159
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Facile Synthesis, Spectroscopic and Nonlinear Optical Insights of Hydrazinyl-Based Functional Materials: Experimental and DFT Approach

, , , , , , & show all
Pages 3456-3475 | Received 15 May 2023, Accepted 06 Jul 2023, Published online: 26 Jul 2023

References

  • M. Khalid, R. Hussain, A. Hussain, B. Ali, F. Jaleel, M. Imran, M.A. Assiri, M. Usman Khan, S. Ahmed, and S. Abid, “Electron Donor and Acceptor Influence on the Nonlinear Optical Response of Diacetylene-Functionalized Organic Materials (Dfoms): Density Functional Theory Calculations,” Molecules 24, no. 11 (2019): 2096. doi:10.3390/molecules24112096
  • E.M. Breitung, C.-F. Shu, and R.J. McMahon, “Thiazole and Thiophene Analogues of Donor–Acceptor Stilbenes: Molecular Hyperpolarizabilities and Structure – Property Relationships,” Journal of the American Chemical Society 122, no. 6 (2000): 1154–60. doi:10.1021/ja9930364
  • M.R.S.A. Janjua, A. Mahmood, M.F. Nazar, Z. Yang, and S. Pan, “Electronic Absorption Spectra and Nonlinear Optical Properties of Ruthenium Acetylide Complexes: A DFT Study toward the Designing of New High NLO Response Compounds,” Acta Chimica Slovenica 61, no. 2 (2014): 382–90.
  • T. Geethakrishnan and P. Palanisamy, “Z-Scan Determination of the Third-Order Optical Nonlinearity of a Triphenylmethane Dye Using 633 nm HE–NE Laser,” Optics Communications 270, no. 2 (2007): 424–8. doi:10.1016/j.optcom.2006.09.035
  • K.P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene Oxide as a Chemically Tunable Platform for Optical Applications,” Nature Chemistry 2, no. 12 (2010): 1015–24. doi:10.1038/nchem.907
  • M.U. Khan, M. Khalid, M. Ibrahim, A.A.C. Braga, M. Safdar, A.A. Al-Saadi, and M.R.S.A. Janjua, “First Theoretical Framework of Triphenylamine–Dicyanovinylene-Based Nonlinear Optical Dyes: Structural Modification of π-Linkers,” The Journal of Physical Chemistry C 122, no. 7 (2018): 4009–18. doi:10.1021/acs.jpcc.7b12293
  • M. Khalid, H.M. Lodhi, M.U. Khan, and M.J.R.A. Imran, “Structural Parameter-Modulated Nonlinear Optical Amplitude of Acceptor–π–d–π–Donor-Configured Pyrene Derivatives: A DFT Approach,” RSC Advances 11, no. 23 (2021): 14237–50. doi:10.1039/D1RA00876E
  • M. Khalid, A. Ali, R. Jawaria, M.A. Asghar, S. Asim, M.U. Khan, R. Hussain, M. Fayyaz Ur Rehman, C.J. Ennis, and M.S. Akram, “Principles Study of Electronic and Nonlinear Optical Properties of A–D–π–A and D–A–D–π–A Configured Compounds Containing Novel Quinoline–Carbazole Derivatives,” RSC Advances 10, no. 37 (2020): 22273–83. doi:10.1039/d0ra02857f
  • M. Khalid, M.U. Khan, I. Shafiq, R. Hussain, A. Ali, M. Imran, A.A. Braga, M. Fayyaz Ur Rehman, and M.S. Akram, “Structural Modulation of π-Conjugated Linkers in d–π–a Dyes Based on Triphenylamine Dicyanovinylene Framework to Explore the NLO Properties,” Royal Society Open Science 8, no. 8 (2021): 210570. doi:10.1098/rsos.210570
  • M. Panneerselvam, A. Kathiravan, R.V. Solomon, and M.J.P. Jaccob, “The Role of π-Linkers in Tuning the Optoelectronic Properties of Triphenylamine Derivatives for Solar Cell Applications–a DFT/TDDFT Study,” Physical Chemistry Chemical Physics: PCCP 19, no. 8 (2017): 6153–63. doi:10.1039/c6cp07768d
  • M. Shkir, S. Muhammad, and S. AlFaify, “Experimental and Density Functional Theory (DFT): a Dual Approach to Study the Various Important Properties of Monohydrated l-Proline Cadmium Chloride for Nonlinear Optical Applications,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 143 (2015): 128–35. doi:10.1016/j.saa.2015.02.023
  • A. Datta, “Role of Metal Ions (M = Li+, Na+, and K+) And Pore Sizes (Crown-4, Crown-5, and Crown-6) on Linear and Nonlinear Optical Properties: New Materials for Optical Birefringence,” The Journal of Physical Chemistry C 113, no. 8 (2009): 3339–44. doi:10.1021/jp810198n
  • K. Xu, L. Cao, F. You, D. Zhong, T. Wang, Z. Yu, C. Hu, J. Tang, and B. Teng, “Crystal Growth and Characterization of Optical, Thermal and Electrical Properties of Organic NLO Crystal OHB-T,” Journal of Crystal Growth 547 (2020): 125757. doi:10.1016/j.jcrysgro.2020.125757
  • M. Berkowski, J. Fink-Finowicki, R. Diduszko, P. Byszewski, R. Aleksiyko, and R. Kikalejshvili-Domukhovska, “Growth and Structure of SRAL0.5TA0.5O3: LAALO3 Solid Solutions Single Crystals,” Journal of Crystal Growth 257, no. 1–2 (2003): 146–52. doi:10.1016/S0022-0248(03)01414-3
  • M. Makowska-Janusik, “Influence of the Polymeric Matrix on the NLO Molecular Response in Guest-Host Materials,” Nonlinear Optics, Quantum Optics: Concepts in Modern Optics 37 (2007): 75–85.
  • M. Akram, M. Adeel, M. Khalid, M.N. Tahir, M.U. Khan, M.A. Asghar, M.A. Ullah, and M. Iqbal Ghiasuddin, “Combined Experimental and Computational Study of 3-Bromo-5-(2,5-Difluorophenyl) Pyridine and 3,5-Bis (Naphthalen-1-yl) Pyridine: Insight into the Synthesis, Spectroscopic, Single Crystal Xrd, Electronic, Nonlinear Optical and Biological Properties,” Journal of Molecular Structure 1160 (2018): 129–41. doi:10.1016/j.molstruc.2018.01.100
  • R.F. Abdulla, “Evidence of d pi-Acceptor Resonance in Halogen Substituents,” Journal of Chemical Education 49, no. 1 (1972): 64. doi:10.1021/ed049p64
  • M. Khalid, S. Naz, K. Mahmood, S. Hussain, A.A.C. Braga, R. Hussain, A.H. Ragab, and S.R. Al-Mhyawi, “First Theoretical Probe for Efficient Enhancement of Optical Nonlinearity via Structural Modifications into Phenylene Based d–π–a Configured Molecules,” RSC Advances 12, no. 48 (2022): 31192–204. doi:10.1039/d2ra04844b
  • C. Coluccini, A.K. Sharma, M. Caricato, A. Sironi, E. Cariati, S. Righetto, E. Tordin, C. Botta, A. Forni, and D. Pasini, “Switching of Emissive and NLO Properties in Push–Pull Chromophores with Crescent PPV-like Structures,” Physical Chemistry Chemical Physics: PCCP 15, no. 5 (2013): 1666–74. doi:10.1039/c2cp43140h
  • M. Khalid, M.N. Arshad, S. Murtaza, I. Shafiq, M. Haroon, A.M. Asiri, S.F. de AlcântaraMorais, and A.A. Braga, “Enriching NLO Efficacy via Designing Non-Fullerene Molecules with the Modification of Acceptor Moieties into ICIF2F: An Emerging Theoretical Approach,” RSC Advances 12, no. 21 (2022): 13412–27. doi:10.1039/d2ra01127a
  • L. Xiong, L.M. Wu, and L. Chen, “A General Principle for Duv NLO Materials: Π‐Conjugated Confinement Enlarges Band Gap,” Angewandte Chemie 133, no. 47 (2021): 25267–71. doi:10.1002/ange.202110740
  • M. Haroon, M. Khalid, T. Akhtar, M.N. Tahir, M.U. Khan, S. Muhammad, A.G. Al-Sehemi, and S. Hameed, “Synthesis, Crystal Structure, Spectroscopic, Electronic and Nonlinear Optical Properties of Potent Thiazole Based Derivatives: Joint Experimental and Computational Insight,” Journal of Molecular Structure 1202 (2020): 127354. doi:10.1016/j.molstruc.2019.127354
  • W. Gao, M. Zhang, T. Liu, R. Ming, Q. An, K. Wu, D. Xie, Z. Luo, C. Zhong, F. Liu, et al. “Asymmetrical Ladder‐Type Donor‐Induced Polar Small Molecule Acceptor to Promote Fill Factors Approaching 77% for High‐Performance Nonfullerene Polymer Solar Cells,” Advanced Materials 30, no. 26 (2018): 1800052. doi:10.1002/adma.201800052
  • C. Li, H. Fu, T. Xia, and Y.J.A.E.M. Sun, “Asymmetric Nonfullerene Small Molecule Acceptors for Organic Solar Cells,” Advanced Energy Materials 9, no. 25 (2019): 1900999. doi:10.1002/aenm.201900999
  • W. Gao, H. Fu, Y. Li, F. Lin, R. Sun, Z. Wu, X. Wu, C. Zhong, J. Min, J. Luo, et al. “Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss,” Advanced Energy Materials 11, no. 4 (2021): 2003177. doi:10.1002/aenm.202003177
  • M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci and G. Petersson, “Gaussian Inc.,” Wallingford, CT, 2009, 27, 34.
  • C. Adamo and V.J.T.J. Barone, “Exchange Functionals with Improved Long-Range Behavior and Adiabatic Connection Methods without Adjustable Parameters: The m pw and m pw1pw Models,” The Journal of Chemical Physics 108, no. 2 (1998): 664–75. doi:10.1063/1.475428
  • M.P. Andersson, and P.J.T.J.P.C.A. Uvdal, “New Scale Factors for Harmonic Vibrational Frequencies Using the b3lyp Density Functional Method with the Triple-ζ Basis Set 6-311+ g (d, p),” The Journal of Physical Chemistry. A 109, no. 12 (2005): 2937–41. doi:10.1021/jp045733a
  • N. M. O’boyle, A. L. Tenderholt, and K. M. Langner, "cclib: A library for package‐independent computational chemistry algorithms." J. Comput. Chem. 29 no. 5 (2008): 839–845.
  • T. Lu and F.J.J. Chen, “Multiwfn: A Multifunctional Wavefunction Analyzer,” Journal of Computational Chemistry 33, no. 5 (2012): 580–92. doi:10.1002/jcc.22885
  • OriginLab, “OriginPro” Northampton, MA, USA 2016.
  • M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, and G.R. Hutchison, “Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform,” Journal of Cheminformatics 4, no. 1 (2012): 17.
  • G. Zhurko, and D. Zhurko, ChemCraft, version 1.6. 2009. http://www.chemcraftprog.com.
  • R. Dennington, T. Keith, and J.J.I. Millam, Gaussview 5.0, Gaussian (Wallingford, 2008), 20.
  • M. Khalid, M.U. Khan, N. Azhar, M.N. Arshad, A.M. Asiri, A.A.C. Braga, M.N.J.O. Akhtar, and Q. Electronics, “Exploration of Nonlinear Optical Enhancement and Interesting Optical Behavior with Pyrene Moiety as the Conjugated Donor and Efficient Modification in Acceptor Moieties,” Optical and Quantum Electronics 54, no. 7 (2022): 1–21. doi:10.1007/s11082-022-03782-w
  • A.J.C.P. Alparone, “Linear and Nonlinear Optical Properties of Nucleic Acid Bases,” Chemical Physics 410 (2013): 90–8. doi:10.1016/j.chemphys.2012.11.005
  • F. Weinhold, and C.R.J.C.E.R. Landis, “Practice. Natural Bond Orbitals and Extensions of Localized Bonding Concepts,” Chemistry Education Research and Practice 2, no. 2 (2001): 91–104. doi:10.1039/B1RP90011K
  • A.E. Reed, L.A. Curtiss, and F.J.C.R. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint,” Chemical Reviews 88, no. 6 (1988): 899–926. doi:10.1021/cr00088a005
  • E.D. Glendening, C.R. Landis, and F.J.W. Weinhold, “Natural Bond Orbital Methods,” WIREs Computational Molecular Science 2, no. 1 (2012): 1–42. doi:10.1002/wcms.51
  • C. James, A.A. Raj, R. Reghunathan, V. Jayakumar, and I.H.J.J.R. Joe, “Structural Conformation and Vibrational Spectroscopic Studies of 2, 6‐Bis (p‐n, n‐Dimethyl Benzylidene) Cyclohexanone Using Density Functional Theory,” Journal of Raman Spectroscopy 37, no. 12 (2006): 1381–92. doi:10.1002/jrs.1554
  • M. Szafran, A. Komasa, and E.J.J. Bartoszak-Adamska, “Crystal and Molecular Structure of 4-Carboxypiperidinium Chloride (4-Piperidinecarboxylic Acid Hydrochloride),” Journal of Molecular Structure 827, no. 1–3 (2007): 101–7. doi:10.1016/j.molstruc.2006.05.012
  • A.E. Reed, and F.J.T.J. Weinhold, “Natural Localized Molecular Orbitals,” The Journal of Chemical Physics 83, no. 4 (1985): 1736–40. doi:10.1063/1.449360
  • A.E. Reed, and F.J.T.J. Weinhold, “Natural Bond Orbital Analysis of near‐Hartree–Fock Water Dimer,” The Journal of Chemical Physics 78, no. 6 (1983): 4066–73. doi:10.1063/1.445134
  • A.J. Foster, and F.J.J. Weinhold, “Natural Hybrid Orbitals,” Journal of the American Chemical Society 102, no. 24 (1980): 7211–8. doi:10.1021/ja00544a007
  • N. Prabavathi, A. Nilufer, V.J.S.A.P.A.M. Krishnakumar, and B. Spectroscopy, “Spectroscopic (FT-IR, FT-Raman, UV and NMR) Investigation, Conformational Stability, NLO Properties, HOMO–LUMO and NBO Analysis of Hydroxyquinoline Derivatives by Density Functional Theory Calculations,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 114 (2013): 449–74. doi:10.1016/j.saa.2013.05.011
  • M.R.S.A. Janjua, M. Amin, M. Ali, B. Bashir, MU. Khan, M.A. Iqbal, W. Guan, L. Yan, ZM. Su. “A DFT study on the two‐dimensional second‐order nonlinear optical (NLO) response of terpyridine‐substituted hexamolybdates: physical insight on 2D inorganic–organic hybrid functional materials,” European Journal of Inorganic Chemistry 2012, (2012): (705-711).
  • M. Wielopolski, J.-H. Kim, Y.-S. Jung, Y.-J. Yu, K.-Y. Kay, T.W. Holcombe, S.M. Zakeeruddin, M. Grätzel, and J.-E. Moser, “Position-Dependent Extension of π-Conjugation in d-π-a Dye Sensitizers and the Impact on the Charge-Transfer Properties,” The Journal of Physical Chemistry C 117, no. 27 (2013): 13805–15. doi:10.1021/jp402411h
  • Z. Peng, and L. Yu, “Second-Order Nonlinear Optical Polyimide with High-Temperature Stability,” Macromolecules 27, no. 9 (1994): 2638–40. doi:10.1021/ma00087a039
  • M.S. Ahmad, M. Khalid, M.A. Shaheen, M.N. Tahir, M.U. Khan, A.A.C. Braga, and H.A. Shad, “Synthesis and Xrd, ft-ir Vibrational, uv–Vis, and Nonlinear Optical Exploration of Novel Tetra Substituted Imidazole Derivatives: A Synergistic Experimental-Computational Analysis,” Journal of Physics and Chemistry of Solids 115 (2018): 265–76. doi:10.1016/j.jpcs.2017.12.054
  • M. Shahid, M. Salim, M. Khalid, M.N. Tahir, M.U. Khan, and A.A.C. Braga, “Synthetic, Xrd, Non-Covalent Interactions and Solvent Dependent Nonlinear Optical Studies of Sulfadiazine-Ortho-Vanillin Schiff Base:(e)-4-((2-Hydroxy-3-Methoxy-Benzylidene) Amino)-n-(Pyrimidin-2-yl) Benzene-Sulfonamide,” Journal of Molecular Structure 1161 (2018): 66–75. doi:10.1016/j.molstruc.2018.02.043
  • M. Dal Colle, G. Distefano, D. Jones, and A. Modelli, “Spectroscopic and Theoretical Determination of the Electronic Structure of Anisole, Thioanisole, and Methoxy-and Methylthiobenzonitriles: A Contribution to the Study of Organic Conducting Polymers,” The Journal of Physical Chemistry A 104, no. 35 (2000): 8227–35. doi:10.1021/jp000392w
  • R.G. Parr, R.A. Donnelly, M. Levy, and W.E.J.T.J. Palke, “Electronegativity: The Density Functional Viewpoint,” The Journal of Chemical Physics 68, no. 8 (1978): 3801–7. doi:10.1063/1.436185
  • R.G. Parr, and R.G.J.J. Pearson, “Absolute Hardness: Companion Parameter to Absolute Electronegativity,” Journal of the American Chemical Society 105, no. 26 (1983): 7512–6. doi:10.1021/ja00364a005
  • P.K. Chattaraj, and D.R.J.C. Roy, “Update 1 of: Electrophilicity Index,” Chemical Reviews 107, no. 9 (2007): PR46–74. doi:10.1021/cr078014b
  • T.J. Koopmans, “Über Die Zuordnung Von Wellenfunktionen Und Eigenwerten zu Den Einzelnen Elektronen Eines Atoms,” Physica 1, no. 1–6 (1934): 104–13. doi:10.1016/S0031-8914(34)90011-2
  • R.G.J.P. Pearson, “Absolute Electronegativity and Hardness Correlated with Molecular Orbital Theory,” Proceedings of the National Academy of Sciences of the United States of America 83, no. 22 (1986): 8440–1. doi:10.1073/pnas.83.22.8440
  • H. Chermette, “Chemical Reactivity Indexes in Density Functional Theory,” Journal of Computational Chemistry 20, no. 1 (1999): 129–54. doi:10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO;2-A
  • K. Ayub, “Are Phosphide Nano-Cages Better than Nitride Nano-Cages? A Kinetic, Thermodynamic and Non-Linear Optical Properties Study of Alkali Metal Encapsulated x 12 y 12 Nano-Cages,” Journal of Materials Chemistry C 4, no. 46 (2016): 10919–34. doi:10.1039/C6TC04456E
  • M. Miar, A. Shiroudi, K. Pourshamsian, A.R. Oliaey, and F. Hatamjafari, “Theoretical Investigations on the Homo–Lumo Gap and Global Reactivity Descriptor Studies, Natural Bond Orbital, and Nucleus-Independent Chemical Shifts Analyses of 3-Phenylbenzo[d]Thiazole-2(3h)-Imine and Its Para-Substituted Derivatives: Solvent and Substituent Effects,” Journal of Chemical Research 45, no. 1–2 (2021): 147–58. doi:10.1177/1747519820932091
  • A. Ali, M. Khalid, K.P. Marrugo, G.M. Kamal, M. Saleem, M.U. Khan, O. Concepción, and F. Alexander, “Spectroscopic and DFT/TDDFT Insights of the Novel Phosphonate Imine Compounds,” Journal of Molecular Structure 1207 (2020): 127838. doi:10.1016/j.molstruc.2020.127838
  • M.U. Khan, M. Ibrahim, M. Khalid, M.S. Qureshi, T. Gulzar, K.M. Zia, A.A. Al-Saadi, and M.R.S.A. Janjua, “First Theoretical Probe for Efficient Enhancement of Nonlinear Optical Properties of Quinacridone Based Compounds through Various Modifications,” Chemical Physics Letters 715 (2019): 222–30. doi:10.1016/j.cplett.2018.11.051
  • J.F. Caputo, R.E. Caputo, and J.M. Brand, “Significance of the Pyrrolic Nitrogen Atom in Receptor Recognition Ofatta Texana (Buckley)(Hymenoptera: Formicidae) Trail Pheromone and Parapheromones,” Journal of Chemical Ecology 5, no. 2 (1979): 273–8. doi:10.1007/BF00988241
  • A.E. Reed, R.B. Weinstock, and F. Weinhold, “Natural Population Analysis,” The Journal of Chemical Physics 83, no. 2 (1985): 735–46. doi:10.1063/1.449486
  • L. Li, C. Wu, Z. Wang, L. Zhao, Z. Li, C. Sun, and T.J.S. Sun, “Density Functional Theory (DFT) and Natural Bond Orbital (Nbo) Study of Vibrational Spectra and Intramolecular Hydrogen Bond Interaction of l-Ornithine–l-Aspartate,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136 (2015): 338–46. doi:10.1016/j.saa.2014.08.153
  • M. Ans, J. Iqbal, K. Ayub, E. Ali, and B. Eliasson, “Spirobifluorene Based Small Molecules as an Alternative to Traditional Fullerene Acceptors for Organic Solar Cells,” Materials Science in Semiconductor Processing 94 (2019): 97–106. doi:10.1016/j.mssp.2019.01.039
  • M.N. Arshad, I. Shafiq, M. Khalid, and A.M. Asiri, “Exploration of the Intriguing Photovoltaic Behavior for Fused Indacenodithiophene-Based A–D–A Conjugated Systems: A DFT Model Study,” ACS Omega 7, no. 14 (2022): 11606–17. doi:10.1021/acsomega.1c06219
  • N. Maqsood, A. Asif, K. Ayub, J. Iqbal, A.Y. Elnaggar, G.A. Mersal, M.M. Ibrahim, and S.M.J.R.A. El-Bahy, “DFT Study of Alkali and Alkaline Earth Metal-Doped Benzocryptand with Remarkable NLO Properties,” RSC Advances 12, no. 25 (2022): 16029–45. doi:10.1039/d2ra02209e
  • M. Ans, J. Iqbal, B. Eliasson, M.J. Saif, and K. Ayub, “Opto-Electronic Properties of Non-Fullerene Fused-Undecacyclic Electron Acceptors for Organic Solar Cells,” Computational Materials Science 159 (2019): 150–9. (doi:10.1016/j.commatsci.2018.12.009
  • P. Goszczycki, K. Stadnicka, M.Z. Brela, J. Grolik, and K. Ostrowska, “Synthesis, Crystal Structures, and Optical Properties of the π–π Interacting Pyrrolo [2, 3-b] Quinoxaline Derivatives Containing 2-Thienyl Substituent,” Journal of Molecular Structure 1146 (2017): 337–46. doi:10.1016/j.molstruc.2017.06.008
  • M. Khalid, I. Shafiq, M. Zhu, M.U. Khan, Z. Shafiq, J. Iqbal, M.M. Alam, A.A.C. Braga, and M.J.J. Imran, “Efficient Tuning of Small Acceptor Chromophores with a1-π-a2-π-a1 Configuration for High Efficacy of Organic Solar Cells via End Group Manipulation,” Journal of Saudi Chemical Society 25, no. 8 (2021): 101305. doi:10.1016/j.jscs.2021.101305
  • U. Azeem, R.A. Khera, A. Naveed, M. Imran, M.A. Assiri, M. Khalid, and J.J.A. Iqbal, “Tuning of a A–A–D–A–A-Type Small Molecule with Benzodithiophene as a Central Core with Efficient Photovoltaic Properties for Organic Solar Cells,” ACS Omega 6, no. 43 (2021): 28923–35. doi:10.1021/acsomega.1c03975
  • M.Y. Mehboob, M.U. Khan, R. Hussain, R. Hussain, K. Ayub, A. Sattar, M.K. Ahmad, Z. Irshad, and M. Adnan Saira, “Designing of Benzodithiophene Core-Based Small Molecular Acceptors for Efficient Non-Fullerene Organic Solar Cells,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 244 (2021): 118873. doi:10.1016/j.saa.2020.118873
  • M. Khalid, M.U. Khan, I. Shafiq, R. Hussain, K. Mahmood, A. Hussain, R. Jawaria, A. Hussain, M. Imran, M.A. Assiri, et al. “NLO Potential Exploration for d–π–a Heterocyclic Organic Compounds by Incorporation of Various π-Linkers and Acceptor Units,” Arabian Journal of Chemistry 14, no. 8 (2021): 103295. doi:10.1016/j.arabjc.2021.103295
  • M. Khalid, M.U. Khan, R. Hussain, S. Irshad, B. Ali, A.A.C. Braga, M. Imran, and A. Hussain, “Exploration of Second and Third Order Nonlinear Optical Properties for Theoretical Framework of Organic d–π–d–π–a Type Compounds,” Optical and Quantum Electronics 53, no. 10 (2021): 1–19. doi:10.1007/s11082-021-03212-3
  • L. Kara Zaitri and S.M. Mekelleche, “Computational Study of Linear and Nonlinear Optical Properties of Substituted Thiophene Imino Dyes Using Long-Range Corrected Hybrid DFT Methods,” Molecular Physics 118, no. 4 (2020): 1618508. doi:10.1080/00268976.2019.1618508
  • P.N. Prasad, and D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (New York: Wiley, 1991).
  • V. Barone and M.J.T.J. Cossi, “Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model,” The Journal of Physical Chemistry A 102, no. 11 (1998): 1995–2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.