183
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, Molecular Docking and Molecular Dynamic Studies of Thiazolidineones as Acetylcholinesterase and Butyrylcholinesterase Inhibitors

, , , , &
Pages 3387-3407 | Received 07 Nov 2022, Accepted 30 Jun 2023, Published online: 17 Jul 2023

References

  • A. D. Gitler, P. Dhillon, and J. Shorter, “Neurodegenerative Disease: Models, Mechanisms, and a New Hope,” Disease Models & Mechanisms 10, no. 5 (2017): 499–502. doi:10.1242/dmm.030205
  • J. K. Andersen, “Oxidative Stress in Neurodegeneration: Cause or Consequence?,” Nature Medicine 10, no. S7 (2004): S18–S25. doi:10.1038/nrn1434
  • E. Tönnies, and E. Trushina, “Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease,” Journal of Alzheimer’s Disease : JAD 57, no. 4 (2017): 1105–1121. doi:10.3233/JAD-161088
  • G. T. Grossberg, “Cholinesterase Inhibitors for the Treatment of Alzheimer’s Disease: Getting on and Staying on,” Current Therapeutic Research, Clinical and Experimental 64, no. 4 (2003): 216–235. doi:10.1016/S0011-393X(03)00059-6
  • A. V. Rao, and B. Balachandran, “Role of Oxidative Stress and Antioxidants in Neurodegenerative Diseases,” Nutritional Neuroscience 5, no. 5 (2002): 291–309. doi:10.1080/1028415021000033767
  • B. Kim, J. Park, K. T. Chang, and D. S. Lee, “Peroxiredoxin 5 Prevents Amyloid-Beta Oligomer-Induced Neuronal Cell Death by Inhibiting ERK–Drp1-Mediated Mitochondrial Fragmentation,” Free Radical Biology & Medicine 90 (2016): 184–194. doi:10.1016/j.freeradbiomed.2015.11.015
  • M. Goschorska, I. Gutowska, I. Baranowska-Bosiacka, K. Piotrowska, E. Metryka, K. Safranow, and D. Chlubek, “Influence of Acetylcholinesterase Inhibitors Used in Alzheimer’s Disease Treatment on the Activity of Antioxidant Enzymes and the Concentration of Glutathione in THP-1 Macrophages under Fluoride-Induced Oxidative Stress,” International Journal of Environmental Research and Public Health 16, no. 1 (2018): 10. doi:10.3390/ijerph16010010
  • F. Rahim, H. Ullah, M. Taha, A. Wadood, M. T. Javed, W. Rehman, M. Nawaz, M. Ashraf, M. Ali, M. Sajid, et al. “Synthesis and in vitro Acetylcholinesterase and Butyrylcholinesterase Inhibitory Potential of Hydrazide Based Schiff Bases,” Bioorganic Chemistry 68 (2016): 30–40. doi:10.1016/j.bioorg.2016.07.005
  • R. R. Soares, J. M. F. da Silva, B. C. Carlos, C. C. da Fonseca, L. S. A. de Souza, F. V. Lopes, R. M. de Paula Dias, P. O. L. Moreira, C. Abramo, G. H. R. Viana, et al. “New Quinoline Derivatives Demonstrate a Promising Antimalarial Activity against Plasmodium falciparum in Vitro and Plasmodium berghei in Vivo,” Bioorganic & Medicinal Chemistry Letters 25, no. 11 (2015): 2308–2313. doi:10.1016/j.bmcl.2015.04.014
  • X. Yu, P. Teng, Y. L. Zhang, Z. J. Xu, M. Z. Zhang, and H. W. Zhang, “Design, Synthesis and Antifungal Activity Evaluation of Coumarin-3-Carboxamide Derivatives,” Fitoterapia 127 (2018) : 387–395. doi:10.1016/j.fitote.2018.03.013
  • M. A. Arafath, F. Adam, F. S. R. Al-Suede, M. R. Razali, M. B. Khadeer Ahamed, A. M. Shah Abdul Majid, M. Z. Hassan, H. Osman, and S. Abubakar, “Synthesis, Characterisation, X-Ray Crystal Structures of Heterocyclic Schiff Base Compounds and in Vitro Cholinesterase Inhibition and Anticancer Activity,” Journal of Molecular Structure 1149 (2017) : 216–228. doi:10.1016/j.molstruc.2017.07.092
  • A. Şenocak, N. A. Taş, P. Taslimi, B. Tüzün, A. Aydin, and A. Karadağ, “Novel Amino Acid Schiff Base Zn (II) Complexes as New Therapeutic Approaches in Diabetes and Alzheimer’s Disease: Synthesis, Characterisation, Biological Evaluation, and Molecular Docking Studies,” Journal of Biochemical and Molecular Toxicology 36, no. 3 (2022) : e22969. doi:10.1002/jbt.22969
  • Ü. M. Koçyiğit, H. Gezegen, and P. Taslimi, “Synthesis, Characterisation, and Biological Studies of Chalcone Derivatives Containing Schiff Bases: Synthetic Derivatives for the Treatment of Epilepsy and Alzheimer’s Disease,” Archiv Der Pharmazie 353, no. 12 (2020): 2000202. no doi:10.1002/ardp.202000202
  • M. J. Pérez, and R. A. Quintanilla, “Therapeutic Actions of the Thiazolidinediones in Alzheimer’s Disease,” PPAR Research 2015 (2015): 1–8.). doi:10.1155/2015/957248
  • S. A. Shehzadi, I. Khan, A. Saeed, F. A. Larik, P. A. Channar, M. Hassan, H. Raza, Q. Abbas, and S. Y. Seo, “One-Pot Four-Component Synthesis of Thiazolidin-2-Imines Using Cui/Znii Dual Catalysis: A New Class of Acetylcholinesterase Inhibitors,” Bioorganic Chemistry 84 (2019) : 518–528. doi:10.1016/j.bioorg.2018.12.002
  • R. Maccari, A. D. Corso, M. Giglio, R. Moschini, U. Mura, and R. Ottana, “In Vitro Evaluation of 5-Arylidene-2-Thioxo-4-Thiazolidinones Active as Aldose Reductase Inhibitors,” Bioorganic & Medicinal Chemistry Letters 21, no. 1 (2011): 200–203. doi:10.1016/j.bmcl.2010.11.041
  • F. Rahim, M. Taha, H. Ullah, A. Wadood, M. Selvaraj, A. Rab, M. Sajid, S. A. Shah, N. Uddin, and M. Gollapalli, “Synthesis of New Arylhydrazide Bearing Schiff Bases/Thiazolidinone: α-Amylase, Urease Activities and Their Molecular Docking Studies,” Bioorganic Chemistry 91 (2019) : 103112. doi:10.1016/j.bioorg.2019.103112
  • R. Tahmasvand, P. Bayat, S. M. Vahdaniparast, S. Dehghani, Z. Kooshafar, S. Khaleghi, A. Almasirad, and M. Salimi, “Design and Synthesis of Novel 4-Thiazolidinone Derivatives with Promising anti-Breast Cancer Activity: Synthesis, Characterisation, in Vitro and in Vivo Results,” Bioorganic Chemistry 104 (2020) : 104276. doi:10.1016/j.bioorg.2020.104276
  • Jainey P James, Divya Jyothi, Vinod Devaraji, and Sneh Priya, “In Silico Exploration of Dakshina Kannada Medicinal Plants as anti-SARS-Cov-2 Agents by Molecular Docking and Simulation Approaches,” Letters in Drug Design & Discovery 20, no. 10: 1544–1556. 10.2174/1570180819666220429161808
  • Jainey Puthenveettil James, Divya Jyothi, and Sneh Priya, “In Silico Screening of Phytoconstituents with Antiviral Activities against SARS-COV-2 Main Protease, Nsp12 Polymerase, and Nsp13 Helicase Proteins,” Letters in Drug Design & Discovery 18, no. 8: 841–857. 10.2174/1570180818666210317162502
  • Jainey P. James, Apoorva, Shreya Renita Monteiro, K. B. Sukesh, and A. Varun, “Design and Identification of Lead Compounds Targeting Nipah G Attachment Glycoprotein by in Silico Approaches,” Journal of Pharmaceutical Research International 33, no. 40A (2021) : 156–169. doi:10.9734/jpri/2021/v33i40A32232
  • N. Kumar, V. Kumar, P. Anand, V. Kumar, A. R. Dwivedi, and V. Kumar, “Advancements in the Development of Multi-Target Directed Ligands for the Treatment of Alzheimer’s Disease,” Bioorganic & Medicinal Chemistry 61 (2022): 116742. doi:10.1016/j.bmc.2022.116742
  • T. Wang, X. H. Liu, J. Guan, S. Ge, M. B. Wu, J. P. Lin, and L. R. Yang, “Advancement of Multi-Target Drug Discoveries and Promising Applications in the Field of Alzheimer’s Disease,” European Journal of Medicinal Chemistry 169 (2019): 200–223. doi:10.1016/j.ejmech.2019.02.076
  • R. J. Obaid, N. Naeem, E. U. Mughal, M. M. Al-Rooqi, A. Sadiq, R. S. Jassas, Z. Moussa, and S. A. Ahmed, “Inhibitory Potential of Nitrogen, Oxygen and Sulfur Containing Heterocyclic Scaffolds against Acetylcholinesterase and Butyrylcholinesterase,” RSC Advances 12, no. 31 (2022): 19764–19855. doi:10.1039/d2ra03081k
  • D. I. Ugwu, F. U. Eze, B. C. Ogboo, V. N. Okoro, M. C. Ugwu, S. N. Okafor, J. I. Ayogu, and S. I. Attah, “Synthesis of Multi-Target Benzene-Sulphonamide Derivatives for the Treatment of Trypanosomiasis,“ Med,” Chem 9 (2019): 83–92.
  • N. Gök, A. Akıncıoğlu, E. Erümit Binici, H. Akıncıoğlu, N. Kılınç, and S. Göksu, “Synthesis of Novel Sulfonamides with anti‐Alzheimer and Antioxidant Capacities,” Archiv Der Pharmazie 354, no. 7 (2021): 2000496. doi:10.1002/ardp.202000496
  • S. Şahin, and N. Dege, “A Newly Synthesised Small Molecule: The Evaluation against Alzheimer’s Disease by in Silico Drug Design and Computational Structure Analysis Methods,” Journal of Molecular Structure 1236 (2021): 130337. doi:10.1016/j.molstruc.2021.130337
  • A. M. Shawky, M. A. Abourehab, A. N. Abdalla, and A. M. Gouda, “Optimisation of Pyrrolizine-Based Schiff Bases with 4-Thiazolidinone Motif: Design, Synthesis and Investigation of Cytotoxicity and anti-Inflammatory Potency,” European Journal of Medicinal Chemistry 185 (2020) : 111780. doi:10.1016/j.ejmech.2019.111780
  • S. Mutahir, M. A. Khan, I. U. Khan, M. Yar, M. Ashraf, S. Tariq, R. L. Ye, and B. J. Zhou, “Organocatalysed and Mechanochemical Solvent-Free Synthesis of Novel and Functionalised Bis-Biphenyl Substituted Thiazolidinones as Potent Tyrosinase Inhibitors: SAR and Molecular Modeling Studies,” European Journal of Medicinal Chemistry 134 (2017): 406–414. doi:10.1016/j.ejmech.2017.04.021
  • K. A. Peele, C. P. Durthi, T. Srihansa, S. Krupanidhi, V. S. Ayyagari, D. J. Babu, M. Indira, A. R. Reddy, and T. C. Venkateswarulu, “Molecular Docking and Dynamic Simulations for Antiviral Compounds against SARS-CoV-2: A Computational Study,” Informatics in Medicine Unlocked 19 (2020) : 100345. doi:10.1016/j.imu.2020.100345
  • O. Gerlits, K. Y. Ho, X. Cheng, D. Blumenthal, P. Taylor, A. Kovalevsky, and Z. Radić, “A New Crystal Form of Human Acetylcholinesterase for Exploratory Room-Temperature Crystallography Studies,” Chemico-Biological Interactions 309 (2019) : 108698. doi:10.1016/j.cbi.2019.06.011
  • Y. Nicolet, O. Lockridge, P. Masson, J. C. Fontecilla-Camps, and F. Nachon, “Crystal Structure of Human Butyrylcholinesterase and of Its Complexes with Substrate and Products,” The Journal of Biological Chemistry 278, no. 42 (2003) : 41141–41147. doi:10.1074/jbc.M210241200
  • C. Evrard, A. Smeets, B. Knoops, and J. P. Declercq, “Crystal Structure of the C47S Mutant of Human Peroxiredoxin 5,” Journal of Chemical Crystallography 34, no. 8 (2004): 553–558. doi:10.1023/B:JOCC.0000042025.08082.6c
  • D. D. Kodical, J. P. James, K. Deepthi, P. Kumar, C. Cyriac, and K. V. Gopika, “ADMET, Molecular Docking Studies and Binding Energy Calculations of Pyrimidine-2-Thiol Derivatives as Cox Inhibitors,” Research Journal of Pharmacy and Technology 13, no. 9 (2020): 4200–4206. doi:10.5958/0974-360X.2020.00742.8
  • N. Shridhar Deshpande, G. S. Mahendra, N. N. Aggarwal, B. F. Gatphoh, and B. C. Revanasiddappa, “In Silico Design, ADMET Screening, MM-GBSA Binding Free Energy of Novel 1, 3, 4 Oxadiazoles Linked Schiff Bases as PARP-1 Inhibitors Targeting Breast Cancer,” Future Journal of Pharmaceutical Sciences 7, no. 1 (2021): 1–10. doi:10.1186/s43094-021-00321-4
  • P. J. Jainey, Devaraji, Vinod, Sasidharan, Pradija, and Ts, Pavan, Pharmacophore Modeling, 3D QSAR, Molecular Dynamics Studies and Virtual Screening on Pyrazolopyrimidines as anti-Breast Cancer Agents. Polycyclic Aromatic Compounds. 2022.
  • J. P. James, P. Sasidharan, S. P. Mandal, and S. R. Dixit, “Virtual Screening of Alkaloids and Flavonoids as Acetylcholinesterase and MAO-B Inhibitors by Molecular Docking and Dynamic Simulation Studies,” Polycyclic Aromatic Compounds (2022): Aug 1: 1–25. doi:10.1080/10406638.2022.2102662
  • Schrödinger Release 2020-4: QikProp. Schrödinger, LLC, New York, NY, 2020.
  • H. Saleem, I. Ahmad, M. N. Shahid, M. S. Gill, M. F. Nadeem, W. Mahmood, and I. Rashid, “In Vitro Acetylcholinesterase and Butyrylcholinesterase Inhibitory Potentials of Jatropha Gossypifolia Plant Extracts,” Acta Pol. Pharm 73, no. 2 (2016): 419–423.
  • S. O. Adeyemo, “Studies on in-Vitro Antioxidant and Free Radical Scavenging Potential and Phytochemical Screening of Leaves of Ziziphus Mauritiana L. and Ziziphus Spina-Christi L. compared with Ascorbic Acid,” Journal of Medical Genetics and Genomics 28, no. 3 (2011): 28–34.
  • R. H. Saleh, W. M. Rashid, A. H. Dalaf, K. A. Al-Badrany, and O. A. Mohammed, “Synthesis of Some New Thiazolidinone Compounds Derived from Schiff Bases Compounds and Evaluation of Their Laser and Biological Efficacy,” Ann Trop & Public Health 23, no. 7 (2020): 1012–1031.
  • Schrödinger Release 2020-4: Prime. Schrödinger, LLC, New York, NY, 2020.
  • J. Li, R. Abel, K. Zhu, Y. Cao, S. Zhao, and R. A. Friesner, “The VSGB 2.0 Model: A Next Generation Energy Model for High Resolution Protein Structure Modeling,” Proteins 79, no. 10 (2011): 2794–2812. doi:10.1002/prot.23106
  • C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 46, no. 1-3 (2001): 3–26. doi:10.1016/s0169-409x(00)00129-0
  • James JP, Bhat I, Jose N. Synthesis, in silico physicochemical properties and biological activities of some pyrazoline derivatives. Asian Journal of Pharmaceutical and Clinical Research 2017.
  • Ebru Didem Coşar, Efe Doğukan Dincel, Sedanur Demiray, Ece Sucularlı, Ezgi Tüccaroğlu, Nurten Özsoy, and Nuray Ulusoy-Güzeldemirci, “Anticholinesterase Activities of Novel Indole-Based Hydrazide-Hydrazone Derivatives: Design, Synthesis, Biological Evaluation, Molecular Docking Study and in Silico ADME Prediction,” Journal of Molecular Structure 1247 (2022) : 131398. doi:10.1016/j.molstruc.2021.131398
  • E. D. Dincel, G. Hasbal-Celikok, T. Yilmaz-Ozden, and N. Ulusoy-Güzeldemirci, “Design, Synthesis, Biological Evaluation, Molecular Docking, and Dynamic Simulation Study of Novel Imidazo [2, 1-b] Thiazole Derivatives as Potent Antioxidant Agents,” Journal of Molecular Structure 1258 (2022) : 132673. doi:10.1016/j.molstruc.2022.132673
  • D. C. Hall, Jr, and H. F. Ji, “A Search for Medications to Treat COVID-19 via in Silico Molecular Docking Models of the SARS-CoV-2 Spike Glycoprotein and 3CL Protease,” Travel Medicine and Infectious Disease 35 (2020): 101646. doi:10.1016/j.tmaid.2020.101646
  • D. E. Clark, “Rapid Calculation of Polar Molecular Surface Area and Its Application to the Prediction of Transport Phenomena. 2. Prediction of Blood–Brain Barrier Penetration,” Journal of Pharmaceutical Sciences 88, no. 8 (1999): 815–821. no doi:10.1021/js980402t
  • T. Ghafourian, and Z. Amin, “QSAR Models for the Prediction of Plasma Protein Binding,” BioImpacts,” BI 3, no. 1 (2013): 21.
  • T. L. Moda, C. A. Montanari, and A. D. Andricopulo, “Hologram QSAR Model for the Prediction of Human Oral Bioavailability,” Bioorganic & Medicinal Chemistry 15, no. 24 (2007): 7738–7745. doi:10.1016/j.bmc.2007.08.060
  • Mark J. Perrin, Rajesh N. Subbiah, Jamie I. Vandenberg, and Adam P. Hill, “Human Ether-a-Go-Go Related Gene (hERG) K + Channels: Function and Dysfunction,” Progress in Biophysics and Molecular Biology 98, no. 2-3 (2008): 137–148. doi:10.1016/j.pbiomolbio.2008.10.006
  • B. Vijayakumar, S. Parasuraman, R. Raveendran, and D. Velmurugan, “Identification of Natural Inhibitors against Angiotensin I Converting Enzyme for Cardiac Safety Using Induced Fit Docking and MM-GBSA Studies,” Pharmacognosy Magazine 10, no. Suppl 3 (2014): S639–S644. doi:10.4103/0973-1296.139809
  • E. M. Duffy, and W. L. Jorgensen, “Prediction of Properties from Simulations: Free Energies of Solvation in Hexadecane, Octanol, and Water,” Journal of the American Chemical Society 122, no. 12 (2000): 2878–2888. doi:10.1021/ja993663t
  • M. Pakaski, Z. Rakonczay, and P. Kasa, “Reversible and Irreversible Acetylcholinesterase Inhibitors Cause Changes in Neuronal Amyloid Precursor Protein Processing and Protein Kinase C Level in Vitro,” Neurochemistry International 38, no. 3 (2001): 219–226. doi:10.1016/s0197-0186(00)00091-7
  • E. Giacobini, “Cholinesterases: New Roles in Brain Function and in Alzheimer’s Disease,” Neurochemical Research 28, no. 3-4 (2003) : 515–522. doi:10.1023/a:1022869222652
  • Schrödinger Release 2020-4: Phase. Schrödinger, LLC, New York, NY, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.