiphenazines A-C: Isolation and Structure Elucidation of Phenazine Derivatives from Streptomyces sp. IFM 11204,” Journal of Natural Products 73, no. 12 (2010): 1999–2002. doi:10.1021/np100400t
  • I.K.D.C. Nunes, C.A. De Simone, R.S.F. Silva, A.V. Pinto, and M.O.F. Goulart, “14b-Chloro-4a-Meth-Oxy-3,3-Dimethyl-2,3,4a,14b-Tetra-Hydro-1H-Benzo[a] Pyrano[2,3-c]Phenazine: A New Active Structural Type against Mycobacterium tuberculosis,” Acta Crystallographica Section E: Structure Reports Online 63 (2007): o3686–o3687.
  • R. Jain, O.P. Agarwal, and S.C. Jain, “Synthesis of Tetracyclic Phenazine Derivatives by Reactions of Lawsone with Diamines,” Asian Journal of Chemistry 25, no. 4 (2013): 1842–4. doi:10.14233/ajchem.2013.13188
  • G. Kaupp and M.R. Naimi-Jamal, “Quantitative Cascade Condensations between o-Phenylenediamines and 1,2-Dicarbonyl Compounds without Production of Wastes,” European Journal of Organic Chemistry 2002, no. 8 (2002): 1368–73. doi:https://doi.org/10.1002/1099-0690(200204)2002:8<1368::AID-EJOC1368>3.0.CO;2-6
  • G.M. Rehberg, and J. L. Rutherford. "Synthesis of 5, 7‐dihydrobenzo [a] phenazin‐5‐one derivatives." Journal of heterocyclic chemistry 32, no. 5 (1995): 1643–1644.
  • A. Thakur, M. Verma, R. Bharti, and R. Sharma, “Oxazole and Isoxazole: From One-pot Synthesis to Medical Applications,” Tetrahedron 119 (2022): 132813. doi:10.1016/j.tet.2022.132813
  • A. Thakur, M. Verma, R. Bharti, and R. Sharma, “Recent Advances in Utilization of Deep Eutectic Solvents: An Environmentally Friendly Pathway for Multi-component Synthesis,” Current Organic Chemistry 26, no. 3 (2022): 299–323. doi:10.2174/1385272826666220126165925
  • M. Verma, A. Thakur, R. Sharma, and R. Bharti, “Recent Advancement in the One-pot Synthesis of the Tri-Substituted Methanes (TRSMs) and Their Biological Applications,” Current Organic Synthesis 19, no. 1 (2022): 86–114. doi:10.2174/1570179418666210910105342
  • A. Thakur, R. Bharti, and R. Sharma, “Effect of Methods and Catalysts on the One-pot Synthesis of Tetrahydropyridine Derivatives: A Mini-review,” Orbital 13 (2021): 335–49.
  • P. Setia, R. Bharti, and R. Sharma, “Various Synthetic Pathways for the Synthesis of 3,4-Disubstituted Isoxazole by One Pot Multicomponent Reaction,” Orbital 12 (2020): 267–75.
  • R. Bharti and T. Parvin, “Molecular Diversity from the l-Proline-catalyzed, Three-component Reactions of 4-Hydroxycoumarin, Aldehyde, and 3-Aminopyrazole or 1,3-Dimethyl-6-Aminouracil,” Synthetic Communications 45, no. 12 (2015): 1442–50. doi:10.1080/00397911.2015.1023900
  • R. Bharti and T. Parvin, “Multicomponent Synthesis of Diverse Pyrano-fused Benzophenazines Using Bifunctional Thiourea-Based Organocatalyst in Aqueous Medium,” Molecular Diversity 20, no. 4 (2016): 867–76. doi:10.1007/s11030-016-9681-z
  • M. Verma, R. Sharma, R. Bharti, and A. Tangri, “Green One-pot Synthesis of N-based Heterocycles Involving o-Phenylenediamine,” Materials Today: Proceedings 37 (2021): 2321–8. doi:10.1016/j.matpr.2020.07.733
  • R. Bharti and R. Sharma, “Natural Acid Catalyzed Aqua Mediated Multicomponent Synthesis of Tetrahydropyridines and Its Antioxidant Activities,” Materials Today: Proceedings 45 (2021): 3186–94. doi:10.1016/j.matpr.2020.12.369
  • P. Kumari, R. Bharti, and T. Parvin, “Synthesis of Aminouracil-tethered Tri-substituted Methanes in Water by Iodine-catalyzed Multicomponent Reactions,” Molecular Diversity 23, no. 1 (2019): 205–13. doi:10.1007/s11030-018-9862-z
  • R. Bharti, P. Kumari, T. Parvin, and L.H. Choudhury, “Molecular Diversity from the Three-component Reaction of 2-Hydroxy-1,4-Naphthaquinone, Aldehydes and 6-Aminouracils: A Reaction Condition Dependent MCR,” RSC Advances 7, no. 7 (2017): 3928–33. doi:10.1039/C6RA18828A
  • V.F. Vavsari and S. Balalaie, “Multicomponent synthesis of diverse pyrano-fused benzophenazines in Green Synthesis of Chromones,” Chemistry of Heterocyclic Compounds 56, no. 4 (2020): 404–7. doi:10.1007/s10593-020-02675–8
  • P.K. Sahu, P.K. Sahu, S.K. Gupta, and D.D. Agarwal, “Chitosan: An Efficient, Reusable, and Biodegradable Catalyst for Green Synthesis of Heterocycles,” Industrial & Engineering Chemistry Research 53, no. 6 (2014): 2085–91. doi:10.1021/ie402037d
  • A.Z. Halimehjani, I.N.N. Namboothiri, and S.E. Hooshmand, “Part II: Nitroalkenes in the Synthesis of Heterocyclic Compounds,” RSC Advances 4, no. 93 (2014): 51794–829. doi:10.1039/C4RA08830A
  • C.A. Malapit and A.R. Howell, “Recent Applications of Oxetanes in the Synthesis of Heterocyclic Compounds,” The Journal of Organic Chemistry 80, no. 17 (2015): 8489–95. doi:10.1021/acs.joc.5b01255
  • H. Aghahosseini, A. Ramazani, N.S. Jalayer, Z. Ranjdoost, A. Souldozi, K. Ślepokura, and T. Lis, “Vinylphosphonium Salt-mediated Reactions: A One-pot Condensation Approach for the Highly cis-Selective Synthesis of N-Benzoylaziridines and the Green Synthesis of 1,4,2-Dioxazoles as Two Important Classes of Heterocyclic Compounds,” Organic Letters 21, no. 1 (2019): 22–6. doi:10.1021/acs.orglett.8b03388
  • A. Daştan, A. Kulkarni, and B. Török, “Environmentally Benign Synthesis of Heterocyclic Compounds by Combined Microwave-assisted Heterogeneous Catalytic Approaches,” Green Chemistry 14, no. 1 (2012): 17–37. doi:10.1039/C1GC15837F
  • K.N. Kaur, “Ultrasound-assisted Green Synthesis of Five-membered O- and S-Heterocycles,” Synthetic Communications 48, no. 14 (2018): 1715–38. doi:10.1080/00397911.2018.1460671
  • A. Kamal, V.M. Nazari, M. Yaseen, M.A. Iqbal, M.B.K. Ahamed, A.S.A. Majid, and H.N. Bhatti, “Green Synthesis of Selenium-N-Heterocyclic Carbene Compounds: Evaluation of Antimicrobial and Anticancer Potential,” Bioorganic Chemistry 90 (2019): 103042. doi:10.1016/j.bioorg.2019.103042
  • N. Agenet, O. Buisine, F. Slowinski, V. Gandon, C. Aubert, and M. Malacria, “Cotrimerizations of Acetylenic Compounds,” Organic Reactions 68 (2007): 1–302.
  • P. Biginelli, “Ueber Aldehyduramide Des Acetessigäthers. II,” Berichte Der Deutschen Chemischen Gesellschaft 24, no. 2 (1891): 2962–7. doi:10.1002/cber.189102402126
  • C. Mannich and, W. Krösche, “Ueber Ein,” Archiv Der Pharmazie 250, no. 1 (1912): 647–67. doi:10.1002/ardp.19122500151
  • A. Parikh, H. Parikh, and K. Parikh, “Passerini Reaction,” Name Reaction Organic Synthesis (2012): 335–7.
  • J.B. Urgoiti, L. Añorbe, L.P. Serrano, G. Domínguez, and J. Pérez-Castells, “The Pauson-Khand Reaction, a Powerful Synthetic Tool for the Synthesis of Complex Molecules,” Chemical Society Reviews 33, no. 1 (2004): 32–42. doi:10.1039/B300976A
  • P.L. Pauson and I.U. Khand, “Chemistry A. Complexes in Organic Synthesis.
  • N.A. Petasis and I. Akritopoulou, “The Boronic Acid Mannich Reaction: A New Method for the Synthesis of Geometrically Pure Allylamines,” Tetrahedron Letters 34, no. 4 (1993): 583–586. doi:10.1016/S0040-4039(00)61625–8
  • N.A. Petasis, I.A. Zavialov, and L. Angeles, “A New and Practical Synthesis of r -Amino Acids from Alkenyl Boronic Acids Uni V Ersity of Southern California in Recent Years There Has Been an Increasing Interest for New Practical Methods to Prepare Novel Non-Natural R -Amino Acid Derivatives to Serve,” Journal of the American Chemical Society 7863 (1997): 445–6.
  • I. Ugi, “The α‐Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions,” Angewandte Chemie International Edition in English 1, no. 1 (1962): 8–21. doi:10.1002/anie.196200081.
  • K.D. Boklan and M.D. Asic, “6449,” American Mathematical Monthly 92, no. 6 (1985): 437. doi:10.2307/2322466.
  • J. Zhu, “Recent Developments in the Isonitrile-Based Multicomponent Synthesis of Heterocycles,” European Journal of Organic Chemistry 2003, no. 7 (2003): 1133–44. doi:10.1002/ejoc.200390167
  • V.A. Peshkov, O.P. Pereshivko, and E.V. Van der Eycken, “A Walk around the A3-Coupling,” Chemical Society Reviews 41, no. 10 (2012): 3790–807. doi:10.1039/c2cs15356d
  • P. Biginelli and P. Biginelli, “Ueberaldehyduramide Des Acetessigäthers,” Berichte Der Deutschen Chemischen Gesellschaft 24, no. 1 (1891): 1317–9. doi:10.1002/cber.189102401228
  • C. Wei, Z. Li, and C.J. Li, “The Development of A3-Coupling (Aldehyde-Alkyne-Amine) and AA3-Coupling (Asymmetric Aldehyde-Alkyne-Amine),” Synlett 2009, no. 9 (2004): 1472–83.
  • T. Kakutani, “The Chemistry of the Hydantoins,” Journal of Synthetic Organic Chemistry, Japan 17, no. 8 (1959): 468–73. doi:10.5059/yukigoseikyokaishi.17.468
  • K. Gewald, E. Schinke, and H. Böttcher, “Heterocyclen Aus CH‐AcidenNitrilen, VIII. 2‐Amino‐Thiophene Aus Methylenaktiven Nitrilen, Carbonylverbindungen UndSchwefel,” Chemische Berichte 99, no. 1 (1966): 94–100. doi:10.1002/cber.19660990116
  • S.D. Larsen and P.A. Grieco, “Aza Diels-Alder Reactions in Aqueous Solution: Cyclocondensation of Dienes with Simple Iminium Salts Generated under Mannich Conditions,” Journal of the American Chemical Society 107, no. 6 (1985): 1768–9. doi:10.1021/ja00292a057
  • P.A. Grieco and A. Bahsas, “Role Reversal in the Cyclocondensation,” Tetrahedron Letters 29, no. 46 (1988): 5855–8. doi:10.1016/S0040-4039(00)82208-X
  • A.A. Hantzsch, “Condensationsprodukte Aus Aldehydammoniak Und Ketonartigen Verbindungen,” Berichte Der Deutschen Chemischen Gesellschaft 14, no. 2 (1881): 1637–8. doi:10.1002/cber.18810140214
  • E.K. Fields "The synthesis of esters of substituted amino phosphonic acids1a." Journal of the American Chemical Society 74, no. 6 (1952): 1528–1531
  • G. Keglevich and E. Bálint, “The Kabachnik-Fields Reaction: Mechanism and Synthetic Use,” Molecules 17, no. 11 (2012): 12821–35. doi:10.3390/molecules171112821
  • B. Fattahi and M.G. Dekamin, “Fe3O4/SiO2 Decorated Trimesic Acid-Melamine Nanocomposite: A Reusable Supramolecular Organocatalyst for Efficient Multicomponent Synthesis of Imidazole Derivatives,” Scientific Reports 13, no. 1 (2023): 1–13. doi:10.1038/s41598-023-27408-7
  • B. Borah, S. Swain, M. Patat, B. Kumar, K.K. Prajapat, R. Biswas, R. Vasantha, and L.R. Chowhan, “Brønsted Acid Catalyzed Mechanochemical Domino Multicomponent Reactions by Employing Liquid Assisted Grindstone Chemistry,” Scientific Reports 13, no. 1 (2023): 1–17. doi:10.1038/s41598-023-27948-y
  • K.S. Kumar, A.R. Robert, N. Kerru, and S. Maddila, “A Novel, Swift, and Effective Green Synthesis of Morpholino-pyridine Analogues in Microwave Irradiation Conditions,” Results in Chemistry 5 (2023): 100692. doi:10.1016/j.rechem.2022.100692
  • S. Paul, S. Das, B. Mitra, G. Chandra Pariyar, and P. Ghosh, “β-Cyclodextrin: A Green Supramolecular Catalyst Assisted Eco-friendly One-pot Three-component Synthesis of Biologically Active Substituted Pyrrolidine-2-One,” RSC Advances 13, no. 8 (2023): 5457–66. doi:10.1039/D2RA08054K
  • A. Hasaninejad and S. Firoozi, “One-pot, Sequential Four-component Synthesis of Benzo[c]Pyrano[3,2-a] Phenazine, Bis-Benzo[c]Pyrano[3,2-a]Phenazine and Oxospiro Benzo[c]Pyrano[3,2-a] Phenazine Derivatives Using 1,4-Diazabicyclo[2.2.2]Octane (DABCO) as an Efficient and Reusable Solid Bas,” Molecular Diversity 17, no. 3 (2013): 499–513. doi:10.1007/s11030-013-9446-x
  • R.W. Armstrong, A.P. Combs, P.A. Tempest, S.D. Brown, and T.A. Keating, “Multiple-component Condensation Strategies for Combinatorial Library Synthesis,” Accounts of Chemical Research 29, no. 3 (1996): 123–31. doi:10.1021/ar9502083
  • W. Fan, C. Verrier, L. Wang, M. Ahmar, J.-N. Tan, F. Popowycz, and Y. Queneau, "5-(Hydroxymethyl)Furfural and 5-(Glucosyloxymethyl)Furfural in Multicomponent Reactions" (Elsevier Inc., 2020). Recent Trends in Carbohydrate Chemistry. Elsevier (2020) 73–100.
  • R.C. Cioc, E. Ruijter, and R.V.A. Orru, “Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis,” Green Chemistry 16, no. 6 (2014): 2958–75. doi:10.1039/C4GC00013G
  • R. Mohebat, A. Yazdani Elah Abadi, and M.T. Maghsoodlou, “A Rapid and Efficient Domino Protocol for the Synthesis of Functionalized Benzo[a]Pyrano[2,3-c]Phenazine and Benzo[f]Pyrano[2,3-h]Quinoxaline Derivatives,” Research on Chemical Intermediates 42, no. 6 (2016): 6039–48. doi:10.1007/s11164-016-2437–7
  • H.R. Shaterian and M. Mohammadnia, “Mild Basic Ionic Liquid Catalyzed Four Component Synthesis of Functionalized Benzo[a]Pyrano[2,3-c]Phenazine Derivatives,” Journal of Molecular Liquids 177 (2013): 162–6. doi:10.1016/j.molliq.2012.11.006
  • A.Y.E. Abadi, M.T. Maghsoodlou, R. Heydari, and R. Mohebat, “An Efficient Four-Component Domino Protocol for the Rapid and Green Synthesis of Functionalized Benzo[a]Pyrano[2,3-c]Phenazine Derivatives Using Caffeine as a Homogeneous Catalyst,” Research on Chemical Intermediates 42, no. 2 (2016): 1227–35. doi:10.1007/s11164-015-2083-5
  • K. Sigale and A. Omari, “Aspects of Crosslinking Sulfonated Polyacrylamides from Rheological Studies on Their Gels,” Journal of Applied Polymer Science 64, no. 6 (1997): 1067–72.
  • J. Aalaie, E. Alvand, M. Hemmati, and V.A. Sajjadian, “Preparation and Probing of the Steady Shear Flow and Viscoelastic Properties of Weakly Crosslinked Hydrogels Based on Sulfonated Polyacrylamide for Oil Recovery Applications,” Polymer Science Series A 57, no. 5 (2015): 680–7. doi:10.1134/S0965545X15050016
  • J. S. Ghomi, M. Tavazo, and H. H. Alavi. "One-pot sonochemical synthesis of benzopyranophenazines using nano Fe3O4@ PAA-SO3H." Iranian Journal of Catalysis 9, no. 4 (2019): 347-355.
  • J. Safaei-Ghomi, M. Tavazo, and H. Shahbazi-Alavi, “One-pot Synthesis of Benzopyranophenazines Using Graphene Oxide Dichlorotriazine (GO-DCT) under Microwave Irradiations,” Scientia Iranica 25 (2018): 3322–30.
  • K.A. Connors, “The Stability of Cyclodextrin Complexes in Solution,” Chemical Reviews 97, no. 5 (1997): 1325–58. doi:10.1021/cr960371r
  • R. Rutenberg, G. Leitus, E. Fallik, and E. Poverenov, “Discovery of a Non Classic Host Guest Complexation Mode in a β-Cyclodextrin/Propionic Acid Model,” Chemical Communications 52, no. 12 (2016): 2565–8. doi:10.1039/C5CC09676F
  • A. Yazdani-Elah-Abadi, M. Razeghi, N. Shams, M. Kangani, and R. Mohebat, “Fulvic Acid: An Efficient and Green Catalyst for the One-pot Four-component Domino Synthesis of Benzo[a]Phenazine Annulated Heterocycles in Aqueous Medium,” Organic Preparations and Procedures International 52, no. 1 (2020): 48–55. doi:10.1080/00304948.2019.1697608
  • L. Yan, Y. Li, B. Yang, and W. Gao, “InBr3-catalyzed Synthesis of Highly Functionalized Piperidines and Benzo[a]Pyrano[2,3-c] Phenazines,” Polycyclic Aromatic Compounds (2020).
  • T. Sasaki, M. Tada, C. Zhong, T. Kume, and Y. Iwasawa, “Immobilized Metal Ion-containing Ionic Liquids: Preparation, Structure and Catalytic Performances in Kharasch Addition Reaction and Suzuki Cross-coupling Reactions,” Journal of Molecular Catalysis A: Chemical 279, no. 2 (2008): 200–9. doi:10.1016/j.molcata.2007.06.009
  • C. Zhong, T. Sasaki, M. Tada, and Y. Iwasawa, “Ni Ion-containing Ionic Liquid Salt and Ni Ion-containing Immobilized Ionic Liquid on Silica: Application to Suzuki Cross-coupling Reactions between Chloroarenes and Arylboronic Acids,” Journal of Catalysis 242, no. 2 (2006): 357–64. doi:10.1016/j.jcat.2006.06.020
  • S. Alavi, Hossein, J. S. Ghomi, and M. S. Dehghan“Ionic Liquid-tethered Colloidal Silica Nanoparticles as a Reusable and Effective Catalyst for the Synthesis of Phenazines,” Nanochemistry Research 5, no.2 (2020) 111–119.
  • M. Mamaghani and R. Hossein Nia, “A Review on the Recent Multicomponent Synthesis of Pyranopyrazoles,” Polycyclic Aromatic Compounds 41, no. 2 (2021): 223–91. doi:10.1080/10406638.2019.1584576
  • W.S. Hummers and R. Offeman, “E. Preparation of Graphitic Oxide,” Journal of the American Chemical Society 208 (1957): 1937.
  • A. Landarani-Isfahani, A. Taheri-Kafrani, M. Amini, V. Mirkhani, M. Moghadam, A. Soozanipour, and A. Razmjou, “Xylanase Immobilized on Novel Multifunctional Hyperbranched Polyglycerol-grafted Magnetic Nanoparticles: An Efficient and Robust Biocatalyst,” Langmuir 31, no. 33 (2015): 9219–27. doi:10.1021/acs.langmuir.5b02004
  • Farahnak. Zarabi, and M. Naeimi, “H. Ultrasound Promoted Synthesis of Benzo[a]Pyrano-[2,3-c]Phenazines Using Multisulfonic Acid Hyperbranched Polyglycerol Functionalized Graphene Oxide as a Novel and Reusable Catalyst,” Polycyclic Aromatic Compounds 41, no. 6 (2021): 1299–318. doi:10.1080/10406638.2019.1672202
  • H.J. Song, E.J. Lee, D.H. Kim, S.M. Lee, J.Y. Lee, and D.K. Moon, “Enhancement of External Quantum Efficiency through Steric Hindrance of Phenazine Derivative for White Polymer Light-emitting Diode Materials,” Synthetic Metals 181 (2013): 98–103. doi:10.1016/j.synthmet.2013.08.017
  • B.B. Fischer, A. Krieger-Liszkay, and R.I.L. Eggen, “Photosensitizers Neutral Red (Type I) and Rose Bengal (Type II) Cause Light-dependent Toxicity in Chlamydomonas reinhardtii and Induce the Gpxh Gene via Increased Singlet Oxygen Formation,” Environmental Science & Technology 38, no. 23 (2004): 6307–13. doi:10.1021/es049673y
  • Harichandran, P. Parameswari, and P. Shanmugam, “Synthesis and Photophysical Properties of Functionalized Fluorescent 4H-Chromenes and Benzo[a]Chromenophenazines as Fe3+ and Cu2+ Ion Sensor,” Sensors and Actuators B: Chemical 272 (2018): 252–63. doi:10.1016/j.snb.2018.05.134
  • Olyaei, Abolfazl, and, M. Sadeghpour. "A review on lawsone-based benzo [a] phenazin-5-ol: synthetic approaches and reactions." RSC advances 12, no.22 (2022): 13837–13895.
  • R. Pauliukaite, M.E. Ghica, M.M. Barsan, and C.M.A. Brett, “Phenazines and Polyphenazines in Electrochemical Sensors and Biosensors,” Analytical Letters 43, no. 10-11 (2010): 1588–608. doi:10.1080/00032711003653791
  • P. Saluja, A. Chaudhary, and J.M. Khurana, “Synthesis of Novel Fluorescent Benzo[a]Pyrano[2,3-c]Phenazine and Benzo[a]Chromeno[2,3-c]Phenazine Derivatives via Facile Four-component Domino Protocol,” Tetrahedron Letters 55, no. 23 (2014): 3431–5. doi:10.1016/j.tetlet.2014.04.072
  • S.L. Wang, F.Y. Wu, C. Cheng, G. Zhang, Y.P. Liu, B. Jiang, F. Shi, and S.J. Tu, “Multicomponent Synthesis of Poly-Substituted Benzo[a]Pyrano-[2, 3-c]Phenazine Derivatives under Microwave Heating,” ACS Combinatorial Science 13, no. 2 (2011): 135–9. doi:10.1021/co1000376
  • R. Mohebat, A.Y.E. Abadi, M.T. Maghsoodlou, M. Mohammadi, and R. Heydari, “A Green and Efficient Four-component Sequential Protocol for the Synthesis of Novel 16-(Aryl)Benzo[a]Indeno[2′,1′:5,6]Pyrano[2,3-c]Phenazin-15(16H)-One Derivatives Using Oxalic Acid as a Reusable and Cost-effective Organic Catalyst,” Research on Chemical Intermediates 42, no. 9 (2016): 7121–32.
  • Y.E.A. Afshin, R. Mohebat, and M. Kangani, “Microwave-assisted and L-Proline Catalysed Domino Cyclisation in an Aqueous Medium: A Rapid, Highly Efficient and Green Synthesis of Benzo[a]Phenazine Annulated Heterocycles,” Journal of Chemical Research 40 (2016): 722–6.
  • M. Mohammadrezaei, R. Mohebat, and M. Tabatabaee, “H3PW12O40@nano-ZnO: An Efficient, Recyclable, and Eco-friendly Catalyst for the Green Synthesis of Novel Benzo[a]Pyrimido[5′,4′:5,6]Pyrano[2,3-c]Phenazines via Sequential Multicomponent Reactions under Microwave Irradiation,” Journal of the Chinese Chemical Society 65, no. 8 (2018): 1007–13. doi:10.1002/jccs.201700359
  • M. Mohammadrezaei, R. Mohebat, and M. Tabatabaee, “Microwave-assisted Multi-component Domino Reaction for the Green Synthesis of Novel Benzo[a]Pyrano[3’,4’:5,6]Pyrano[2,3-c]Phenazines Using H3PW12O40 as Efficient, Cost-effective and Recyclable Catalyst,” Organic Preparations and Procedures International 51, no. 5 (2019): 477–85. doi:10.1080/00304948.2019.1653128
  • J.M. Khurana, A. Chaudhary, A. Lumb, and B. Nand, “An Expedient Four-component Domino Protocol for the Synthesis of Novel Benzo[a]Phenazine Annulated Heterocycles and Their Photophysical Studies,” Green Chemistry 14, no. 8 (2012): 2321–7. doi:10.1039/c2gc35644a
  • M. Rajeswari, G. Khanna, A. Chaudhary, and J.M. Khurana, “Multicomponent Domino Process for the Synthesis of Some Novel Benzo [a[Chromenophenazine Fused Ring Systems Using H 2SO 4, Phosphotungstic Acid, and [NMP]H 2PO 4,” Synthetic Communications 45, no. 12 (2015): 1426–32. doi:10.1080/00397911.2015.1024324
  • A. Yazdani-Elah-Abadi, R. Mohebat, and M. Maghsoodlou, “One-pot, Sequential Four-component Synthesis of Benzo [a] Chromeno [2, 3-c] Phenazine Derivatives Using SiO 2–So 3 H as an Efficient and Recoverable Catalyst under Conventional Heating and Microwave Irradiation,” Polycyclic Aromatic Compounds (2016).
  • M. Nazeef, M. Saquib, S.K. Tiwari, V. Yadav, S. Ansari, H. Sagir, M.K. Hussain, and I.R. Siddiqui, “Catalyst Free, Multicomponent Green Approach to Benzo[a]Chromeno[2,3-c]Phenazines Using Glycerol as a Recyclable and Biodegradable Promoting Medium,” ChemistrySelect 5, no. 45 (2020): 14447–54. doi:10.1002/slct.202003732
  • R. Mohebat, A. Yazdani Elah Abadi, M.T. Maghsoodlou, and M. Mohammadi, “ PTSA-Catalyzed Four-component Domino Reactions for the One-pot Synthesis of Functionalized 11H-Benzo[a]Benzo[6,7]Chromeno[2,3-c]Phenazine-11,16(17H)-Diones in PEG,” Research on Chemical Intermediates 42, no. 6 (2016): 5915–26. doi:10.1007/s11164-015-2413–7
  • S. Abbasi Pour, A. Yazdani-Elah-Abadi, and M. Afradi, “Nanomagnetically Modified Thioglycolic Acid (γ-Fe2O3@SiO2-SCH2CO2H): Efficient and Reusable Green Catalyst for the One-Pot Domino Synthesis of Spiro[Benzo[a]Benzo[6,7]Chromeno[2,3-c]Phenazine] and Benzo[a]Benzo[6,7]Chromeno[2,3-c]Phenazines,” Applied Organometallic Chemistry 31 (2017): 1–13.
  • R. Mohebat, N. Simin, and, A. Yazdani-Elah-Abadi, “A Rapid and Highly Efficient Microwave-promoted Four-component Domino Reaction for the Synthesis of Novel Spiro[Benzo[a]Chromeno[2,3-c]Phenazine] Derivatives under Solvent-free Conditions,” Polycyclic Aromatic Compounds 39, no. 2 (2019): 148–58. doi:10.1080/10406638.2017.1293698
  • A. Yazdani-Elah-Abadi, “A Rapid, Efficient, and Green Synthesis of Benzo [a] Chromeno [2, 3- c] Phenazine Derivatives via Microwave Assistance and DABCO Catalyzed a Novel Domino Cyclization” Turkish Journal of Chemisry 41, no. 4(2017): 567–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.