54
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of Biologically Active α-Tetralone Condensate: Growth of Single Crystal, Characterization by Experimental and Simulation Methods

ORCID Icon, , , &
Pages 2394-2418 | Received 05 Jan 2023, Accepted 16 May 2023, Published online: 01 Jun 2023

References

  • D. Haleshappa, A. Jayarama, R. Bairy, S. Acharya, and P. S. Patil, “Second and Third Order Nonlinear Optical Studies of a Novel Thiophene Substituted Chalcone Derivative,” Physica B: Condensed Matter 555 (2019): 125–32. doi:10.1016/j.physb.2018.11.046
  • P.P. Vinaya, A.N. Prabhu, K. Subrahmanya Bhat, and V. Upadhyaya, “Synthesis, Growth and Characterization of a Long-Chain π-Conjugation Based Methoxy Chalcone Derivative Single Crystal; a Third Order Nonlinear Optical Material for Optical Limiting Applications,” Optical Materials 89 (2019): 419–29. doi:10.1016/j.optmat.2019.01.061
  • S. Leela, K. Ramamurthi, and G. Bhagavanna, “Synthesis, Growth, Spectral, Thermal, Mechanical and Optical Properties of 4-Chloro-4′ Dimethylamino-Benzylidene Aniline Crystal: A Third Order Nonlinear Optical Material,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 74, no. 1 (2009): 78–83. doi:10.1016/j.saa.2009.05.028
  • M. Bass, J.M. Enoch, E.W.V. Stryland, W.L. Wolfe (Eds.), “Handbook of Optics: Fiber Optics and Nonlinear Optics, edited by W.L. Wolfec, Vol. IV, 2nd ed. (New York, NY: McGraw-Hill, 2001), 4.
  • A. Ekbote, P. S. Patil, S. R. Maidur, T. S. Chia, and C. K. Quah, “Structure and Nonlinear Optical Properties of (E)-1-(4-Aminophenyl)-3-(3-Chlorophenyl) Prop-2-en-1-One: A Promising New D-π-A-π-D Type Chalcone Derivative Crystal for Nonlinear Optical Devices,” Journal of Molecular Structure 1129 (2017): 239–47. doi:10.1016/j.molstruc.2016.09.077
  • E.D. D’silva, D. Narayan Rao, R. Philip, R.J. Butcher, and S.M. Dharmaprakash, Rajnikant , “Synthesis, Growth and Characterization of Novel Second Harmonic Nonlinear Chalcone Crystal,” Journal of Physics and Chemistry of Solids 72, no. 6 (2011): 824–30. doi:10.1016/j.jpcs.2011.04.003
  • A.N. Prabhu, V. Upadhyaya, A. Jayarama, and K.S. Bhat, “Third-Order NLO Property of Thienyl Chalcone Derivative: Physicochemical Analysis and Crystal Structure Determination,” Molecular Crystals and Liquid Crystals 637, no. 1 (2016): 76–86. doi:10.1080/15421406.2016.1177921
  • P.K. Murthy, V. Suneetha, S. Armaković, S.J. Armaković, P.A. Suchetan, L. Giri, and R. S. Rao, “Synthesis, Characterization and Computational Study of the Newly Synthetized Sulfonamide Molecule,” Journal of Molecular Structure. 1153 (2018): 212–9. doi:10.1016/j.molstruc.2017.10.028
  • X.Q. Tong, W. Lv, W.Q. Luo, W.X. Lu, and N. Li, “Treatment of Human Cervical Cancer Cells with Butein Leads to Apoptosis and DNA Damage,” International Journal of Clinical and Experimental Medicine 9 (2016): 11084–9.
  • M. Singh, P. Sharma, P. Joshi, K. Saini, A. Sharma, V. Puri, J. Chander, T.G. Singh, and S. Arora, “Chalcones: A Privileged Scaffold with Diverse Biological Activities.” Plant Arch 20 (2020): 3812–9.
  • K. Maria, H. L. Dimitra, and G. Maria, “Synthesis and anti-Inflammatory Activity of Chalcones and Related Mannich Bases,” Medicinal Chemistry (Shariqah, UAE) 4, no. 6 (2008): 586–96. doi:10.2174/157340608786242070
  • C.L. Miranda, J.F. Stevens, V. Ivanov, M. McCall, B. Frei, M.L. Deinzer, and D.R. Buhler, “Antioxidant and Prooxidant Actions of Prenylated and Nonprenylated Chalcones and Flavanones in Vitro,” Journal of Agricultural and Food Chemistry 48, no. 9 (2000): 3876–884. doi:10.1021/jf0002995
  • L.D. Chiaradia, A. Mascarello, M. Purificação, J. Vernal, M.N.S. Cordeiro, M.E. Zenteno, A. Villarino, R.J. Nunes, R.A. Yunes, and H. Terenzi, “Synthetic Chalcones as Efficient Inhibitors of Mycobacterium tuberculosis Protein Tyrosine Phosphatase PtpA,” Bioorganic & Medicinal Chemistry Letters 18, no. 23 (2008): 6227–30. doi:10.1016/j.bmcl.2008.09.105
  • J.H. Wu, X.H. Wang, Y.H. Yi, and K.H. Lee, “A Potent Anti-HIV Chalcone and Flavonoids from Genus Desmos,” Bioorganic & Medicinal Chemistry Letters 13, no. 10 (2003): 1813–5. doi:10.1016/s0960-894x(03)00197-5
  • J.N. Domınguez, J.E. Charris, G. Lobo, G.N. de Domınguez, M.M. Moreno, and F. Riggione, “Synthesis of Quinolinyl Chalcones and Evaluation of Their Antimalarial Activity,” European Journal of Medicinal Chemistry 36 (2001): 555–60.
  • M.K. Priya, D.R. Jonathan, S. Muthu, F.B. Asif, D.A. Shirmila, J. Hemalatha, K. Laavanya, and G. Usha, “Structural, Spectroscopic and Quantum Chemical Analysis of an Exocyclic Extended Double-Bonded Chalcone Single Crystal, with Pharmaceutical Scanning for Breast Cancer Using MCF-7 Cell Line and EGFR Domain Target,” Journal of Molecular Structure 1270 (2022): 133849. doi:10.1016/j.molstruc.2022.133849
  • W.M. Khairul, A.I. Daud, E. Augustine, S. Arshad, and I.A. Razak, “FT-IR, NMR and X-Ray Crystallography Dataset for Newly Synthesized Alkoxy-Chalcone Featuring (E)-1-(4-Ethylphenyl)-3-(4-(Heptyloxy) Phenyl) Prop‑2-en-1-One,” Chemical Data Collections 28 (2020): 100473. doi:10.1016/j.cdc.2020.100473
  • Y.S. Mary, Y.S. Mary, S. Armaković, S.J. Armaković, R. Yadav, I. Celik, P. Mane, and B. Chakraborty, “Stability and Reactivity Study of Bio-Molecules Brucine and Colchicine towards Electrophile and Nucleophile Attacks: Insight from DFT and MD Simulations,” Journal of Molecular Structure. 335 (2021): 116192. doi:10.1016/j.molliq.2021.116192
  • N. Afsar, D.R. Jonathan, B.K. Revathi, D. Satheesh, and S. Manivannan, “(2E)-2-(4-Ethoxybenzylidene)-3, 4-Dihydro-2H-Naphthalen-1-One Single Crystal: Synthesis, Growth, Crystal Structure, Spectral Characterization, Biological Evaluation and Binding Interactions with SARS-CoV-2 Main Protease,” Journal of Molecular Structure 1244 (2021): 130967. doi:10.1016/j.molstruc.2021.130967
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. Aussian 09, Revision E.01 (Wallingford CT: Gaussian, Inc., 2009).
  • C.S. Abraham, S. Muthu, J.C. Prasana, S. Armaković, S.J. Armaković, F. Rizwana B, B.Geoffrey, and H.A. David R, “Computational Evaluation of the Reactivity and Pharmaceutical Potential of an Organic Amine: A DFT, Molecular Dynamics Simulations and Molecular Docking Approach,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 222 (2019): 117188. doi:10.1016/j.saa.2019.117188
  • M.H. Jomroz, Vibrational Energy Distribution Analysis, VEDA4 (Warsaw, Poland: ScienceOpen, Inc., 2004).
  • J.I. Ahamed, M. Priya, P. Vinothkumar, K. Sathyamoorthy, P. MuraliManohar, J. Liu, and M.F. Valan, “Combined Experimental and DFT Computations Study of Novel (E)-3-(Benzofuran-2-yl)-2-(Thiophen-2-yl) Acrylonitrile (TACNBNF): Insight into the Synthesis, Single Crystal XRD, NMR, Vibrational Spectral Analysis, in Vitro Antioxidant and in Silico Molecular Docking Investigation with Human Peroxiredoxin 5 Protein,” Journal of Molecular Structure 1202 (2020): 127241. doi:10.1016/j.molstruc.2019.127241
  • D. Becke, “Density‐Functional Thermochemistry. III. The Role of Exact Exchange,” Journal of Chemical Physics 98, no. 7 (1993): 5648–52. doi:10.1063/1.464913
  • C. Lee, W. Yang, and R.G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–9. doi:10.1103/physrevb.37.785
  • H. Vosko, L. Wilk, and M. Nusair, “Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis,” Canadian Journal of Physics 58, no. 8 (1980): 1200–11. doi:10.1139/p80-159
  • J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. Frisch, “Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields,” The Journal of Physical Chemistry 98, no. 45 (1994): 11623–7. doi:10.1021/j100096a001
  • Chemcraft. Graphical software for visualization of quantum chemistry computations. Version 1.8, build 648. https://www.chemcraftprog.com
  • G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and A.J. Olson, “Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function,” Journal of Computational Chemistry 19, no. 14 (1998): 1639–62. doi:10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Bruker APEX2 (V2013.6-2), (Madison, Wisconsin: Bruker AXS Inc., 2014).
  • G.M. Sheldrick, SHELTXTL-Plus. Version VMS 6.1, Siemens Anal (Madison, WI: X-Ray Instruments Inc., 1998).
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson, “Autodock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexiblity,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–91. doi:10.1002/jcc.21256
  • M.J. Turner, J.J. MacKinnon, S.K. Wolff, D.J. Grimwood, P.R. Spackman, D. Jayatilaka, and M.A. Spackma, Crystal Explorer Ver. 17.5 (Pert, Australia: University of Western Australia, 2017).
  • V.R. Ambika, D. Jayalakshmi, K. Narendran, S. Athimoolam, M.F. Valan, P. Kamalarajan, and J. Irshad Ahamed, “Growth, Structural, Spectral, Optical and Thermal Studies of a Novel Third-Order Nonlinear Optical Single Crystal: Piperazine-1, 4-Diium Bis (2, 4-Dichlorobenzoate,” Journal of Molecular Structure 1225 (2021): 129292. doi:10.1016/j.molstruc.2020.129292
  • C.S. Shripanavar, and R.J. Butcher, “Acta Crystallogr,” Acta Crystallographica Section E, Crystallographic Communications 71, no. Pt 4 (2015): 377–9. doi:10.1107/S2056989015004569
  • S.R. Maidur, J.R. Jahagirdar, P.S. Patil, T.S. Chia, and C.K. Quah, “Structural Characterizations, Hirshfeld Surface Analyses, and Third-Order Nonlinear Optical Properties of Two Novel Chalcone Derivatives,” Optical Materials 75 (2018): 580–94. doi:10.1016/j.optmat.2017.11.008
  • A. Ekbote, P.S. Patil, S.R. Maidur, T.S. Chia, and C.K. Quah, “Structural, Third-Order Optical Nonlinearities and Figures of Merit of (E)-1-(3-Substituted Phenyl)-3-(4-Fluorophenyl) Prop-2-en-1-One under CW Regime: New Chalcone Derivatives for Optical Limiting Applications,” Dyes and Pigments 139 (2017): 720–29. doi:10.1016/j.dyepig.2017.01.002
  • M. Suriya, B.M. Boaz, G. Chakkaravarthi, G. Vinitha, and K. Sakthi Murugesan, “Synthesis, Crystal Growth, Structural, Spectral, Thermal, Optical Characteristics and Density Functional Theory Calculations of a Novel Third-Order Nonlinear Optical Material: 4-Acetylanilinium Dihydrogen Phosphate (4AADP) Single Crystals,” Journal of Molecular Structure 1180 (2019): 330–43. doi:10.1016/j.molstruc.2018.12.001
  • A. Aravindan, P. Srinivasan, N. Vijayan, R. Gopalakrishnan, and P. Ramasamy, “A Comparative Study on the Growth and Characterization of Nonlinear Optical Amino Acid Crystals: L -Alanine (LA) and l-Alanine Alaninium Nitrate (LAAN,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 71, no. 2 (2008): 297–304. doi:10.1016/j.saa.2007.12.023
  • J. Irshad Ahamed, G.R. Ramkumaar, P. Kamalarajan, K. Narendran, M.F. Valan, T. Sundareswaran, T.A. Sundaravadivel, B. Venkatadri, and S. Bharathi, “Novel Quinoxaline Derivatives of 2, 3-Diphenylquinoxaline-6-Carbaldehyde and 4, 4′-(6-Methylquinoxaline-2, 3-Diyl) Bis (N, N-Diphenylaniline): Synthesis, Structural, DFT-Computational, Molecular Docking, Antibacterial, Antioxidant, and Anticancer Studies,” Journal of Molecular Structure 1248 (2022): 131418. doi:10.1016/j.molstruc.2021.131418
  • R.I. Dennington, T. Keith, and J. Millam, GaussView, Version 5.0.8 (Shawnee Mission, KS: Semichem. Inc., 2008).
  • G.A. Zhurko, and D.A. Zhurko, Chemcraft Program Academic Version 1.6 (2009).
  • V.D. Vitnik, Z.J. Vitnik, N.R. Banjac, N.V. Valentic, G.S. Uscumlic, and I.O. Juranic, “Quantum Mechanical and Spectroscopic (FT-IR, 13C, 1H NMR and UV) Investigations of Potent Antiepileptic Drug 1-(4-Chloro-Phenyl)-3-Phenyl-Succinimide,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 117 (2014): 42–53. doi:10.1016/j.saa.2013.07.099
  • D.S. Michael, M.K. Priya, J. Sidharthan, M. Kumar, R.V. Solomon, and D.R. Jonathan, “Synthesis, Crystallography, DFT, MTT Assay, and Molecular Docking Studies of an Exocyclic Double-Bonded Crystalline Chalcone,” Chemical Data Collections 36, no. 2021 (2021): 100773. doi:10.1016/j.cdc.2021.100773
  • S. Sevvanthi, S. Muthu, and M. Raja, “Molecular Docking, Vibrational Spectroscopy Studies of (RS)-2-(Tert-Butylamino)-1-(3-Chlorophenyl) Propan-1-One: A Potential Adrenaline Uptake Inhibitor,” Journal of Molecular Structure 1173 (2018): 251–60. doi:10.1016/j.molstruc.2018.07.001
  • P.J. Brimmer, and P.R. Griffiths, “Angular Dependence of Diffuse Reflectance Infrared Spectra. Part III: Linearity of Kubelka-Munk Plot,” Applied Spectroscopy 42, no. 2 (1988): 242–7. doi:10.1366/0003702884428293
  • S. Sakthivel, T. Alagesan, S. Muthu, C.S. Abraham, and E. Geetha, “Quantum Mechanical, Spectroscopic Study (FT-IR and FT-Raman), NBO Analysis, HOMO-LUMO, First Order Hyperpolarizability and Docking Studies of a Non-Steroidal anti-Inflammatory Compound,” Journal of Molecular Structure 1156 (2018): 645–56. doi:10.1016/j.molstruc.2017.12.024
  • P.J. Larkin, M.P. Makowski, and N.B. Colthup, “The Form of the Normal Modes of s-Triazine: Infrared and Raman Spectral Analysis and ab Initio Force Field Calculations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 55, no. 5 (1999): 1011–20. doi:10.1016/S1386-1425(98)00244-3
  • R. Zhang, J. Gu, X. Wang, Y. Li, K. Zhang, Y. Yin, and X. Zhang, “Contributions of the Microbial Community and Environmental Variables to Antibiotic Resistance Genes during co-Composting with Swine Manure and Cotton Stalks,” Journal of Hazardous Materials 358 (2018): 82–91. doi:10.1016/j.jhazmat.2018.06.052
  • J.C. Jebapriya, D.R. Jonathan, S.R. Maidur, P. Nallamuthu, P.S. Patil, and J.C. Prasana, “Crystal Structure, Synthesis, Growth and Characterization of a Non-Linear Chalcone Crystal:(2E)-1-(4-Chlorophenyl)-3-(4-Diethylaminophenyl)-Prop-2-en-1-One,” Journal of Molecular Structure 1246 (2021): 131184. doi:10.1016/j.molstruc.2021.131184
  • S. Muthu, and E. Isac Paulraj, “Molecular Structure, Vibrational Spectra, First Order Hyper Polarizability, NBO and HOMO–LUMO Analysis of 4-Amino-3 (4-Chlorophenyl) Butanoic Acid,” Solid State Sciences 14, no. 4 (2012): 476–87. doi:10.1016/j.solidstatesciences.2012.01.028
  • M. Govindarajan, K. Ganasan, S. Periandy, and M. Karabacak, “Experimental (FT-IR and FT-Raman), Electronic Structure and DFT Studies on 1-Methoxynaphthalene,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 79, no. 3 (2011): 646–53. doi:10.1016/j.saa.2011.03.051
  • L.J. Bellamy, The Infrared Spectra of Complex Molecules, 3rd ed. (New York, NY: Wiley, 1975).
  • J. Henriksson, T. Saue, and P. Norman, “Quadratic Response Functions in the Relativistic Four-Component Kohn-Sham Approximation,” Journal of Chemical Physics 128 (2008): 105.
  • J.P. Hermann, D. Ricard, and J. Ducuing, “Optical Nonlinearities in Conjugated Systems: β‐Carotene,” Applied Physics Letters 23, no. 4 (1973): 178–80. doi:10.1063/1.1654850
  • A.B. Ahmed, H. Feki, Y. Abid, H. Boughzala, C. Minot, and A. Mlayah, “Crystal Structure, Vibrational Spectra and Theoretical Studies of L-Histidinium Dihydrogen Phosphate-Phosphoric Acid,” Journal of Molecular Structure 920, no. 1–3 (2009): 1–7. doi:10.1016/j.molstruc.2008.09.029
  • S. Muthu, and J. Uma Maheswari, “Quantum Mechanical Study and Spectroscopic (FT-IR, FT-Raman, 13C, 1H, UV) Study, First Order Hyperpolarizability, NBO Analysis, HOMO and LUMO Analysis of 4-[(4-Aminobenzene) Sulfonyl] Aniline by ab Initio HF and Density Functional Method,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 92 (2012): 154–163. doi:10.1016/j.saa.2012.02.056
  • A.E. Reed, and F. Weinhold, “Natural Localized Molecular Orbitals,” The Journal of Chemical Physics 83, no. 4 (1985): 1736–40. doi:10.1063/1.449360
  • A.E. Reed, R.B. Weinhold, and F. Weinhold, “Natural Population Analysis,” The Journal of Chemical Physics 83, no. 2 (1985): 735–46. doi:10.1063/1.449486
  • A.E. Reed, and F. Weinhold, “Natural Bond Orbital Analysis of Near‐Hartree–Fock Water Dimer,” The Journal of Chemical Physics 78, no. 6 (1983): 4066–73. doi:10.1063/1.445134
  • J.P. Foster, and F. Weinhold, “Natural Hybrid Orbitals,” Journal of the American Chemical Society 102, no. 24 (1980): 7211–8. doi:10.1021/ja00544a007
  • I. Fleming, Frontier Orbitals and Organic Chemical Reactions (New York, NY: John Wiley and Sons, 1976), 5–27.
  • R. Meenakshi, L. Jaganathan, S. Gunasekaran, and S. Srinivasan, “Density Functional Theory, Restricted Hartree–Fock Simulations and Vibrational Spectroscopic Studies of Nicorandil,” Molecular Simulation 36, no. 6 (2010): 425–33. doi:10.1080/08927020903583822
  • D.W. Kneller, G. Phillips, H.M. O’Neill, R. Jedrzejczak, L. Stols, P. Langan, A. Joachimiak, L. Coates, and A. Kovalevsky, “Structural Plasticity of SARS-CoV-2 3CL Mpro Active Site Cavity Revealed by Room Temperature X-Ray Crystallography,” Nature Communications 11, no. 1 (2020): 1–6. doi:10.1038/s41467-020-16954-7
  • S. Zhang, M. Krumberger, M.A. Morris, C.M.T. Parrocha, A.G. Kreutzer, and J.S. Nowick, “Structure-Based Drug Design of an Inhibitor of the SARS-CoV-2 (COVID-19) Main Protease Using Free Software: A Tutorial for Students and Scientists,” European Journal of Medicinal Chemistry 218 (2021): 113390. doi:10.1016/j.ejmech.2021.113390
  • D. Kundu, C. Selvaraj, S.K. Singh, and V.K. Dubey, “Identification of New anti-nCoV Drug Chemical Compounds from Indian Spices Exploiting SARS-CoV-2 Main Protease as a Target,” Journal of Biomolecular Structure & Dynamics 39, no. 9 (2021): 3428–34. doi:10.1080/07391102.2020.1763202
  • S. Muthu, and A. Prabhakaran “Vibrational Spectroscopic Study and NBO Analysis on Tranexamic Acid Using DFT Method,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 129 (2014): 184–92. doi:10.1016/j.saa.2014.03.050
  • O. Trott, and A.J. Olson, “AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading,” Journal of Computational Chemistry 31, no. 2 (2010): 455–61. doi:10.1002/jcc.21334
  • E.I. Paulraj, and S. Muthu, “Spectroscopic Studies (FTIR, FT-Raman and UV), Potential Energy Surface Scan, Normal Coordinate Analysis and NBO Analysis of (2R, 3R, 4R, 5S)-1-(2-Hydroxyethyl)-2-(Hydroxymethyl) Piperidine-3, 4, 5-Triol by DFT Methods,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 108, no. 2013 (2013): 38–49. doi:10.1016/j.saa.2013.01.061
  • M.H. Rahuman, S. Muthu, B.R. Raajaraman, M. Raja, and H. Umamahesvari, “Investigations on 2-(4-Cyanophenylamino) Acetic Acid by FT-IR, FT-Raman, NMR and UV-Vis Spectroscopy, DFT (NBO, HOMO-LUMO, MEP and Fukui Function) and Molecular Docking Studies,” Heliyon 6, no. 9 (2020): e04976. doi:10.1016/j.heliyon.2020.e04976
  • C.D. Owen et al, SARS-CoV-2 main protease with unliganded active site (2019-nCoV, coronavirus disease 2019, COVID-19). https://doi.org/10.2210/pdb6YB7/pdb
  • S.J. Muthu, U. Maheswari, and T. Sundius, “Quantum Mechanical, Spectroscopic Studies (FT-IR, FT-Raman, NMR, UV) and Normal Coordinates Analysis on 3-([2-(Diaminomethyleneamino) Thiazol-4-yl] Methylthio)-N′-Sulfamoylpropanimidamide,” Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 108 (2013): 307–18. doi:10.1016/j.saa.2013.02.022
  • B. Kramer, M. Rarey, and T. Lengauer, “Evaluation of the FLEXX Incremental Construction Algorithm for Protein–Ligand Docking,” Proteins: Structure, Function, and Genetics 37, no. 2 (1999): 228–241. doi:10.1002/(SICI)1097-0134(19991101)37:2<228::AID-PROT8>3.0.CO;2-8
  • S.M. Huang, R. Temple, D.C. Throckmorton, and L.J. Lesko, “Drug Interaction Studies: Study Design, Data Analysis, and Implications for Dosing and Labelling,” Clinical Pharmacology and Therapeutics 81, no. 2 (2007): 298–304. doi:10.1038/sj.clpt.6100054
  • M. Gümüş, Y. Sert, A. Yalkın, H. Gökce, and I. Koca, “Synthesis, Experimental and Theoretical Characterization of Novel Pyrimidine‐5‐Carboxamides,” ChemistrySelect 4, no. 16 (2019): 4695–708. doi:10.1002/slct.201900780
  • X.Q. Li, T.B. Andersson, M. Ahlström, and L. Weidolf, “Comparison of Inhibitory Effects of the Proton Pump-Inhibiting Drugs Omeprazole, Esomeprazole, Lansoprazole, Pantoprazole, and Rabeprazole on Human Cytochrome P450 Activities,” Drug Metabolism and Disposition: The Biological Fate of Chemicals 32, no. 8 (2004): 821–7. doi:10.1124/dmd.32.8.821

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.