120
Views
0
CrossRef citations to date
0
Altmetric
Research Article

4-Thiazolidinone Based 5-Arylidene Hybrids: Design, Synthesis, Antimicrobial Activity, and Molecular Docking Studies

, , , &
Pages 2715-2732 | Received 05 Jul 2022, Accepted 26 May 2023, Published online: 13 Jun 2023

References

  • Evelina Tacconelli, Elena Carrara, Alessia Savoldi, Stephan Harbarth, Marc Mendelson, Dominique L. Monnet, Céline Pulcini, Gunnar Kahlmeter, Jan Kluytmans, Yehuda Carmeli, et al. “Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-resistant Bacteria and Tuberculosis,” The Lancet. Infectious Diseases 18, no. 3 (2018): 318–27. doi:10.1016/S1473-3099(17)30753-3
  • Maria Magana, Muthuirulan Pushpanathan, Ana L. Santos, Leon Leanse, Michael Fernandez, Anastasios Ioannidis, Marc A. Giulianotti, Yiorgos Apidianakis, Steven Bradfute, Andrew L. Ferguson, et al. “The Value of Antimicrobial Peptides in the Age of Resistance,” The Lancet. Infectious Diseases 20, no. 9 (2020): e216–30. doi:10.1016/S1473-3099(20)30327-3
  • Katherine H. Luepke, J. Katie Suda, Helen Boucher, L. Rene Russo, W. Michael Bonney, D. Timothy Hunt, and F. John Mohr III, “Past, Present, and Future of Antibacterial Economics: Increasing Bacterial Resistance, Limited Antibiotic Pipeline, and Societal Implications,” Pharmacotherapy 37, no. 1 (2017): 71–84. doi:10.1002/phar.1868
  • Alexandria P. Taylor, Robinson P. Ralph, Fobian M. Yvette, Blakemore David, Jones H. Lyn, and Fadeyi Olugbeminiyi, “Modern Advances in Heterocyclic Chemistry in Drug Discovery,” Organic & Biomolecular Chemistry 14, no. 28 (2016): 6611–37. doi:10.1039/c6ob00936k
  • Nisheeth Desai, Jahnvi Monapara, Aratiba Jethawa, Vijay Khedkar, and Bapurao Shingate, “Oxadiazole: A Highly Versatile Scaffold in Drug Discovery,” Archiv Der Pharmazie 355, no. 9 (2022): e2200123. doi:10.1002/ardp.202200123
  • Nisheeth C. Desai, Dharmpalsinh J. Jadeja, Harsh K. Mehta, Ashvinkumar G. Khasiya, Keyur N. Shah, and Unnat P. Pandit “Synthesis and Biological Importance of Pyrazole, Pyrazoline, and Indazole as Antibacterial, Antifungal, Antitubercular, Anticancer, and Anti-inflammatory Agents,” N-Heterocycles (2022): 143–89. doi:10.1007/978-981-19-0832-3
  • Nisheeth C. Desai, Hardik C. Somani, Harsh K. Mehta, Dharmpalsinh J. Jadeja, Ashvinkumar G. Khasiya, and Vijay M. Khedkar, “Microwave-assisted Organic Synthesis, Antimycobacterial Activity, Structure–Activity Relationship and Molecular Docking Studies of Some Novel Indole-oxadiazole Hybrids,” SAR and QSAR in Environmental Research 33, no. 2 (2022): 89–109. doi:10.1080/1062936X.2022.2032333
  • Nisheeth C. Desai, Abhay S. Maheta, Aratiba M. Jethawa, Unnat P. Pandit, Iqrar Ahmad, and Harun Patel, “Zeolite (Y‐H)‐Based Green Synthesis, Antimicrobial Activity, and Molecular Docking Studies of Imidazole Bearing Oxydibenzene Hybrid Molecules,” Journal of Heterocyclic Chemistry 59, no. 5 (2022): 879–89. doi:10.1002/jhet.4427
  • Nisheeth C. Desai, Dharmpalsinh J. Jadeja, and Vijay M. Khedkar, “Design, Synthesis, Antimicrobial Activity and in Silico Molecular Docking Studies of Some Sulfur Containing Pyrazole-pyridine Hybrids,” Phosphorus, Sulfur, and Silicon and the Related Elements 197, no. 12 (2022): 1226–37. doi:10.1080/10426507.2022.2085271
  • Nisheeth C. Desai, Kashyap R. Wadekar, Unnat P. Pandit, Harsh K. Mehta, Dharmpalsinh J. Jadeja, and Medha Pandya, “Design, Synthesis, Biological Evaluation and In-silico Docking Studies of Some Novel Imidazolone Derivatives as Potent Antimicrobial Containing Fluorine Agents,” Analytical Chemistry Letters 11, no. 4 (2021): 469–96. doi:10.1080/22297928.2021.1944310
  • Nisheeth C. Desai, Niraj R. Shihory, Ashvinkumar G. Khasiya, Unnat P. Pandit, and Vijay M. Khedkar, “Quinazoline Clubbed Thiazole and 1, 3, 4-Oxadiazole Heterocycles: Synthesis, Characterization, Antibacterial Evaluation, and Molecular Docking Studies,” Phosphorus, Sulfur, and Silicon and the Related Elements 196, no. 6 (2021): 569–77. doi:10.1080/10426507.2021.1871732
  • Rahul Suryawanshi, Sushama Jadhav, Nandini Makwana, Dipen Desai, Devidas Chaturbhuj, Archana Sonawani, Susan Idicula-Thomas, Vanangamudi Murugesan, Seturam B. Katti, Srikanth Tripathy, et al. “Evaluation of 4-Thiazolidinone Derivatives as Potential Reverse Transcriptase Inhibitors against HIV-1 Drug Resistant Strains,” Bioorganic Chemistry 71 (2017): 211–8. doi:10.1016/j.bioorg.2017.02.007
  • V. Ravichandran, B.R. Prashantha Kumar, S. Sankar, and R.K. Agrawal, “Predicting Anti-HIV Activity of 1, 3, 4-Thiazolidinone Derivatives: 3D-QSAR Approach,” European Journal of Medicinal Chemistry 44, no. 3 (2009): 1180–7. doi:10.1016/j.ejmech.2008.05.036
  • Ahmed M. Shawky, Mohammed A.S. Abourehab, Ashraf N. Abdalla, and Ahmed M. Gouda, “Optimization of Pyrrolizine-based Schiff Bases with 4-Thiazolidinone Motif: Design, Synthesis and Investigation of Cytotoxicity and Anti-inflammatory Potency,” European Journal of Medicinal Chemistry 185 (2020): 111780. doi:10.1016/j.ejmech.2019.111780
  • Khaled R.A. Abdellatif, Mohamed A. Abdelgawad, Heba A.H. Elshemy, and Shahinda S.R. Alsayed, “Design, Synthesis and Biological Screening of New 4-Thiazolidinone Derivatives with Promising COX-2 Selectivity, Anti-inflammatory Activity and Gastric Safety Profile,” Bioorganic Chemistry 64 (2016): 1–12. doi:10.1016/j.bioorg.2015.11.001
  • Holota Serhii, Anna Kryshchyshyn, Derkach Halyna, Trufin Yaroslava, Inna Demchuk, Andrzej Gzella, Philippe Grellier, and Roman Lesyk, “Synthesis of 5-Enamine-4-Thiazolidinone Derivatives with Trypanocidal and Anticancer Activity,” Bioorganic Chemistry 86 (2019): 126–36. doi:10.1016/j.bioorg.2019.01.045
  • Konrad A. Szychowski, Marcin L. Leja, Danylo V. Kaminskyy, Anna P. Kryshchyshyn, Urszula E. Binduga, R. Pinyazhko, Roman B. Lesyk, Jakub Tobiasz, and Jan Gmiński, “Anticancer Properties of 4-Thiazolidinone Derivatives Depend on Peroxisome Proliferator-activated Receptor Gamma (PPARγ),” European Journal of Medicinal Chemistry 141 (2017): 162–8. doi:10.1016/j.ejmech.2017.09.071
  • Nisheeth C. Desai, Krunalsinh A. Jadeja, Dharmpalsinh J. Jadeja, Vijay M. Khedkar, and Prakash C. Jha, “Design, Synthesis, Antimicrobial Evaluation, and Molecular Docking Study of Some 4-Thiazolidinone Derivatives Containing Pyridine and Quinazoline Moiety,” Synthetic Communications 51, no. 6 (2020): 1–12. doi:10.1080/00397911.2020.1861302
  • Nisheeth C. Desai, Ashvinkumar G. Khasiya, Bharti P. Dave, and Vijay M. Khedkar, “Synthesis, Characterization In Vitro Antimicrobial Evaluation and In Silico Approach of Molecular Docking of Pyrazole Based Pyrimidine and Pyrazolone Motifs,” Anti-infective Agents 20, no. 5 (2022). doi:10.2174/2211352520666220616105540
  • Nisheeth C. Desai, Yogesh M. Rupala, Ashvinkumar G. Khasiya, Keyur N. Shah, Unnat P. Pandit, and Vijay M. Khedkar, “Synthesis, Biological Evaluation, and Molecular Docking Study of Thiophene‐, Piperazine‐, and Thiazolidinone‐based Hybrids as Potential Antimicrobial Agents,” Journal of Heterocyclic Chemistry 59, no. 1 (2022): 75–87. doi:10.1002/jhet.4366
  • Shiben Wang, Hui Liu, Xuekun Wang, Kang Lei, Guangyong Li, and Zheshan Quan, “Synthesis and Evaluation of Antidepressant Activities of 5-Aryl-4, 5-Dihydrotetrazolo [1,5-a] Thieno [2,3-e] Pyridine Derivatives,” Molecules 24, no. 10 (2019): 1857. doi:10.3390/molecules24101857
  • Neetu Patel, A.K. Prajapati, R.N. Jadeja, I.P. Tripathi, and N. Dwivedi, “Synthesis, Characterization and In Vitro Antidiabetic Activity of Anionic Dioxidovanadium (V) complexes,” Journal of the Indian Chemical Society 98, no. 4 (2021): 100047. doi:10.1016/j.jics.2021.100047
  • Nisheeth C. Desai, Kandarp Bhatt, Jahnvi Monapara, Unnat Pandit, and Vijay M. Khedkar, “Conventional and Microwave-assisted Synthesis, Antitubercular Activity, and Molecular Docking Studies of Pyrazole and Oxadiazole Hybrids,” ACS Omega 6, no. 42 (2021): 28270–84. doi:10.1021/acsomega.1c04411
  • Nisheeth C. Desai, Kandarp Bhatt, Dharmpalsinh J. Jadeja, Harsh K. Mehta, Vijay M. Khedkar, and Dhiman Sarkar, “Conventional and Microwave‐assisted Organic Synthesis of Novel Antimycobacterial Agents Bearing Furan and Pyridine Hybrids,” Drug Development Research 83, no. 2 (2022): 416–31. doi:10.1002/ddr.21872
  • Karam Ahmed El-Sharkawy, Mohammed Mofreh AlBratty, and Hassan Ahmad Alhazmi, “Synthesis of Some Novel Pyrimidine, Thiophene, Coumarin, Pyridine and Pyrrole Derivatives and Their Biological Evaluation as Analgesic, Antipyretic and Anti-inflammatory Agents,” Brazilian Journal of Pharmaceutical Sciences 54, no. 4 (2018). doi:10.1590/s2175-97902018000400153
  • HimadriSekhar Chatterjee, Basudeb Dutta, Kunal Pal, Kuladip Jana, Pradip Kumar Mahapatra, and Chittaranjan Sinha, “Synthesis, Crystal Structure and Biological Application of a Cu (II) Coordination Compound of 2-Hydroxy-5-Methyl-3-(Pyridin-3-Yliminomethyl)-Benzaldehyde,” Journal of the Indian Chemical Society 98, no. 1 (2021): 100007. doi:10.1016/j.jics.2021.100007
  • Jovana B. Araškov, Milan Nikolić, Stevan Armaković, Sanja Armaković, Marko Rodić, Aleksandar Višnjevac, José M. Padrón, Tamara R. Todorović, and Nenad R. Filipović, “Structural, Antioxidant, Antiproliferative and In-silico Study of Pyridine-based Hydrazonyl–Selenazoles and Their Sulphurisosteres,” Journal of Molecular Structure 1240 (2021): 130512. doi:10.1016/j.molstruc.2021.130512
  • Bulut Nilufer, Umit M. Kocyigit, Ibrahim H. Gecibesler, Taner Dastan, Huseyin Karci, Parham Taslimi, Sevgi Durna Dastan, Ilhami Gulcin, and Ahmet Cetin, “Synthesis of Some Novel Pyridine Compounds Containing Bis‐1, 2, 4‐Triazole/Thiosemicarbazide Moiety and Investigation of Their Antioxidant Properties, Carbonic Anhydrase, and Acetylcholinesterase Enzymes Inhibition Profiles,” Journal of Biochemical and Molecular Toxicology 32, no. 1 (2018): e22006. doi:10.1002/jbt.22006
  • Guangqian Yang, Huanlin Zheng, Wubin Shao, Liwei Liu, and Zhibing Wu, “Study of the In Vivo Antiviral Activity against TMV Treated with Novel 1-(t-Butyl)-5-Amino-4-Pyrazole Derivatives Containing a 1,3,4-Oxadiazole Sulfide Moiety,” Pesticide Biochemistry and Physiology 171 (2021): 104740. doi:10.1016/j.pestbp.2020.104740
  • Zaibo Yang, Pei Li, and Xiuhai Gan, “Novel Pyrazole-hydrazone Derivatives Containing an Isoxazole Moiety: Design, Synthesis, and Antiviral Activity,” Molecules 23, no. 7 (2018): 1798. doi:10.3390/molecules23071798
  • Mohamed A. Abdelgawad, Rania B. Bakr, and Hany A. Omar, “Design, Synthesis and Biological Evaluation of Some Novel Benzothiazole/Benzoxazole and/or Benzimidazole Derivatives Incorporating a Pyrazole Scaffold as Antiproliferative Agents,” Bioorganic Chemistry 74 (2017): 82–90. doi:10.1016/j.bioorg.2017.07.007
  • RafatM. Mohareb, Yara R. Milad, and Reem A. El-Ansary, “New Approaches for the Synthesis of Fused Thiophene, Pyrazole, Pyran and Pyridine Derivatives with Anti-proliferative Together with c-Met Kinase and Prostate Cancer Cell Inhibitions,” Anti-Cancer Agents in Medicinal Chemistry 21, no. 13 (2021): 1751–66. doi:10.2174/1871520620999201110191056
  • N.C. Desai, and Amit M. Dodiya, “Synthesis, Characterization and Antimicrobial Screening of Quinoline Based Quinazolinone-4-Thiazolidinone Heterocycles,” Arabian Journal of Chemistry 7, no. 6 (2014): 906–13. doi:10.1016/j.arabjc.2011.08.007
  • Richard J. Reece, and Anthony Maxwell, “DNA Gyrase: Structure and Function,” Critical Reviews in Biochemistry and Molecular Biology 26, no. 3-4 (1991): 335–75. doi:10.3109/10409239109114072
  • Frédéric Collin, Shantanu Karkare, and Anthony Maxwell, “Exploiting Bacterial DNA Gyrase as a Drug Target: Current State and Perspectives,” Applied Microbiology and Biotechnology 92, no. 3 (2011): 479–97. doi:10.1007/s00253-011-3557-z
  • Yves Pommier, “Drugging Topoisomerases: Lessons and Challenges,” ACS Chemical Biology 8, no. 1 (2013): 82–95. doi:10.1021/cb300648v
  • David E. Ehmann, and Sushmita D. Lahiri, “Novel Compounds Targeting Bacterial DNA Topoisomerase/DNA Gyrase,” Current Opinion in Pharmacology 18 (2014): 76–83. doi:10.1016/j.coph.2014.09.007
  • Anthony Maxwell, and David M. Lawson, “The ATP-binding Site of Type II Topoisomerases as a Target for Antibacterial Drugs,” Current Topics in Medicinal Chemistry 3, no. 3 (2003): 283–303. doi:10.2174/1568026033452500
  • Brian K. Shoichet, Susan L. McGovern, Binqing Wei, and John J. Irwin, “Lead Discovery Using Molecular Docking,” Current Opinion in Chemical Biology 6, no. 4 (2002): 439–46. doi:10.1016/s1367-5931(02)00339-3
  • Nisheeth C. Desai, Hasit V. Vaghani, Aratiba M. Jethawa, and Vijay M. Khedkar, “In Silico Molecular Docking Studies of Oxadiazole and Pyrimidine Bearing Heterocyclic Compounds as Potential Antimicrobial Agents,” Archiv Der Pharmazie 354, no. 10 (2021): 2100134. doi:10.1002/ardp.202100134
  • Nisheeth C. Desai, Surbhi B. Joshi, and Vijay M. Khedkar, “Synthesis, Antimicrobial Activity and Molecular Docking of Pyrazole Bearing the Benzodiazepine Moiety,” Analytical Chemistry Letters 10, no. 3 (2020): 307–20. doi:10.1080/22297928.2020.1785325
  • Richard A. Friesner, Robert B. Murphy, Matthew P. Repasky, Leah L. Frye, Jeremy R. Greenwood, Thomas A. Halgren, Paul C. Sanschagrin, and Daniel T. Mainz, “Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein − Ligand Complexes,” Journal of Medicinal Chemistry 49, no. 21 (2006): 6177–96. doi:10.1021/jm051256o
  • Thomas A. Halgren, Robert B. Murphy, Richard A. Friesner, Hege S. Beard, Leah L. Frye, W. Thomas. Pollard, and Jay L. Banks, “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening,” Journal of Medicinal Chemistry 47, no. 7 (2004): 1750–9. doi:10.1021/jm030644s
  • Richard A. Friesner, Jay L. Banks, Robert B. Murphy, Thomas A. Halgren, Jasna J. Klicic, Daniel T. Mainz, Matthew P. Repasky, Eric H. Knoll, Mee Shelley, Jason K. Perry, et al. “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy,” Journal of Medicinal Chemistry 47, no. 7 (2004): 1739–49. doi:10.1021/jm0306430

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.