50
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular Modelling of Aromatic Interactions between Pyrene Derivatives and Carbon Nanotubes: Materials for Biomedical Applications

ORCID Icon
Pages 2966-2979 | Received 13 Mar 2023, Accepted 09 Jun 2023, Published online: 21 Jun 2023

References

  • A. E. Meerbach, and E. Toth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons Ltd., Chichester, 2001.
  • X. R. Song, X. Y. Wang, S. X. Yu, J. B. Cao, S. H. Li, J. Li, G. Liu, H. H. Yang, and X. Y. Chen, “Co9Se8 Nanoplates as a New Theranostic Platform for Photoacoustic/Magnetic Resonance Dual-Modal-Imaging-Guided Chemo-Photothermal Combination Therapy,” Advanced Materials27, no. 21 (2015): 3285–3291. doi:10.1002/adma.201405634
  • B. Sivakumar, R. G. Aswathy, R. Romero-Aburto, T. Mitcham, K. A. Mitchel, Y. Nagaoka, R. R. Bouchard, P. M. Ajayan, T. Maekawa, and D. N. Sakthikumar, “Highly Versatile SPION Encapsulated PLGA Nanoparticles as Photothermal Ablators of Cancer Cells and as Multimodal Imaging Agents,” Biomaterials Science 5, no. 3 (2017): 432–443. doi:10.1039/c6bm00621c
  • S. Boncel, A. P. Herman, and K. Z. Walczak, “Magnetic Carbon Nanostructures in Medicine,” Journal of Materials Chemistry 22, no. 1 (2012): 31–37. doi:10.1039/C1JM13734D
  • G. Yunxiang, “Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications,” Journal of Functional Biomaterials 9 (2018): 16.
  • N. Kuźnik, and M. M. Tomczyk, “ “Multiwalled Carbon Nanotube Hybrids as MRI Contrast Agents,” Beilstein Journal of Nanotechnology 7 (2016): 1086–1103. doi:10.3762/bjnano.7.102
  • A. Servant, I. Jacobs, C. Bussy, C. Fabbro, T. da Ros, E. Pach, B. Ballesteros, M. Prato, K. Nicolay, and K. Kostarelos, “Gadolinium-Functionalised Multi-Walled Carbon Nanotubes as a T1 Contrast Agent for MRI Cell Labelling and Tracking,” Carbon 97 (2016) : 126–133. doi:10.1016/j.carbon.2015.08.051
  • A. Rodríguez-Galván, M. Rivera, P. García-López, L. A. Medina, and V. A. Basiuk, “Gadolinium-Containing Carbon Nanomaterials for Magnetic Resonance Imaging: Trends and Challenges,” Journal of Cellular and Molecular Medicine 24, no. 7 (2020) : 3779–3794. doi:10.1111/jcmm.15065
  • M. M. Tomczyk, S. Boncel, A. Herman, T. Krawczyk, A. Jakóbik-Kolon, M. Pawlyta, M. Krzywiecki, A. Chrobak, M. Minoshima, F. Sugihara, et al. “Oxygen Functional Groups on MWCNT Surface as Critical Factor Boosting T2 Relaxation Rate of Water Protons: Towards Improved CNT-Based Contrast Agents,” International Journal of Nanomedicine 15 (2020) : 7433–7450. doi:10.2147/IJN.S257230
  • B. O. Murjani, P. S. Kadu, M. Bansod, S. S. Vaidya, and M. D. Yadav, “Carbon Nanotubes in Biomedical Applications: Current Status, Promises, and Challenges,” Carbon Letters 32, no. 5 (2022): 1207–1226. doi:10.1007/s42823-022-00364-4
  • R. D. Bolskar, A. F. Benedetto, L. O. Husebo, R. E. Price, E. F. Jackson, S. Wallace, L. J. Wilson, and J. M. Alford, “First Soluble M @ C60 Derivatives Provide Enhanced Access to Metallofullerenes and Permit in Vivo Evaluation of Gd @ C60[C(COOH)2]10 as a MRI Contrast Agent,” Journal of the American Chemical Society 125, no. 18 (2003): 5471–5478. doi:10.1021/ja0340984
  • Kamil Lipert, Manfred Ritschel, Albrecht Leonhardt, Yulia Krupskaya, Bernd Büchner, and Rüdiger Klingeler, “Magnetic Properties of Carbon Nanotubes with Andwithout Catalyst,” Journal of Physics: Conference Series 200, no. 7 (2010): 072061. doi:10.1088/1742-6596/200/7/072061
  • H. Ajiki, and T. Ando, “Aharonov-Bohm Effect in Carbon Nanotubes,” Physica B: Condensed Matter. 201 (1994) : 349–352. doi:10.1016/0921-4526(94)91112-6
  • V. Negri, A. Cerpa, P. López‐Larrubia, L. Nieto‐Charques, S. Cerdán, and P. Ballesteros, “Nanotubular Paramagnetic Probes as Contrast Agents for Magnetic Resonance Imaging Based on the Diffusion Tensor,” Angewandte Chemie 122, no. 10 (2010): 1857–1859. doi:10.1002/ange.200906415
  • T. Okazak . “Aggregation State of Carbon Nanotubes in Solution,” ECS Meeting Abstracts, MA2015-01 (2015) : 788. doi: 10.1149/MA2015-01/6/788
  • S. Manzetti, and J. C. P. Gabriel, “Methods for Dispersing Carbon Nanotubes for Nanotechnology Applications: Liquid Nanocrystals, Suspensions, Polyelectrolytes, Colloids and Organization Control,” International Nano Letters 9, no. 1 (2019): 31–49. doi:10.1007/s40089-018-0260-4
  • Muthaiah Shellaiah, and Kien-Wen Sun, “Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications,” Biosensors 12, no. 7 (2022) : 550. doi:10.3390/bios12070550
  • R. Rastogi, R. Kaushal, S. K. Tripathi, A. L. Sharma, I. Kaur, and L. M. Bharadwaj, “Comparative Study of Carbon Nanotube Dispersion Using Surfactants,” Journal of Colloid and Interface Science 328, no. 2 (2008): 421–428. doi:10.1016/j.jcis.2008.09.015
  • N. Nakashima, Y. Tomonari, and H. Murakami, “Water-Soluble Single-Walled Carbon Nanotubes via Noncovalent Sidewall-Functionalization with a Pyrene-Carrying Ammonium Ion,” Chemistry Letters 31, no. 6 (2002): 638–639. doi:10.1246/cl.2002.638
  • Xinyi Yin, Qiang Li, Haishui Wang, Wengang Yang, Xi Zhou, Han Zhang, and Weibang Lyu, “Enhancing the Reinforcing Efficiency in CNT Nanocomposites via the Development of Pyrene-Based Active Dispersants,” RSC Advances 11, no. 39 (2021): 23892–23900. doi:10.1039/d1ra03711k
  • D. Calle, V. Negri, C. Munuera, L. Mateos, I. Lado-Touriño, P. Ros-Viñegla, M. O. Ramírez, M. García-Hernández, S. Cerdán, and P. Ballesteros, “Magnetic Anisotropy of Functionalized Multi-Walled Carbon Nanotube Suspensions,” Carbon 131 (2018) : 229–237. doi:10.1016/j.carbon.2018.01.104
  • J. Chai, and M. Head-Gordon, “Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections,” Physical Chemistry Chemical Physics10, no. 44 (2008): 6615–6620. doi:10.1039/b810189b
  • https://www.wavefun.com/spartan.
  • S. Grimme, “Accurate Description of Van Der Waals Complexes by Density Functional Theory Including Empirical Corrections,” Journal of Computational Chemistry 25, no. 12 (2004): 1463–1473. doi:10.1002/jcc.20078
  • S. Grimme, “Density Functional Theory with London Dispersion Corrections,” WIREs Computational Molecular Science 1, no. 2 (2011): 211–228. doi:10.1002/wcms.30
  • B. J. Ransil, “Studies in Molecular Structure. IV. Potential Curve for the Interaction of Two Helium Atoms in Single‐Configuration LCAO MO SCF Approximation,” The Journal of Chemical Physics 34, no. 6 (1961): 2109–2118. doi:10.1063/1.1731829
  • S. F. Boys, and F. Bernardi “The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors,” Molecular Physics 19, no. 4 (1970): 553–566. doi:10.1080/00268977000101561
  • C. Haddon, “π Electrons in Three Dimensions,” Accounts of Chemical Research 21, no. 6 (1988): 243–249. doi:10.1021/ar00150a005
  • J. C. Charlier, X. Gonze, and J. P. Michenaud, “Graphite Interplanar Bonding: Electronic Delocalization and Van Der Waals Interaction,” Europhysics Letters28, no. 6 (1994): 403–408. doi:10.1209/0295-5075/28/6/005
  • J. Calbo, A. López-Moreno, A. De Juan, J. Comer, E. Ortí, and E. Pérez, “Understanding Noncovalent Interactions of Small Molecules with Carbon Nanotubes,” Chemistry 23, no. 52 (2017): 12909–12916. doi:10.1002/chem.201702756
  • M. Rubeš, O. Bludský, and P. Nachtigall, “Investigation of the Benzene–Naphthalene and Naphthalene–Naphthalene Potential Energy Surfaces: DFT/CCSD(T) Correction Scheme,” Chemphyschem : A European Journal of Chemical Physics and Physical Chemistry 9, no. 12 (2008): 1702–1708. doi:10.1002/cphc.200800274
  • Y. Zhao, and D. G. Truhlar, “Size-Selective Supramolecular Chemistry in a Hydrocarbon Nanoring,” The Journal of Physical Chemistry C 112, no. 11 (2008): 4061–4067. doi:10.1021/jp710918f
  • L. M. Woods, Ş. C. Bădescu, and T. L. Reinecke, “Adsorption of Simple Benzene Derivatives on Carbon Nanotubes,” Physical Review B 75, no. 15 (2007): 155415–155422, and B. 75. doi:10.1103/PhysRevB.75.155415
  • S. K. Samanta, M. Fritsch, U. Scherf, W. Gomulya, S. Z. Bisri, and M. A. Loi, “Conjugated Polymer-Assisted Dispersion of Single-Wall Carbon Nanotubes: The Power of Polymer Wrapping,” Accounts of Chemical Research 47, no. 8 (2014) : 2446–2456. doi:10.1021/ar500141j
  • Bowen Yu, Sirui Fu, Zhiqiang Wu, Hongwei Bai, Nanying Ning, and Qiang Fu, “Molecular Dynamics Simulations of Orientation Induced Interfacial Enhancement between Single Walled Carbon Nanotube and Aromatic Polymers Chains,” Composites Part A Applied Science and Manufacturing. 73 (2015) : 155–165. doi:10.1016/j.compositesa.2015.02.027
  • S. Jahangiri, and E. Ozden-Yenigun, “The Stability and Dispersion of Carbon Nanotube-Polymer Solutions: A Molecular Dynamics Study,” Journal of Industrial Textiles 47, no. 7 (2018) : 1568–1583. doi:10.1177/1528083717702006
  • F. Tournus, and J. C. Charlier, “Ab Initio Study of Benzene Adsorption on Carbon Nanotubes,” Physical Review B 71, no. 16 (2005): 165421–165429. doi:10.1103/PhysRevB.71.165421
  • T. Yumura, N. Sugimori, and S. Fukuura, “Theoretical Understanding of Stability of Mechanically Interlocked Carbon Nanotubes and Their Precursors,” Physical Chemistry Chemical Physics 25, no. 10 (2023): 7527–7539. doi:10.1039/D2CP04738A
  • Changshui Huang, Randy K. Wang, Bryan M. Wong, David J. McGee, François Léonard, Yun Jun Kim, Kirsten F. Johnson, Michael S. Arnold, Mark A. Eriksson, and Padma Gopalan, “Spectroscopic Properties of Nanotube-Chromophore Hybrids,” ACS Nano 5, no. 10 (2011): 7767–7774. doi:10.1021/nn202725g
  • M. Keiluweit, and M. Kleber, “Molecular-Level Interactions in Soils and Sediments: The Role of Aromatic pi-Systems,” Environmental Science & Technology 43, no. 10 (2009): 3421–3429. doi:10.1021/es8033044
  • Yuanchun Zhao, Changshui Huang, Myungwoong Kim, Bryan M. Wong, François Léonard, Padma Gopalan, and Mark A. Eriksson, “Functionalization of Single-Wall Carbon Nanotubes with Chromophores of opposite Internal Dipole Orientation,” ACS Applied Materials & Interfaces 5, no. 19 (2013): 9355–9361. − doi:10.1021/am4024753
  • Y. Joo, M. Kim, C. Kanimozhi, P. Huang, B. M. Wong, S. S. Roy, M. S. Arnold, and P. Gopalan, “Effect of Dipolar Molecule Structure on the Mechanism of Graphene-Enhanced Raman Scattering,” The Journal of Physical Chemistry C 120, no. 25 (2016): 13815–13824. − doi:10.1021/acs.jpcc.6b04098

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.