60
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Copolymer-Coated Magnetic Graphene Oxide: A Reusable Catalyst for the Preparation of 2,4,6-Triaryl Pyridines via Four-Component Reaction

, &
Pages 3146-3160 | Received 25 Apr 2023, Accepted 23 Jun 2023, Published online: 04 Jul 2023

References

  • H. M. Rolfe, “A Review of Nicotinamide: Treatment of Skin Diseases and Potential Side Effects,” Journal of Cosmetic Dermatology 13, no. 4 (2014): 324–328. doi:10.1111/jocd.12119
  • R. Percudani, and A. Peracchi, “A Genomic Overview of Pyridoxal‐Phosphate‐Dependent Enzymes,” EMBO Reports 4, no. 9 (2003): 850–854. doi:10.1038/sj.embor.embor914
  • J. Hu, Q. Zhang, H. Yuan, and Q. Liu, “Temperature-Controlled Synthesis of Substituted Pyridine Derivatives via the [5C + 1N] Annulation of 1,1-Bisalkylthio-1,4-Pentanedienes and Ammonium Acetate,” The Journal of Organic Chemistry 73, no. 6 (2008): 2442–2445. doi:10.1021/jo702586p
  • A. D. Pillai, P. D. Rathod, P. X. Franklin, M. Patel, M. Nivsarkar, K. K. Vasu, H. Padh, and V. Sudarsanam, “Novel Drug Designing Approach for Dual Inhibitors as anti-Inflammatory Agents: Implication of Pyridine Template,” Biochemical and Biophysical Research Communications 301, no. 1 (2003): 183–186. doi:10.1016/s0006-291x(02)02996-0
  • S. Tu, T. Li, F. Shi, F. Fang, S. Zhu, X. Wei, and Z. Zong, “An Efficient Improve for the Kröhnke Reaction: One-Pot Synthesis of 2,4,6-Triarylpyridines Using Raw Materials under Microwave Irradiation,” Chemistry Letters 34, no. 5 (2005): 732–733. doi:10.1246/cl.2005.732
  • D. J. Balzarini, M. Stevens, E. D. Clercq, D. Schols, and C. Pannecouque, “Pyridine N-Oxide Derivatives: Unusual anti-HIV Compounds with Multiple Mechanisms of Antiviral Action,” Journal of Antimicrobial Chemotherapy 55, no. 2 (2005): 135–138. doi:10.1093/jac/dkh530
  • A. A. Bekhit, A. Hymete, A. Damtew, A. M. I. Mohamed, and A. E. A. Bekhit, “Synthesis and Biological Screening of Some Pyridine Derivatives as anti-Malarial Agents,” Journal of Enzyme Inhibition and Medicinal Chemistry 27, no. 1 (2012): 69–77. doi:10.3109/14756366.2011.575071
  • S. N. Sirakanyan, M. Hrubša, D. Spinelli, P. Dias, V. Kartsev, A. Carazo, A. A. Hovakimyan, J. Pourová, E. K. Hakobyan, J. Karlíčková, et al. “Synthesis of 3,3-Dimethyl-6-Oxopyrano[3,4-c]Pyridines and Their Antiplatelet and Vasodilatory Activity,” The Journal of Pharmacy and Pharmacology 74, no. 6 (2022): 887–895. doi:10.1093/jpp/rgab075
  • M. S. Saito, A. L. Lourenço, L. R. S. Dias, A. C. C. Freitas, M. I. Vitorino, M. G. Albuquerque, C. R. Rodrigues, L. M. Cabral, E. P. Dias, H. C. Castro, et al. “Antiplatelet Pyrazolopyridines Derivatives: Pharmacological, Biochemical and Toxicological Characterization,” Journal of Enzyme Inhibition and Medicinal Chemistry 31, no. 6 (2016): 1591–1601. doi:10.3109/14756366.2016.1158712
  • A. Daştan, A. Kulkarni, and B. Török, “Environmentally Benign Synthesis of Heterocyclic Compounds by Combined Microwave-Assisted Heterogeneous Catalytic Approaches,” Green Chem. 14, no. 1 (2012): 17–37. doi:10.1039/C1GC15837F
  • B. Y. Kim, J. B. Ahn, H. W. Lee, S. K. Kang, J. H. Lee, J. S. Shin, S. K. Ahn, C. I. Hong, and S. S. Yoon, “Synthesis and Biological Activity of Novel Substituted Pyridines and Purines Containing 2, 4-Thiazolidinedione,” European Journal of Medicinal Chemistry 39, no. 5 (2004): 433–447. doi:10.1016/j.ejmech.2004.03.001
  • B. G. Lohmeijer, and U. S. Schubert, “Supramolecular Engineering with Macromolecules: An Alternative Concept for Block Copolymers,” Angewandte Chemie International Edition 41, no. 20 (2002) : 3825–3829. doi:10.1002/1521-3773(20021018)41:20<3825::AID-ANIE3825>3.0.CO;2-6
  • Lambert Brandsma, Nina A. Nedolya, Hermann D. Verkruijsse, Noel L. Owen, Li Du, and Boris A. Trofimov, “Synthesis of 2,3-Dihydropyridines, Cyclobutanopyrrolines and Quinolines from Lithiated Allenes and Isothiocyanates,” Tetrahedron Letters 38, no. 39 (1997) : 6905–6908. doi:10.1016/S0040-4039(97)01591-8
  • S. P. Stanforth, B. Tarbit, and M. D. Watson, “Synthesis of Pyridine and 2,2′-Bipyridine Derivatives from the Aza Diels–Alder Reaction of Substituted 1,2,4-Triazines,” Tetrahedron 60, no. 40 (2004) : 8893–8897. doi:10.1016/j.tet.2004.07.024
  • J. Safaei-Ghomi, M. A. Ghasemzadeh, and A. Kakavand-Qalenoei, “CuI- Nanoparticles-Catalyzed One-Pot Synthesis of Benzo[b]Furans via Three-Component Coupling of Aldehydes, Amines and Alkyne,” Journal of Saudi Chemical Society 20, no. 5 (2016): 502–509. doi:10.1016/j.jscs.2012.07.010
  • J. Safaei-Ghomi, and M. A. Ghasemzadeh, “Zinc Oxide Nanoparticle Promoted Highly Efficient One Pot Three-Component Synthesis of 2,3-Disubstituted Benzofurans,” Arabian Journal of Chemistry 10, no. 2 (2017): S1774–S1780. doi:10.1016/j.arabjc.2013.06.030
  • A. Ramazani, and A. R. Kazemizadeh, “Preparation of Stabilized Phosphorus Ylides via Multicomponent Reactions and Their Synthetic Applications,” Current Organic Chemistry 15, no. 23 (2011): 3986–4020. doi:10.2174/138527211798072412
  • A. Ramazani, A. Tofangchi Mahyari, M. Rouhani, and A. Rezaei, “A Novel Three-Component Reaction of a Secondary Amine and a 2-Hydroxybenzaldehyde Derivative with an Isocyanide in the Presence of Silica Gel: An Efficient One-Pot Synthesis of Benzo[b]Furan Derivatives,” Tetrahedron Letters 50, no. 40 (2009): 5625–5627. doi:10.1016/j.tetlet.2009.07.115
  • M. Sheikhi, D. Sheikh, and A. Ramazani, “Three-Component Synthesis of Electron-Poor Alkenes Using Isatin Derivatives, Acetylenic Esters, Triphenylphosphine and Theoretical Study,” South African Journal of Chemistry 67 (2014): 151–159.
  • M. M. Heravi, K. Bakhtiari, Z. Daroogheha, and F. F. Bamoharram, “An Efficient Synthesis of 2, 4, 6-Triarylpyridines Catalyzed by Heteropolyacid under Solvent-Free Conditions,” Catalysis Communications 8, no. 12 (2007): 1991–1994. doi:10.1016/j.catcom.2007.03.028
  • P. V. Shinde, V. B. Labade, J. B. Gujar, B. B. Shingate, and M. S. Shingare, “Bismuth Triflate Catalyzed Solvent-Free Synthesis of 2, 4, 6-Triaryl Pyridines and an Unexpected Selective Acetalization of Tetrazolo [1,5-a]-Quinoline-4-Carbaldehydes,” Tetrahedron Letters 53, no. 12 (2012): 1523–1527. doi:10.1016/j.tetlet.2012.01.059
  • J. Safari, Z. Zarnegar, and M. B. Borujeni, “Mesoporous Nanocrystalline MgAl2O4: A New Heterogeneous Catalyst for the Synthesis of 2,4,6-Triarylpyridines under Solvent-Free Conditions,” Chemical Papers 67, no. 7 (2013): 688–695. doi:10.2478/s11696-013-0361-5
  • B. Maleki, D. Azarifar, H. Veisi, S. F. Hojati, H. Salehabadi, and R. N. Yami, “Wet 2,4,6-Trichloro-1,3,5-Triazine (TCT) as an Efficient Catalyst for the Synthesis of 2, 4, 6-Triarylpyridines under Solvent-Free Conditions,” Chinese Chemical Letters 21, no. 11 (2010): 1346–1349. doi:10.1016/j.cclet.2010.06.028
  • Y. M. Ren, and C. Cai, “Three-Components Condensation Catalyzed by Molecular Iodine for the Synthesis of 2,4,6-Triarylpyridines and 5-Unsubstituted-3,4-Dihydropyrimidin-2(1H)-Ones under Solvent-Free Conditions,” Monatshefte Für Chemie - Chemical Monthly 140, no. 1 (2009): 49–52. doi:10.1007/s00706-008-0011-8
  • M. A. Zolfigol, M. Safaiee, F. Afsharnadery, N. Bahrami-Nejad, S. Baghery, S. Salehzadeh, and F. Maleki, “Silica Vanadic Acid [SiO2-VO(OH)2] as an Efficient Heterogeneous Catalyst for the Synthesis of 1,2-Dihydro-1-Aryl-3H-Naphth[1,2-e][1,3]Oxazin-3-One and 2,4,6-Triarylpyridine Derivatives via Anomeric Based Oxidation,” RSC Adv. 5, no. 122 (2015): 100546–100559. doi:10.1039/C5RA21392D
  • M. Kamali, “One-Pot, Solvent-Free, and Efficient Synthesis of 2,4,6-Triarylpyridines Using CoCl2.6H2O as a Recyclable Catalyst,” Cogent Chemistry 2, no. 1 (2016): 1171123. doi:10.1080/23312009.2016.1171123
  • M. A. Ghasemzadeh, and M. H. Abdollahi-Basir, “Fe3O4@SiO2-NH2 Nanocomposite as a Robust and Effective Catalyst for the One-Pot Synthesis of Polysubstituted Dihydropyridines,” Acta Chimica Slovenica 63, no. 3 (2016): 627–637. doi:10.17344/acsi.2016.2386
  • M. R. M. Shafiee, and R. Moloudi, “Barium Chloride Dispersed on Silica Gel Nanoparticles: An Efficient Catalyst for the Preparation of 2,4,6-Triarylpyridines under Solvent-Free Conditions,” Journal of Chemical Research 35, no. 5 (2011): 294–297. doi:10.3184/174751911X13052141528930
  • M. A. Zolfigol, F. Karimi, M. Yarie, and M. Torabi, “Catalytic Application of Sulfonic Acid-Functionalized Titana-Coated Magnetic Nanoparticles for the Preparation of 1,8-Dioxodecahydroacridines and 2,4,6-Triarylpyridines via Anomeric-Based Oxidation,” Applied Organometallic Chemistry 32, no. 2 (2018): e4063. doi:10.1002/aoc.4063
  • P. Roudini, N. Hazeri, H. Faroughi Niya, and M. Fatahpour, “Fe3O4@THAM-SO3H: An Eco-Friendly Solid Acid Nanocatalyst for Synthesis of 2-Amino-3-Cyanopyridines and 2,4,6-Triarylpyridines under Mild Reaction Conditions,” Polycyclic Aromatic Compounds 43, no. 2 (2023): 1092–1106. doi:10.1080/10406638.2022.2025862
  • G. Yang, L. Li, W. B. Lee, and M. C. Ng, “Structure of Graphene and Its Disorders,” Science and Technology of Advanced Materials 19, no. 1 (2018): 613–648. doi:10.1080/14686996.2018.1494493
  • S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(Sodium 4-Styrenesulfonate),” Journal of Materials Chemistry 16, no. 2 (2006): 155–158. doi:10.1039/B512799H
  • A. M. Tishin, and Y. I. Spichkin, The Magnetocaloric Effect and Its Applications (Bristol and Philadelphia, CRC Press, 2003).
  • P. Knauth, and J. Schoonman, Nanostructured Materials: Selected Synthesis Methods, Properties and Applications,” Springer Science & Business Media (2006).
  • J. Zheng, H. Lv, X. Lin, G. Ji, X. Li, and Y. Du, “Enhanced Microwave Electromagnetic Properties of Fe3O4/Graphene Nanosheet Composites,” Journal of Alloys and Compounds 589 (2014): 174–181. doi:10.1016/j.jallcom.2013.11.114
  • B. Mirhosseini-Eshkevari, M. A. Ghasemzadeh, and J. Safaei-Ghomi, “An Efficient and Green One-Pot Synthesis of Indazolo[1,2-b]-Phthalazinetriones via Three-Component Reaction of Aldehydes, Dimedone, and Phthalhydrazide Using Fe3O4@SiO2 Core-Shell Nanoparticles,” Research on Chemical Intermediates 41, no. 10 (2015): 7703–7714. doi:10.1007/s11164-014-1854-8
  • S. Rezayati, F. Kalantari, A. Ramazani, S. Sajjadifar, H. Aghahosseini, and A. Rezaei, “Magnetic Silica-Coated Picolylamine Copper Complex [Fe3O4@ SiO2@ GP/picolylamine-Cu (II)]-Catalyzed Biginelli Annulation Reaction,” Inorganic Chemistry 61, no. 2 (2023): 992–1010. doi:10.1021/acs.inorgchem.1c03042
  • S. Rezayati, G. Dinmohammadi, A. Ramazani, and S. Sajjadifar, “Mortar-Pestle Grinding Technique as an Efficient and Green Method Accelerates the Tandem Knoevenagel-Michael Cyclocondensation Reaction in the Presence of Ethylenediamine Immobilized on the Magnetite Nanoparticles,” Polycyclic Aromatic Compounds 43 (2022): 1–23. doi:10.1080/10406638.2022.2110506
  • F. Kalantari, S. Rezayati, A. Ramazani, and M. R. Poor Heravi, “Syntheses and Structures of Magnetic Nanodendrimers and Their Catalytic Application in Organic Synthesis,” Applied Organometallic Chemistry 37, no. 6 (2023): e7064. doi:10.1002/aoc.7064
  • H. Taherkhani, A. Ramazani, S. Sajjadifar, H. Aghahosseini, A. Rezaei, and S. Rezayati, “Grinding Synthesis of 2-Amino-4H-Benzo[b]Pyran Derivatives Catalyzed by Highly Efficient GPTMS/Guanidine Protected Magnetic Nanoparticles,” ChemistrySelect 6, no. 41 (2021): 11362–11374. doi:10.1002/slct.202102931
  • F. Kalantari, S. Rezayati, A. Ramazani, H. Aghahosseini, K. Ślepokura, and T. Lis, “Proline-Cu Complex Based 1,3,5-Triazine Coated on Fe3O4 Magnetic Nanoparticles: A Nanocatalyst for the Nnoevenagel Condensation of Aldehyde with Malononitrile,” ACS Applied Nano Materials 5, no. 2 (2022): 1783–1797. doi:10.1021/acsanm.1c03169
  • Sobhan Rezayati, Ali Ramazani, Sami Sajjadifar, Hamideh Aghahosseini, and Aram Rezaei, “Design of a Schiff Base Complex of Copper Coated on Epoxy-Modified Core-Shell MNPs as an Environmentally Friendly and Novel Catalyst for the One-Pot Synthesis of Various Chromene-Annulated Heterocycles,” ACS Omega 6, no. 39 (2021): 25608–25622. doi:10.1021/acsomega.1c03672
  • I. J. Bruce, J. Taylor, M. Todd, M. J. Davies, E. Borioni, C. Sangregorio, and T. Sen, “Synthesis, Characterisation and Application of Silica-Magnetite Nanocomposites,” Journal of Magnetism and Magnetic Materials 284 (2004): 145–160. doi:10.1016/j.jmmm.2004.06.032
  • X. Liu, Y. Guan, Z. Ma, and H. Liu, “Surface Modification and Characterization of Magnetic Polymer Nanospheres Prepared by Miniemulsion Polymerization,” Langmuir : The ACS Journal of Surfaces and Colloids 20, no. 23 (2004): 10278–10282. doi:10.1021/la0491908
  • S. F. Hojati, A. H. Amiri, and H. Raouf, “Efficient Four‐Component Synthesis of Spiroindole Derivatives Catalysed by a Versatile and Reusable Nano‐Parmagnetic Catalyst,” Applied Organometallic Chemistry 31, no. 5 (2017): e3595. doi:10.1002/aoc.3595
  • S. F. Hojati, A. Amiri, S. Mohamadi, and N. MoeiniEghbali, “Novel Organomettalic Nanomagnetic Catalyst for Multicomponent Synthesis of Spiroindoline Derivatives,” Research on Chemical Intermediates 44, no. 4 (2018): 2275–2287. doi:10.1007/s11164-017-3228-5
  • M. Keshavarz, M. Abdoli-Senejani, S. F. Hojati, and Sh Askari, “Fe3O4 Magnetic Nanoparticles Coated with a Copolymer: A Novel Reusable Catalyst for One-Pot Three-Component Synthesis of 2-Amino-4H-Chromene,” Reaction Kinetics, Mechanisms and Catalysis 124, no. 2 (2018): 757–766. doi:10.1007/s11144-018-1361-9
  • S. F. Hojati, A. Amiri, N. MoeiniEghbali, and S. Mohamadi, “Polypyrrole/Fe3O4/CNT as a Recyclable and Highly Efficient Catalyst for One-Pot Three-Component Synthesis of Pyran Derivatives,” Applied Organometallic Chemistry 32, no. 4 (2018): e4235. doi:10.1002/aoc.4235
  • S. F. Hojati, A. Amiri, and M. Mahamed, “Polystyrene@Graphene oxide-Fe3O4 as a Novel and Magnetically Recyclable Nanocatalyst for the Efficient Multi-Component Synthesis of Spiro Indene Derivatives,” Research on Chemical Intermediates 46, no. 2 (2020): 1091–1107. doi:10.1007/s11164-019-04021-w
  • S. F. Hojati, A. Amiri, E. Fardi, and M. Mahamed, “The Copolymer Coating Effect on the Catalytic Activity of Magnetic Carbon Nanotube (CNT-Fe3O4) in the Multi-Component Reactions,” Research on Chemical Intermediates 48, no. 4 (2022): 1347–1363. doi:10.1007/s11164-022-04663-3
  • Seyedeh Fatemeh Hojati, Fariba Zeidabadi Nezhad, and Reyhane Kashki, “The Investigation of Substituent Effect in the Structure of Copolymer as the Protecting Cover of Magnetic Nanocomposite on Its Catalytic Activity,” Research on Chemical Intermediates 49, no. 2 (2023): 603–617. doi:10.1007/s11164-022-04885-5
  • S. F. Hojati, A. Amiri, and E. Fardi, “The Application of Copolymer-Coated Graphene oxide-Fe3O4 in the Highly Efficient Synthesis of 2ˊ-Aminospiro[Indeno[1,2-b]Quinoxaline-11,4ˊ-[4ˊH] Pyran]-3ˊ-Carbonitrile and 2ˊ-Aminospiro[Indeno-2,4ˊ-[4ˊH]Pyran]-3ˊ-Carbonitrile,” Applied Organometallic Chemistry 34, no. 5 (2020): e5604. doi:10.1002/aoc.5604
  • S. Zuo, W. Liu, C. Yao, X. Li, Y. Kong, X. Liu, H. Mao, and Y. Li, “Preparation of Polyaniline–Polypyrrole Binary Composite Nanotube Using Halloysite as Hard-Template and Its Characterization,” Chemical Engineering Journal 228 (2013): 1092–1097. doi:10.1016/j.cej.2013.05.087
  • E. Tabrizian, A. Amoozadeh, S. Rahmani, E. Imanifar, S. Azhari, and M. Malmir, “One-Pot, Solvent-Free and Efficient Synthesis of 2,4,6-Triarylpyridines Catalyzed by Nano-Titania-Supported Sulfonic Acid as a Novel Heterogeneous Nanocatalyst,” Chinese Chemical Letters 26, no. 10 (2015): 1278–1282. doi:10.1016/j.cclet.2015.06.013
  • N. Montazeri, and S. Mahjoob, “Highly Efficient and Easy Synthesis of 2,4,6-Triarylpyridines Catalyzed by Pentafluorophenylammonium Triflate (PFPAT) as a New Recyclable Solid Acid Catalyst in Solvent-Free Conditions,” Chinese Chemical Letters 23, no. 4 (2012): 419–422. doi:10.1016/j.cclet.2012.01.035
  • Sachin P. Gadekar, and Machhindra K. Lande, “Solid Acid Catalyst TS-1 Zeolite-Assisted Solvent-Free One-Pot Synthesis of Poly-Substituted 2,4,6-Triaryl-Pyridines,” Research on Chemical Intermediates 44, no. 5 (2018): 3267–3278. doi:10.1007/s11164-018-3305-4
  • K. S. Reddy, R. B. Reddy, K. Mukkanti, G. Thota, and G. Srinivasulu, “Synthesis of 2,4,6-Triarylpyridines Using TBAHS as a Catalyst,” Rasayan Journal of Chemistry 4, no. 2 (2011): 299–302.
  • A. Davoodnia, M. Bakavoli, R. Moloudi, N. Tavakoli-Hoseini, and M. Khashi, “Highly Efficient, One-Pot, Solvent-Free Synthesis of 2,4,6-Triarylpyridines Using a Brønsted-Acidic Ionic Liquid as Reusable Catalyst,” Monatshefte Für Chemie - Chemical Monthly 141, no. 8 (2010): 867–870. doi:10.1007/s00706-010-0329-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.