93
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Synthetic Approaches for Annulated Quinolines at Face a

, , , &
Pages 2863-2886 | Received 29 Mar 2023, Accepted 12 Jun 2023, Published online: 21 Jun 2023

References

  • É. Frank, and G. Szőllősi, “Nitrogen-Containing Heterocycles as Significant Molecular Scaffolds for Medicinal and Other Applications,” Molecules 26, no. 15 (2021): 4617. doi:10.3390/molecules26154617
  • M. Shiri, M. M. Heravi, Z. Faghihi, V. Zadsirjan, M. Mohammadnejad, and M. Ranjbar, “Tandem and Transition Metal-Free Synthesis of Novel Benzoimidazo- Quinazoline as Highly Selective Hg2+ Sensors,” Research on Chemical Intermediates 44, no. 4 (2018): 2439–2449. doi:10.1007/s11164-017-3239-2
  • M. Shiri, and S. Rajai-Daryasarei, “Transition-Metal-Catalyzed Reactions Starting from 2,3-Substitutedquinoline Derivatives,” in Targets heterocyclic systems, edited by O. A. Attanasi, B. Gabriele, D. Spinelli, Vol. 24. (Italian Chemical Society, 2021), 1–24. doi: 10.17374/targets.2021.24.1.
  • M. Shiri, M. A. Zolfigol, H. G. Kruger, and Z. Tanbakouchian, “Friedländer Annulation in the Synthesis of Azaheterocyclic Compounds,” in Advances in heterocyclic chemistry, edited by Ed: Alan R. Katritzky, Vol. 102. (Academic Press, 2011), 139–227. doi:10.1016/B978-0-12-385464-3.00002-9
  • N. Kaur, P. Bhardwaj, M. Devi, Y. Verma, and P. Grewal, “Photochemical Reactions in Five and Six-Membered Polyheterocycles Synthesis,” Synthetic Communications. 49, no. 18 (2019): 2281–2318. doi:10.1080/00397911.2019.1622732
  • N. Kaur, “Synthesis of Six-Membered N-Heterocycles Using Ruthenium Catalysts,” Catalysis Letters 149, no. 6 (2019): 1513–1559. doi:10.1007/s10562-019-02746-2
  • N. Kaur, “Metal Catalysts for the Formation of Six-Membered N-Polyheterocycles,” Syn. React. Inorg. Metaorg. Nanometal 46, no. 7 (2016): 983–1020. doi:10.1080/15533174.2014.989620
  • N. Kaur, and D. Kishore, “Nitrogen-Containing Six-Membered Heterocycles: Solid-Phase Synthesis,” Synthetic Communications. 44, no. 9 (2014): 1173–1211. doi:10.1080/00397911.2012.760129
  • N. Kaur, “Application of Microwave Irradiation in the Synthesis of Fused Six-Membered Heterocycles with N-Heteroatom,” Synthetic Communications. 45, no. 2 (2015): 173–201. doi:10.1080/00397911.2013.816734
  • N. Kaur, “Microwave-Assisted Synthesis of Fused Polycyclic Six-Membered N-Heterocycles,” Synthetic Communications. 45, no. 3 (2015): 273–299. doi:10.1080/00397911.2013.816735
  • N. Kaur, “Ultrasound-Assisted Synthesis of Six-Membered N-Heterocycles,” Mini-Reviews in Organic Chemistry 15, no. 6 (2018): 520–536. doi:10.2174/1570193x15666180221152535
  • N. Kaur, “Ionic Liquid Promoted Eco-Friendly and Efficient Synthesis of Six-Membered N-Polyheterocycles,” Current Organic Synthesis 15, no. 8 (2018): 1124–1146. doi:10.2174/1570179415666180903102542
  • S. Rajendran, K. Sivalingam, R. P. K. Jayarampillai, W.-L. Wang, and C. O. Salas, “Friedlӓnder’s Synthesis of Quinolines as a Pivotal Step in the Development of Bioactive Heterocyclic Derivatives in the Current Era of Medicinal Chemistry,” Chemical Biology & Drug Design 100, no. 6 (2022): 1042–1085. doi:10.1111/cbdd.14044
  • J. Wu, Y. Yu, Y. Wang, M.-F. Bao, B.-B. Shi, J. Schinnerl, and X.-H. Cai, “Four Yellow Monoterpenoid Quinoline Alkaloids from the Stem of Tabernaemontana Bovina,” Organic Letters 21, no. 12 (2019): 4554–4558. doi:10.1021/acs.orglett.9b01453
  • P-l Lam, C-w Kan, M. C. Yuen, S-y Cheung, R. Gambari, K-h Lam, J. C. Tang, and C-h Chui, “Studies on Quinoline Type Dyes and Their Characterization Studies on Acrylic Fabric, Society of Dyers and Colorists,” Coloration Technology. 128, no. 3 (2012): 192–198. doi:10.1111/j.1478-4408.2012.00363.x
  • H. Hamidi, M. M. Heravi, M. Tajbakhsh, M. Shiri, H. A. Oskooie, S. A. Shintre, and N. A. Koorbanally, “Synthesis and anti-Bacterial Evaluation of Novel Thio- and Oxazepino[7,6-b]Quinolines,” Journal of the Iranian Chemical Society 12, no. 12 (2015): 2205–2212. doi:10.1007/s13738-015-0698-5
  • M. Shiri, A. Nejatinejhad-Arani, Z. Faghihi, S. A. Shintre, and N. A. Koorbanally, “Synthesis and Biological Evaluation of Novel Quinoline Derivatives as Antibacterial and Antifungal Agents,” Org. Chem. Res 2, no. 2 (2016): 113–119. doi: 10.22036/ORG.CHEM..2016.14694
  • T. Herraiz, H. Guillén, D. González-Peña, and V. J. Arán, “Antimalarial Quinoline Drugs Inhibit β-Hematin and Increase Free Hemin Catalyzing Peroxidative Reactions and Inhibition of Cysteine Proteases," Scient,” Rep 9 (2019): 15398. doi:10.1038/s41598-019-51604-z
  • A. M. Ghanim, A. S. Girgis, B. M. Kariuki, N. Samir, M. F. Said, A. Abdelnaser, S. Nasr, M. S. Bekheit, M. F. Abdelhameed, A. J. Almalki, et al. “Design and Synthesis of Ibuprofen-Quinoline Conjugates as Potential anti-Inflammatory and Analgesic Drug Candidates,” Bioorganic Chemistry 119 (2022): 105557. doi:10.1016/j.bioorg.2021.105557
  • Y.-F. Guan, X.-J. Liu, X.-Y. Yuan, W.-B. Liu, Y.-R. Li, G.-X. Yu, X.-Y. Tian, Y.-B. Zhang, J. Song, W. Li, et al. “Design, Synthesis, and Anticancer Activity Studies of Novel Quinoline-Chalcone Derivatives,” Molecules 26, no. 16 (2021): 4899. doi:10.3390/molecules26164899
  • Paranjeet Kaur, Avik Chandra, Tamanna Tanwar, Sanjeev Kumar Sahu, and Amit Mittal,   Anuradha, “Emerging Quinoline- and Quinolone-Based Antibiotics in the Light of Epidemics,” Chemical Biology & Drug Design 100, no. 6 (2022): 765–785. doi:10.1111/cbdd.14025
  • H. Kumar, V. Devaraji, R. Joshi, M. Jadhao, P. Ahirkar, R. Prasath, P. Bhavana, and S. K. Ghosh, “Antihypertensive Activity of a Quinoline Appended Chalcone Derivative and Its Site Specific Binding Interaction with Relevant Target Carrier Protein,” RSC Advances 5, no. 80 (2015): 65496–65513. doi: 10.1039/C5RA08778C
  • M. P. Maguire, K. R. Sheets, K. McVety, A. P. Spada, and A. Zilberstein, “A New Series of PDGF Receptor Tyrosine Kinase Inhibitors: 3-Substituted Quinoline Derivatives,” Journal of Medicinal Chemistry 37, no. 14 (1994): 2129–2137. doi:10.1021/jm00040a003
  • N. Chokkar, S. Kalra, M. Chauhan, and R. Kumar, “A Review on Quinoline Derived Scaffolds as anti-HIV Agents,” Mini-Reviews in Medicinal Chemistry 19, no. 6 (2019): 510–526. doi:10.2174/1389557518666181018163448
  • Z.-H. Li, L.-Q. Yin, D.-H. Zhao, L.-H. Jin, Y.-J. Sun, and C. Tan, “SAR Studies of Quinoline and Derivatives as Potential Treatments for Alzheimer’s Disease,” Arabian Journal of Chemistry 16, no. 2 (2023): 104502. doi:10.1016/j.arabjc.2022.104502
  • P. Zajdel, A. Partyka, K. Marciniec, A. J. Bojarski, M. Pawlowski, and A. Wesolowska, “Quinoline- and Isoquinoline-Sulfonamide Analogs of Aripiprazole: Novel Antipsychotic Agents?,” Future Medicinal Chemistry. 6, no. 1 (2014): 57–75. doi:10.4155/fmc.13.158
  • C.-L. Ma, J.-H. Zhao, Y. Yang, M.-K. Zhang, C. Shen, R. Sheng, X.-W. Dong, and Y.-Z. Hu, “A Copper-Catalyzed Tandem Cyclization Reaction of Aminoalkynes with Alkynes for the Construction of Tetrahydropyrrolo[1,2-a]Quinolines Scaffold,” Scientific Reports 7, no. 1 (2017): 16640. doi:10.1038/s41598-017-16887-0
  • J. Preindl, S. Chakrabarty, and J. Waser, “Dearomatization of Electron Poor Six-Membered N-Heterocycles through [3 + 2] Annulation with Aminocyclopropanes,” Chemical Science 8, no. 10 (2017): 7112–7118. doi: 10.1039/C7SC03197A
  • A. Choi, R. M. Morley, and I. Coldham, “Synthesis of Pyrrolo[1,2-a]Quinolines by Formal 1,3-Dipolar Cycloaddition Reactions of Quinolinium Salts,” Beilstein Journal of Organic Chemistry 15 (2019): 1480–1484. doi:10.3762/bjoc.15.149
  • D. Giomi, J. Ceccarelli, and A. Brandi, “Synthesis of New Indolizidine Derivatives from 1-(2-Quinolyl)-2-Propen-1-ol,” ACS Omega. 3, no. 3 (2018): 3183–3189. doi:10.1021/acsomega.8b00167
  • J. Sun, Y. Zhang, G.-L. Shen, and C.-G. Yan, “Molecular Diversity of 1,3-Dipolar Cycloaddition of Quinolinium Ylides with Isatylidene Malononitriles,” ChemistrySelect 2, no. 33 (2017): 10835–10839. doi:10.1002/slct.201702161
  • W.-W. Yang, Y.-F. Ye, L.-L. Chen, J.-Y. Fu, J.-Y. Zhu, and Y.-B. Wang, “Catalyst- and Additive-Free Annulation of Ynediones and (Iso)Quinoline N-Oxides: An Approach to Synthesis of Pyrrolo[2,1-a]Isoquinolines and Pyrrolo[1,2-a]Quino- Lines,” The Journal of Organic Chemistry 86, no. 1 (2021): 169–177. doi:10.1021/acs.joc.0c01932
  • M. He, N. Chen, J. Wang, and S. Peng, “Rhodium-Catalyzed Regiodivergent [3 + 2] and [5 + 2] Cycloadditions of Quinolinium Ylides with Alkynes,” Organic Letters 21, no. 13 (2019): 5167–5171. doi:10.1021/acs.orglett.9b01765
  • Z.-P. Yang, Q.-F. Wu, W. Shao, and S.-L. You, “Iridium-Catalyzed Intramolecular Asymmetric Allylic Dearomatization Reaction of Pyridines, Pyrazines, Quinolines, and Isoquinolines,” Journal of the American Chemical Society 137, no. 50 (2015): 15899–15906. doi:10.1021/jacs.5b10440
  • D. Wu, L. Chen, S. Ma, H. Luo, J. Cao, R. Chen, Z. Duan, and F. Mathey, “Synthesis of 1,3-Azaphospholes with Pyrrolo[1,2-a]Quinoline Skeleton and Their Optical Applications,” Organic Letters 20, no. 13 (2018): 4103–4106. doi:10.1021/acs.orglett.8b01663
  • Y. Chen, A. Shatskiy, J.-Q. Liu, M. D. Kärkäs, and X.-S. Wang, “Silver-Promoted (4 + 1) Annulation of Isocyanoacetates with Alkylpyridinium Salts: Divergent Regioselective Synthesis of 1,2-Disubstituted Indolizines,” Organic Letters 23, no. 19 (2021): 7555–7560. doi:10.1021/acs.orglett.1c02754
  • D. Bakshi, and A. Singh, “Transition-Metal-Free Synthesis of Nitrogen Containing Heterocycles with Fully Substituted N-Fused Pyrrole Rings,” Asian Journal of Organic Chemistry 5, no. 1 (2016): 70–73. doi:10.1002/ajoc.201500324
  • R. Chen, Y. Zhao, H. Sun, Y. Shao, Y. Xu, M. Ma, L. Ma, and X. Wan, “In Situ Generation of Quinolinium Ylides from Diazo Compounds: Copper-Catalyzed Synthesis of Indolizine,” The Journal of Organic Chemistry 82, no. 18 (2017): 9291–9304. doi:10.1021/acs.joc.7b01042
  • J. Y. Lee, S. Samala, J. Kim, and E. J. Yoo, “Contractions of 1,4-Diazepines to Pyrroles Triggered by Valence Tautomerization: A One-Pot Approach and Mechanism,” Organic Letters 23, no. 22 (2021): 9006–9011. doi:10.1021/acs.orglett.1c03549
  • A. Das, I. Ghosh, and B. König, “Synthesis of Pyrrolo[1,2-a]Quinolines and Ullazines by Visible Light Mediated One- and Twofold Annulation of N-Arylpyrroles with Arylalkynes,” Chemical Communications 52, no. 56 (2016): 8695–8698. doi: 10.1039/C6CC04366F
  • M.-Y. Chang, and Y.-S. Wu, “HOAc-Mediated Cyclocondensation of 2-Formylazaarenes and Cyclic Amines. Synthesis of Pyrrolo[1,2-a]Azaarenes,” The Journal of Organic Chemistry 84, no. 6 (2019): 3638–3646. doi:10.1021/acs.joc.8b03148
  • S. Vivek Kumar, S. Ellairaja, V. Satheesh, V. S. Vasantha, and T. Punniyamurthy, “Rh-Catalyzed Regioselective C–H Activation and C–C Bond Formation: Synthesis and Photophysical Studies of Indazolo[2,3-a]Quinolines,” Organic Chemistry Frontiers 5, no. 18 (2018): 2630–2635. doi: 10.1039/C8QO00557E
  • C. Zhu, C. Feng, and M. Yamane, “Pd/Cu Cooperative Catalysis: An Efficient Synthesis of (3-Isoindazolyl)Allenes via Cross-Coupling of 2-Alkynyl Azobenzenes and Terminal Alkynes,” Chemical Communications 53, no. 17 (2017): 2606–2609. doi: 10.1039/C7CC00562H
  • N. Shindoh, H. Tokuyama, Y. Takemoto, and K. Takasu, “Auto-Tandem Catalysis in the Synthesis of Substituted Quinolines from Aldimines and Electron-Rich Olefins: Cascade Povarov-Hydrogen-Transfer Reaction,” The Journal of Organic Chemistry 73, no. 19 (2008): 7451–7456. doi:10.1021/jo8009243
  • L. Li, H. Wang, X. Yang, L. Kong, F. Wang, and X. Li, “Rhodium-Catalyzed Oxidative Synthesis of Quinoline-Fused Sydnones via 2-Fold C − H Bond Activation,” The Journal of Organic Chemistry 81, no. 23 (2016): 12038–12045. doi:10.1021/acs.joc.6b02356
  • S. Samala, D. H. Ryu, C. E. Song, and E. J. Yoo, “Multicomponent Dipolar Cycloadditions: Efficient Synthesis of Polycyclic Fused Pyrrolizidines via Azomethine Ylides,” Organic & Biomolecular Chemistry 17, no. 7 (2019): 1773–1777. doi: 10.1039/C8OB02463D
  • Qingmei Ge, Bin Li, and Baiquan Wang, “Synthesis of Substituted Benzo[ij]Imidazo[2,1,5-de]Quinolizine by Rhodium (III)-Catalyzed Multiple C–H Activation and Annulations,” Organic & Biomolecular Chemistry 14, no. 5 (2016): 1814–1821. doi: 10.1039/C5OB02515J
  • P. Qian, Z. Yan, Z. Zhou, K. Hu, J. Wang, Z. Li, Z. Zha, and Z. Wang, “Electrocatalytic Tandem Synthesis of 1,3-Disubstituted Imidazo[1,5-a]Quinolines via Sequential Dual Oxidative C(sp3)–H Amination in Aqueous Medium,” The Journal of Organic Chemistry 84, no. 6 (2019): 3148–3157. doi:10.1021/acs.joc.8b03014
  • Z. Tanbakouchian, M. A. Zolfigol, B. Notash, M. Ranjbar, and M. Shiri, “Synthesis of Four Series of Quinoline‐Based Heterocycles by Reacting 2‐Chloroquinoline‐3‐Carbonitriles with Various Types of Isocyanides,” Applied Organometallic Chemistry 33, no. 8 (2019): e5024. doi:10.1002/aoc.5024
  • X. Zhang, J. Yang, N. Xiong, Z. Han, X. Duan, and Z. Zeng, “Indium-Mediated Annulation of 2-Azidoaryl Aldehydes with Propargyl Bromides to [1,2,3]Triazolo[1,5-a]Quinolines,” Organic & Biomolecular Chemistry 19, no. 28 (2021): 6346–6352. doi: 10.1039/D1OB01183A
  • D. S. Barak, D. J. Dahatonde, and S. Batra, “Metal- and Photoredox-Catalyst Free Unified Approach for the Synthesis of Azole-Fused Quinolines via tert-Butyl Nitrite-Mediated Regioselective Annulation,” Asian Journal of Organic Chemistry. 11, no. 4 (2022): e202200057. doi: 10.1002/ajoc.202200057
  • J. Huang, L. Dong, B. Han, C. Peng, and Y. Chen, “Synthesis of Aza-Fused Polycyclic Quinolines via Double C-H Bond Activation,” Chemistry - A European Journal 18, no. 29 (2012): 8896–8900. doi:10.1002/chem.201201207
  • B. Zhang, L. Huang, S. Yin, X. Li, T. Xu, B. Zhuang, T. Wang, Z. Zhang, and A. S. K. Hashmi, “Cascade C═O/C═C/C–N Bond Formation: Metal-Free Reactions of 1,4-Diynes and 1-En-4-yn-3-Ones with Isoquinoline and Quinoline N-Oxides,” Organic Letters 19, no. 16 (2017): 4327–4330. doi:10.1021/acs.orglett.7b01996
  • T. S. Vshivkova, Yu V. Shklyaev, E. V. Nosova, G. N. Lipunova, and V. N. Charushin, “8,9,10-Trifluoro-6-Oxo-6H-Pyrido[1,2-a] Quinoline-5-Carbonitrile in the Synthesis of Novel 1-Heteryl-3,3-Dimethyl-3,4-Dihydroisoquinolines,” Russian Chemical Bulletin 61, no. 8 (2012): 1650–1652. doi:10.1007/s11172-012-0224-1
  • W. Yang, L. Chen, P. Chen, Y. Ye, Y. Wang, and X. Zhang, “Solvent-Controlled Divergent Annulation of Ynones and (Iso)Quinoline N-Oxides: Of 3-((Iso)Quinolin-1- yl)-4H-Chromen-4-Ones and 13H-Isoquinolino[2,1-a]Quinolin-13-Ones,” Chemical Communications 56, no. 8 (2020): 1183–1186. doi: 10.1039/C9CC08713C
  • J. Lee, D. Ko, H. Park, and E. J. Yoo, “Direct Cyclopropanation of Activated N-Heteroarenes via Site- and Stereoselective Dearomative Reactions,” Chemical Science 11, no. 6 (2020): 1672–1676. doi: 10.1039/C9SC06369B
  • N. De, D. Ko, S-y Baek, C. Oh, J. Kim, M.-H. Baik, and E. J. Yoo, “Cu(I)-Catalyzed Enantioselective [5 + 1] Cycloaddition of N-Aromatic Compounds and Alkynes via Chelating-Assisted 1,2-Dearomative Addition,” ACS Catalysis 10, no. 19 (2020): 10905–10913. doi:10.1021/acscatal.0c03014
  • Q. Jin, C. Jiang, M. Gao, D. Zhang, S. Hu, and J. Zhang, “Direct Cyclopropanation of Quinolinium Zwitterionic Thiolates via Dearomative Reactions,” The Journal of Organic Chemistry 86, no. 21 (2021): 15640–15647. doi:10.1021/acs.joc.1c02175
  • Z. Li, H. Yu, Y. Feng, Z. Hou, L. Zhang, W. Yang, Y. Wu, Y. Xiao, and H. Guo, “Phosphine-Catalyzed [4 + 3] Cycloaddition Reaction of Aromatic Azomethine Imines with Allenoates,” RSC Advances 5, no. 43 (2015): 34481–34485. doi: 10.1039/C5RA04374C
  • N. De, C. E. Song, D. H. Ryu, and E. J. Yoo, “Gold-Catalyzed [5 + 2] Cycloaddition of Quinolinium Zwitterions and Allenamides as an Efficient Route to Fused 1,4-Diazepines,” Chemical Communications 54, no. 50 (2018): 6911–6914. doi: 10.1039/C8CC02570C
  • B. Cheng, Y. Li, T. Wang, X. Zhang, H. Li, Y. He, Y. Li, and H. Zhai, “Application of Pyridinium 1,4-Zwitterionic Thiolates: Synthesis of Benzopyridothiazepines and Benzothiophenes,” The Journal of Organic Chemistry 85, no. 10 (2020): 6794–6802. doi:10.1021/acs.joc.0c00374
  • W. Dai, C. Li, Y. Liu, X. Han, X. Li, K. Chen, and H. Liu, “Palladium-Catalyzed [4 + 3] Dearomatizing Cycloaddition Reaction of N-Iminoquinolinium Ylides,” Organic Chemistry Frontiers 7, no. 18 (2020): 2612–2617. doi: 10.1039/D0QO00320D

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.