126
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

High Catalytic Activity, Recyclable and Magnetically Separable Nanocatalyst Fe3O4@SiO2-Schiff base-Pd(II) for Synthesis of 12H-Benzo[5,6]Chromeno[2,3-b]Pyridine-10-Carbonitriles and Evaluation of Antibacterial Activity

ORCID Icon, , &
Pages 2924-2941 | Received 25 Apr 2023, Accepted 09 Jun 2023, Published online: 22 Jun 2023

References

  • R.W. Armstrong, A.P. Combs, P.A. Tempest, S.D. Brown, and T.A. Keating, “Multiple-Component Condensation Strategies for Combinatorial Library Synthesis,” Accounts of Chemical Research 29, no. 3 (1996): 123–31. doi:10.1021/ar9502083
  • M.A. Azuine, H. Tokuda, J. Takayasu, F. Enjyo, T. Mukainaka, T. Konoshima, H. Nishino, and G.J. Kapadia, “Cancer Chemopreventive Effect of Phenothiazines and Related Tri-Heterocyclic Analogues in the 12-O-Tetradecanoylphorbol-13-Acetate Promoted Epstein-Barr Virus Early Antigen Activation and the Mouse Skin Two-Stage Carcinogenesis Models,” Pharmacological Research 49, no. 2 (2004): 161–9. doi:10.1016/j.phrs.2003.07.014
  • F.-K. Chuang, S.-M. Huang, C.-L. Liao, A.-R. Lee, S.-P. Lien, Y.-L. Chiu, T.-H. Chang, P.-L. Tsai, R.-J. Lin, C.-C. Shih, et al. “Anti-Inflammatory Compound Shows Therapeutic Safety and Efficacy against Flavivirus Infection, Antimicrob,” Agents Chemother 64, no. 1 (2019): e00941.
  • S. Oliveira-Pinto, O. Pontes, D. Lopes, B. Sampaio-Marques, M.D. Costa, L. Carvalho, C.S. Gonçalves, B.M. Costa, P. Maciel, P. Ludovico, et al. “Unravelling the Anticancer Potential of Functionalized Chromeno[2,3-b]Pyridines for Breast Cancer Treatment,” Bioorganic Chemistry 100 (2020): 103942. doi:10.1016/j.bioorg.2020.103942
  • M.J. Oset-Gasque, M.P. González, J. Pérez-Peña, N. García-Font, A. Romero, J. del Pino, E. Ramos, D. Hadjipavlou-Litina, E. Soriano, M. Chioua, et al. “Toxicological and Pharmacological Evaluation, Antioxidant, ADMET and Molecular Modeling of Selected Racemic Chromenotacrines {11-Amino-12-Aryl-8,9,10,12-Tetrahydro-7H-Chromeno[2,3-b]Quinolin-3-Ols} for the Potential Prevention and Treatment of Alzheimer’s Disease,” European Journal of Medicinal Chemistry 74 (2014): 491–501. doi:10.1016/j.ejmech.2013.12.021
  • D.R. Anderson, S. Hegde, E. Reinhard, L. Gomez, W.F. Vernier, L. Lee, S. Liu, A. Sambandam, P.A. Snider, and L. Masih, “Aminocyanopyridine Inhibitors of Mitogen Activated Protein Kinase-Activated Protein Kinase 2 (MK-2), Bioorg,” Bioorganic & Medicinal Chemistry Letters 15, no. 6 (2005): 1587–90. doi:10.1016/j.bmcl.2005.01.067
  • Y.Z. Li, F.Y. Ma, X.T. Su, C. Sun, J.C. Liu, Z.Q. Sun, and Y.L. Hou, “Synthesis and Catalysis of Oleic Acid-Coated Fe3O4 Nanocrystals for Direct Coal Liquefaction,” Catalysis Communications. 26 (2012): 231–234. doi:10.1016/j.catcom.2012.06.002
  • C.R. Shen, S.T. Wu, Z.T. Tsai, J.J. Wang, T.C. Yen, J.S. Tsai, M.F. Shih, and C.L. Liu, “Characterization of Quaternized Chitosan-Stabilized Iron Oxide Nanoparticles as a Novel Potential Magnetic Resonance Imaging Contrast Agent for Cell Tracking,” Polymer International 60, no. 6 (2011): 945–50. doi:10.1002/pi.3059
  • (a) M. Heidarizadeh, E. Doustkhah, S. Rostamnia, P. Fathi Rezaei, F. Darvishi, Harzevili, and B. Zeynizadeh, “Dithiocarbamate to Modify Magnetic Graphene Oxide Nanocomposite (Fe3O4-GO): a New Strategy for Covalent Enzyme (Lipase) Immobilization to Fabrication a New Nanobiocatalyst for Enzymatic Hydrolysis of PNPD,” International Journal of Biological Macromolecules. 101 (2017): 696–702. doi:10.1016/j.ijbiomac.2017.03.152; (b) S. Rostamnia and E. Doustkhah, “Synthesis of Water-Dispersed Magnetic Nanoparticles (H2O-DMNPs) of β-Cyclodextrin Modified Fe3O4 and Its Catalytic Application in Kabachnik–Fields Multicomponent Reaction,” Journal of Magnetism and Magnetic Materials 386 (2015): 111–6.
  • M. Mohammadikish, M. Masteri-Farahani, and S. Mahdavi, “Immobilized Molybdenum–Thiosemicarbazide Schiff Base Complex on the Surface of Magnetite Nanoparticles as a New Nanocatalyst for the Epoxidation of Olefins,” Journal of Magnetism and Magnetic Materials 354 (2014): 317–323. doi:10.1016/j.jmmm.2013.11.013
  • J. Azamat, M.R.P. Heravi, S. Habibzadeh, A.G. Ebadi, S.M. Shoaei, and E. Vessally, “Hetero Diels–Alder Cycloadduct of anti-Tumor (E)-3-X-Indoline-2-Thiones with C20 Fullerene as Drug Delivery in Solution vs. gas Phase: A DFT Survey,” Inorganic Chemistry Communications. 139 (2022): 109353. doi:10.1016/j.inoche.2022.109353
  • S. Abdolmohammadi, Z. Hossaini, and M.R. Poor Heravi, “PANI-Fe3O4@ZnO Nanocomposite as Magnetically Recoverable Organometallic Nanocatalyst Promoted Synthesis of New Azo Chromene Dyes and Evaluation of Their Antioxidant and Antimicrobial Activities,” Molecular Diversity 26, no. 4 (2022): 1983–1993. doi:10.1007/s11030-021-10309-0
  • F. Kalantari, A. Ramazani, and M.R.P. Heravi, “Recent Advances in the Applications of Hybrid Magnetic Nanomaterials as Magnetically Retrievable Nanocatalysts,” Current Organic Chemistry 23, no. 2 (2019): 136–63. doi:10.2174/1385272823666190206142328
  • M.R. Poor Heravi, P. Aghamohammadi, and E. Vessally, “Green Synthesis and Antibacterial, Antifungal Activities of 4H-Pyran, Tetrahydro-4H-Chromenes and spiro2-Oxindole Derivatives by Highly Efficient Fe3O4@SiO2@NH2@Pd(OCOCH3)2 Nanocatalyst,” Journal of Molecular Structure 1249 (2022): 131534. doi:10.1016/j.molstruc.2021.131534
  • A. Ansari, S. Vahedi, O. Tavakoli, M. Khoobi, and M.A. Faramarzi, “Novel Fe3O4/Hydroxyapatite/β‐Cyclodextrin Nanocomposite Adsorbent: Synthesis and Application in Heavy Metal Removal from Aqueous Solution,” Applied Organometallic Chemistry 33, no. 1 (2019): e4634. doi:10.1002/aoc.4634
  • Z. Rasouli, N. Riyahi-Alam, M. Khoobi, S. Haghgoo, E. Gholibegloo, A. Ebrahimpour, H. Ashouri, and H. Hashemi, “Lymph Node Metastases Detection Using Gd2O3@PCD as Novel Multifunctional Contrast Imaging Agent in Metabolic Magnetic Resonance Molecular Imaging,” Contrast Media & Molecular Imaging 2022 (2022): 1–11. doi:10.1155/2022/5425851
  • X. Li, Y. Fang, X. Zhou, J. Ma, and R. Li, “Cobalt(II) Acetylacetonate Covalently Anchored onto Magnetic Mesoporous Silica Nanospheres as a Catalyst for Epoxidation of Olefins,” Materials Chemistry and Physics 156 (2015): 9–15. doi:10.1016/j.matchemphys.2015.02.003
  • X. Cai, H. Wang, Q. Zhang, J. Tong, and Z. Lei, “Magnetically Recyclable Core–Shell Fe3O4@chitosan-Schiff Base Complexes as Efficient Catalysts for Aerobic Oxidation of Cyclohexene under Mild Conditions,” Journal of Molecular Catalysis A: Chemical 383–384 (2014): 217–24. doi:10.1016/j.molcata.2013.12.007
  • A.G. Choghamarani, Z. Darvishnejad, and B. Tahmasbi, “Schiff Base Complexes of Ni, Co, Cr, Cd and Zn Supported on Magnetic Nanoparticles: As Efficient and Recyclable Catalysts for the Oxidation of Sulfides and Oxidative Coupling of Thiols,” Inorganica Chimica Acta 435 (2015): 223–231. doi:10.1016/j.ica.2015.07.004
  • A. Rostami, B. Tahmasbi, F. Abedi, and Z. Shokri, “Magnetic Nanoparticle Immobilized N-Propylsulfamic Acid: The Chemoselective, Efficient, Green and Reusable Nanocatalyst for Oxidation of Sulfides to Sulfoxides Using H2O2 Undersolvent-Free Conditions,” Journal of Molecular Catalysis A: Chemical 378 (2013): 200–205. doi:10.1016/j.molcata.2013.06.004
  • F. Wang, C. Liu, G. Liu, W. Li, and J. Liu, “Selective Oxidation of Sulfides to Sulfoxides Using Hydrogen Peroxide over Au/CTN–Silica Catalyst,” Catalysis Communications. 72 (2015): 142–6. doi:10.1016/j.catcom.2015.09.015
  • M. Khorshidifard, H.A. Rudbari, B. Askari, M. Sahihi, M.R. Farsani, F. Jalilian, and G. Bruno, “Cobalt(II), Copper(II), Zinc(II) and Palladium(II) Schiff Base Complexes: Synthesis, Characterization and Catalytic Performance in Selective Oxidation of Sulfides Using Hydrogen Peroxide under Solvent-Free Conditions,” Polyhedron 95 (2015): 1–13. doi:10.1016/j.poly.2015.03.041
  • A.A. Manesh, F.H. Eshbala, S. Hemmati, and H. Veisi, “Application of 1,4-Bis(3-Methylimidazolium-1-yl) Butane Ditribromide [bMImB].(Br3)2 Ionic Liquid Reagent for Selective Oxidation of Sulfides to Sulfoxides,” RSC Advances 5, no. 86 (2015): 70265–70. doi:10.1039/C5RA06182B
  • H. Veisi, F.H. Eshbala, S. Hemmati, and M. Baghayeri, “Selective Hydrogen Peroxide Oxidation of Sulfides to Sulfones with Carboxylated Multi-Walled Carbon Nano Tubes (MWCNTs-COOH) as Heterogeneous and Recyclable Nanocatalysts under Organic Solvent-Free Conditions,” RSC Advances 5, no. 14 (2015): 10152–8. doi:10.1039/C4RA14964E
  • S. Mirfakhraei, M. Hekmati, F. Hosseini Eshbala, and H. Veisi, “Fe3O4/PEG-SO3H as a Heterogeneous and Magnetically-Recyclable Nanocatalyst for the Oxidation of Sulfides to Sulfones or Sulfoxides,” New Journal of Chemistry 42, no. 3 (2018): 1757–61. doi:10.1039/C7NJ02513K
  • I. Dindarloo Inaloo and S. Majnooni, " “A Fe3O4@SiO2/Schiff Base/Pd Complex as an Efficient Heterogeneous and Recyclable Nanocatalyst for One-Pot Domino Synthesis of Carbamates and Unsymmetrical Ureas,” European Journal of Organic Chemistry 2019, no. 37 (2019): 6359–68. doi:10.1002/ejoc.201901140
  • I. Dindarloo Inaloo, S. Majnooni, H. Eslahi, and M. Esmaeilpour, “Efficient Nickel(II) Immobilized on EDTA‐Modified Fe3O4@SiO2 Nanospheres as a Novel Nanocatalyst for Amination of Heteroaryl Carbamates and Sulfamates through the Cleavage of C-O Bond,” Molecular Catalysis 492 (2020): 110915. doi:10.1016/j.mcat.2020.110915
  • A.R. Sardarian, M. Zangiabadi, and I. Dindarloo Inaloo, “Fe3O4@SiO2/Schiff Base/Pd Complex as an Efficient Heterogeneous and Recyclable Nanocatalyst for Chemoselective N-Arylation of O-Alkyl Primary Carbamates,” RSC Advances 6, no. 94 (2016): 92057–64. doi:10.1039/C6RA17268G
  • I. Dindarloo Inaloo, S. Majnooni, H. Eslahi, and M. Esmaeilpour, “Air-Stable Fe3O4@SiO2-EDTA-Ni(0) as an Efficient Recyclable Magnetic Nanocatalyst for Effective Suzuki-Miyaura and Heck Cross-Coupling via Aryl Sulfamates and Carbamates,” Applied Organometallic Chemistry 34, no. 8 (2020): e5662.
  • W. Stober, A. Fink, and E.J. Bohn, “Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range,” Journal of Colloid and Interface Science 26, no. 1 (1968): 62–9. doi:10.1016/0021-9797(68)90272-5
  • A. Olyaei, M. Sadegh Shahsavari, and M. Sadeghpour, “Organocatalytic Approach toward the Green One-Pot Synthesis of Novel Benzo[f]Chromenes and 12H-Benzo[5,6]Chromeno[2,3-b]Pyridines,” Research on Chemical Intermediates 44, no. 2 (2018): 943–56. doi:10.1007/s11164-017-3145-7
  • A. Shaabani, F. Hajishaabanha, H. Mofakham, and A. Maleki, “A New One-Pot Three-Component Synthesis of 2,4-Diamino-5H-Chromeno[2,3-b]Pyridine-3-Carbonitrile Derivatives,” Molecular Diversity 14, no. 1 (2010): 179–182. doi:10.1007/s11030-009-9152-x
  • A.N. Vereshchagin, M.N. Elinson, Y.E. Anisina, F.V. Ryzhkov, A.S. Goloveshkin, I.S. Bushmarinov, S.G. Zlotin, and M.P. Egorov, “Pot, Atom and Step Economic (PASE) Synthesis of 5-Isoxazolyl-5H-Chromeno[2,3-b]Pyridine Scaffold,” Mendeleev Communications. 25, no. 6 (2015): 424–426. doi:10.1016/j.mencom.2015.11.008
  • Y.E. Ryzhkova, F.V. Ryzhkov, M.N. Elinson, A.N. Vereshchagin, and M.P. Egorov, “Pseudo-Four-Component Synthesis of 5-(4-Hydroxy-2-Oxo-1,2-Dihydropyridin-3-yl)-Substituted 5H-Chromeno[2,3-b]Pyridines and Estimation of Its Affinity to Sirtuin 2,” Arkivoc 2020, no. 6 (2020): 193–208. doi:10.24820/ark.5550190.p011.220
  • E. Maalej, F. Chabchoub, A. Samadi, C. de los Ríos, A. Perona, A. Morreale, and J. Marco-Contelles, “Synthesis, Biological Assessment and Molecular Modeling of 14-Aryl-10,11,12,14-Tetrahydro-9H Benzo[5,6]Chromeno[2,3-b]Quinolin-13-Amines,” Bioorganic & Medicinal Chemistry Letters 21, no. 8 (2011): 2384–8. doi:10.1016/j.bmcl.2011.02.094
  • D.V. Osipov, V.A. Osyanin, and Y.N. Klimochkin, “New Synthesis of 3-Amino-1H-Benzo[f]Chromene-2-Carbonitriles,” Russian Journal of Organic Chemistry 49, no. 3 (2013): 398–402. doi:10.1134/S1070428013030147
  • V.A. Osyanin, D.V. Osipov, and Y.N. Klimochkin, “Synthesis of 9,11-Diamino-12H-Benzo[5,6]-Chromeno[2,3-b]Pyridine-10-Carbonitriles,” Chemistry of Heterocyclic Compounds 47, no. 11 (2012) : 1460–1462. doi:10.1007/s10593-012-0936-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.