195
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Review on Contemporary Synthetic Recipes to Access Versatile Coumarin Heterocycles

ORCID Icon, , &
Pages 3576-3600 | Received 23 Jan 2023, Accepted 06 Jul 2023, Published online: 21 Jul 2023

References

  • S. Kecel-Gunduz, Y. Budama-Kilinc, B. Bicak, B. Gok, B. Belmen, F. Aydogan, and C. Yolacan, “New Coumarin Derivative with Potential Antioxidant Activity: Synthesis, DNA Binding and In Silico Studies (Docking, MD, ADMET),” Arabian Journal of Chemistry 16, no. 2 (2023): 104440. doi:10.1016/j.arabjc.2022.104440
  • T. Bor, S.O. Aljaloud, R. Gyawali, and S.A. Ibrahim, “Antimicrobials from Herbs, Spices, and Plants,” in Fruits, Vegetables, and Herbs: Bioactive Foods in Health Promotion, edited by R.R. Watson and V.R. Preedy (Academic Press, 2016), 551–78, Chapter 26.
  • S. Sandhu, Y. Bansal, O. Silakari, and G. Bansal, “Coumarin Hybrids as Novel Therapeutic Agents,” Bioorganic & Medicinal Chemistry 22, no. 15 (2014): 3806–14. doi:10.1016/j.bmc.2014.05.032
  • R.H. Vekariya and H.D. Patel, “Recent Advances in the Synthesis of Coumarin Derivatives via Knoevenagel Condensation: A Review,” Synthetic Communications 44, no. 19 (2014): 2756–88. doi:10.1080/00397911.2014.926374
  • P.M. Thiago, F.P. Daiana, V. Felipe, and K.E. Arthur, “Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years,” Current Topics in Medicinal Chemistry 18, no. 2 (2018). doi:10.2174/1568026618666180329115523
  • D. Srikrishna, C. Godugu, and P.K. Dubey, “A Review on Pharmacological Properties of Coumarins,” Mini Reviews in Medicinal Chemistry 18, no. 2 (2018): 113–41. doi:10.2174/1389557516666160801094919
  • K.N. Venugopala, V. Rashmi, and B. Odhav. “Review on Natural Coumarin Lead Compounds for Their Pharmacological Activity,” BioMed Research International 2013 (2013): 963248. doi:10.1155/2013/963248
  • J. Sharifi-Rad, N. Cruz-Martins, P. López-Jornet, E.P. Lopez, N. Harun, B. Yeskaliyeva, A. Beyatli, O. Sytar, S. Shaheen, F. Sharopov, et al. “Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms,” Oxidative Medicine and Cellular Longevity 2021 (2021): 6492346. doi:10.1155/2021/6492346
  • P. Wen-Wen, Z. Yu-Qing, C. Yi-Shan, Z. Si-Meng, J. Chang-Jiu, and T. Ning-Hua, “Coumarins from Roots of Clausena excavata,” Journal of Asian Natural Products Research 15, no. 3 (2013): 215–20. doi:10.1080/10286020.2012.758635
  • M.I. Hussain, Q.A. Syed, M.N.K. Khattak, B. Hafez, M.J. Reigosa, and A. El-Keblawy, “Natural Product Coumarins: Biological and Pharmacological Perspectives,” Biologia 74, no. 7 (2019): 863–88. doi:10.2478/s11756-019-00242-x
  • K. Szwaczko, “Coumarins Synthesis and Transformation via C–H Bond Activation-A Review,” Inorganics 10, no. 2 (2022): 23–35. doi:10.3390/inorganics10020023
  • R.S. Keri, S. Budagumpi, and S.B. Somappa, “Synthetic and Natural Coumarins as Potent Anticonvulsant Agents: A Review with Structure-Activity Relationship,” Journal of Clinical Pharmacy and Therapeutics 47, no. 7 (2022): 915–31. doi:10.1111/jcpt.13644
  • A. Detsi, C. Kontogiorgis, and D. Hadjipavlou-Litina, “Coumarin Derivatives: An Updated Patent Review (2015–2016),” Expert Opinion on Therapeutic Patents 27, no. 11 (2017): 1201–26. doi:10.1080/13543776.2017.1360284
  • R.S. Keri, B.S. Sasidhar, B.M. Nagaraja, and M.A. Santos, “Recent Progress in the Drug Development of Coumarin Derivatives as Potent anti-Tuberculosis Agents,” European Journal of Medicinal Chemistry 100 (2015): 257–69. doi:10.1016/j.ejmech.2015.06.017
  • E. Küpeli Akkol, Y. Genç, B. Karpuz, E. Sobarzo-Sánchez, and R. Capasso, “Comparative Effectiveness of Published Interventions for Elderly Fall Prevention: A Systematic Review and Network Meta-Analysis,” Cancers 12, no. 7 (2020): 1959–72.
  • A. Carneiro, M.J. Matos, E. Uriarte, and L. Santana, “Trending Topics on Coumarin and Its Derivatives in 2020,” Molecules 26 (2021): 501–12. doi:10.3390/molecules26020501
  • M. Molnar, M. Lončarić, and M. Kovač, “Green Chemistry Approaches to the Synthesis of Coumarin Derivatives,” Current Organic Chemistry 24, no. 1 (2020): 4–43. doi:10.2174/1385272824666200120144305
  • D. Sharma, V. Dhayalan, R. Chatterjee, M. Khatravath, and R. Dandela, “Recent Advances in the Synthesis of Coumarin and Its Derivatives by Using Aryl Propiolates,” ChemistrySelect 7, no. 4 (2022): e202104299. doi:10.1002/slct.202104299
  • S.B. Patil, “Medicinal Significance of Novel Coumarin Analogs: Recent Studies,” Results in Chemistry 4 (2022): 100313. doi:10.1016/j.rechem.2022.100313
  • Y. Pan, T. Liu, X. Wang, and J. Sun, “Research Progress of Coumarins and Their Derivatives in the Treatment of Diabetes,” Journal of Enzyme Inhibition and Medicinal Chemistry 37, no. 1 (2022): 616–28. doi:10.1080/14756366.2021.2024526
  • S.M. Basavarajaiah, G.Y. Nagesh, J.N. Basha, and B. Jaishree, “An Insight into the Advanced Synthetic Recipes to Access Ubiquitous Indole Heterocycles,” Tetrahedron Letters 85 (2021): 153458. doi:10.1016/j.tetlet.2021.153458
  • B.S. Matada and N.G. Yernale, “The Contemporary Synthetic Recipes to Access Versatile Quinoline Heterocycles,” Synthetic Communications 51 (2021): 1–18. doi:10.1080/14786419.2021.1955361
  • S.M. Basavarajaiah and G.Y. Nagesh, “Modern Encroachment in Synthetic Approaches to Access Nifty Quinoline Heterocycles,” Journal of the Indian Chemical Society 98 (2021): 100174. doi:10.1016/j.jics.2021
  • (a) S.M. Basavarajaiah and B.H.M. Mruthyunjayaswamy, “Synthesis and Antimicrobial Activity of Novel 5-substituted-N-(Substituted-2H-[1,3]Oxazino[6,5-b]Quinolin-3(4H)-yl)-3-Phenyl-1H-Indole-2-Carboxamides,” Indian Journal of Chemistry 55B, no. 12 (2016): 1511–17. http://nopr.niscair.res.in/handle/123456789/38615; (b) S.M. Basavarajaiah, J. Badiger, N.G. Yernale, N. Gupta, P. Karunakar, B.T. Sridhar, M. Javeed, K.S. Kiran, and B. Rakesh, “Exploration of Indolo[3,2c]Isoquinoline Derived Triazoles as Potential Antimicrobial and DNA Cleavage Agents: Synthesis, DFT Calculations, and Molecular Modeling Studies,” Bioorganic Chemistry 137 (2023): 106598. doi:10.1016/j.bioorg.2023.106598
  • (a) S.M. Basavarajaiah and B.H.M. Mruthyunjayaswamy, “Synthesis and Antimicrobial Activity of Some 5-Chloro-3-Phenyl-1H-Indole-2-Carbonyl Azide Derivatives,” Indian Journal of Chemistry 57B (2018): 390–99. doi:http://nopr.niscair.res.in/handle/123456789/43821; (b) B.S. Mathada, N.J. Basha, M. Javeed, P. Karunakar, A. Venkatesulu, K. Erappa, and A. Varsha, “Novel Pyrimidines as COX-2 Selective Inhibitors: Synthesis, DFT Analysis, Molecular Docking and Dynamic Simulation Studies,” Journal of Biomolecular Structure & Dynamics (2023). doi:10.1080/07391102.2023.2202248
  • S.M. Basavarajaiah and B.H.M. Miuthyunjayaswamy, “Synthesis and Anti-Microbial Activity of Some New 5-substituted-N1-[(1E)-(2-Hydroxyquinolin-3-yl)Methylene]-3-Phenyl-1H-Indole-2-Carbohydrzide Derivatives,” Heterocyclic Communications 15, no. 3 (2009): 217–24. doi:10.1515/HC.2009.15.3.217
  • B.H.M. Mruthyunjayaswamy, B.K. Shanthaveerappa, and S.M. Basavarajaiah, “Synthesis and Antimicrobial Activity of 5-Substituted-2-Phenyl-3-(o-Carboethoxyphenyl)Iminomethyl Indoles and Their Derivatives,” ChemInform 42, no. 1109-1115 (2011). doi:10.1002/chin.201111132
  • S.M. Basavarajaiah and B.S. Somappa, “An Insight into the Recent Developments in anti-Infective Potential of Indole and Associated Hybrids,” Journal of Molecular Structure 1261 (2022): 132808. doi:10.1016/j.molstruc.2022.132808
  • (a) S.M. Basavarajaiah, G.Y. Nagesh, M. Javeed, R. Bhat, S. Nethravathi, J.N. Basha, K.R. Reddy, C. Nisarga, and P. Srinivas, “Synthesis, Spectral Analysis, DFT Calculations, Biological Potential and Molecular Docking Studies of Indole Appended Pyrazolo-Triazine,” Molecular Diversity 27, no. 2 (2023): 679–93. doi:10.1007/s11030-022-10448-y; (b) R. Nalini, S.M. Basavarajaiah, G.Y. Nagesh, J. Mohammad, and K. Ramakrishna Reddy, “Synthesis, Characterization, DFT Analysis, Biological Evaluation, and Molecular Docking of Schiff Base Derived from Isatin–Isoniazid and Its Metal (II) Complexes,” Polycyclic Aromatic Compounds 27 (2022). DOI: 10.1080/10406638.2022.21389
  • (a) B.S. Mathada, “The Versatile Quinoline and Its Derivatives as anti-Cancer Agents: An Overview,” Polycyclic Aromatic Compounds (2022). doi:10.1080/10406638.2022.2089177. (b) M. Datar, R. Dhanwad, M. Javeed, N.G. Yernale, and B.S. Mathada, “Synthesis, Structural Investigations, DFT Calculations, and Molecular Docking Studies of Novel 2-(Substituted-Aryloxymethyl)-5-(Pyridin-4-yl)-1, 3, 4-Oxadiazoles: Highly Potential InhA and Cytochrome c Peroxidase Inhibitors,” Polycyclic Aromatic Compounds (2023). doi:10.1080/10406638.2023.2174997
  • (a) N.G. Yernale, M. Javeed, J.N. Basha, K. Prashantha, R. Nithin, P.R. Thanushree, S. Vivekananda, S.S. Gowda, H.B. Punarva, and S.M. Basavarajaiah, “Design, Spectral Analysis, DFT Calculations, Antimicrobial, anti-TB, Antioxidant Activity and Molecular Docking Studies of Novel Bis-Benzoxazines with Cytochrome c Peroxidase,” Journal of Molecular Structure 1262 (2022): 132977. doi:10.1016/j.molstruc.2022 (b) D.L. Roopa, K. Shyamsunder, P. Karunakar, J.R. Rajabathar, A. Venkatesulu, M. Karnan, K.S. Kiran, M. Selvaraj, and S.M. Basavarajaiah, “Naphtho[2,1-b]Furan Derived Triazole-Pyrimidines as Highly Potential InhA and Cytochrome c Peroxidase Inhibitors: Synthesis, DFT Calculations, Drug-Likeness Profile, Molecular Docking and Dynamic Studies,” Journal of Molecular Structure 1287 (2023): 135685. doi:10.1016/j.molstruc.2023.135685
  • J. Daru and A. Stirling, “Mechanism of the Pechmann Reaction: A Theoretical Study,” The Journal of Organic Chemistry 76, no. 21 (2011): 8749–55. doi:10.1021/jo201439u
  • J.J. Li, Name Reactions (Springer, 2021). ISBN: 978-3-030-50865-4.
  • A.R. Katritzky and C.W. Rees, Comprehensive Heterocyclic Chemistry (Elsevier Science Ltd., 1984). ISBN: 978-0-08-096519-2.
  • L.L.S. Silva, W. Abdelraheem, M.N. Nadagouda, A.M. Rocco, D.D. Dionysiou, F.V. Fonseca, and C.P. Borges, “Novel Microwave-Driven Synthesis of Hydrophilic Polyvinylidene Fluoride/Polyacrylic Acid (PVDF/PAA) Membranes and Decoration with nano Zero-Valent-Iron (nZVI) for Water Treatment Applications,” Journal of Membrane Science 620 (2021): 118817. doi:10.1016/j.memsci.2020.118817
  • G. Zhong, C. Wang, R. Wang, W. Ping, S. Xu, H. Qiao, M. Cui, X. Wang, Y. Zhou, D.J. Kline, et al. “Rapid, High-Temperature Microwave Soldering toward a High-Performance Cathode/Electrolyte Interface,” Energy Storage Materials 30 (2020): 385–91. doi:10.1016/j.ensm.2020.05.015
  • P. Priecel and J.A. Lopez-Sanchez, “Advantages and Limitations of Microwave Reactors: From Chemical Synthesis to the Catalytic Valorization of Biobased Chemicals,” ACS Sustainable Chemistry & Engineering 7, no. 1 (2019): 3–21. doi:10.1021/acssuschemeng.8b03286
  • V. Vahabi and F. Hatamjafari, “Microwave Assisted Convenient One-Pot Synthesis of Coumarin Derivatives via Pechmann Condensation Catalyzed by FeF3 under Solvent-Free Conditions and Antimicrobial Activities of the Products,” Molecules 19, no. 9 (2014): 13093–103. doi:10.3390/molecules190913093
  • S. Fiorito, S. Genovese, V.A. Taddeo, and F. Epifano, “Microwave-Assisted Synthesis of Coumarin-3-Carboxylic Acids under Ytterbium Triflate Catalysis,” Tetrahedron Letters 56, no. 19 (2015): 2434–36. doi:10.1016/j.tetlet.2015.03.079
  • D. Konrádová, H. Kozubíková, and K. Doležal, “Microwave-Assisted Synthesis of Phenylpropanoids and Coumarins: Total Synthesis of Osthol,” European Journal of Organic Chemistry 35 (2017): 5204–13. doi:10.1002/ejoc.201701021
  • D. Ashok, K. Ramakrishna, N. Nagaraju, M.R. Reddy, R. Dharavath, and M. Sarasija, “Microwave-Assisted Synthesis of Substituted 2-(2H-Chromen-3-yl)-5-Phenyl-1H-Imidazole Based Coumarin Derivatives and Their Antimicrobial Activity,” Russian Journal of General Chemistry 91, no. 4 (2021): 711–16. doi:10.1134/S1070363221040216
  • M.T. Gabr, N.S. El-Gohary, E.R. El-Bendary, M.M. El-Kerdawy, and N. Ni, “Microwave-Assisted Synthesis and Antitumor Evaluation of a New Series of Thiazolylcoumarin Derivatives,” EXCLI Journal 16 (2017): 1114.
  • R. Dharavath, N. Nagaraju, M.R. Reddy, D. Ashok, M. Sarasija, M. Vijjulatha, T. Vani, K. Jyothi, and G. Prashanthi, “Microwave-Assisted Synthesis, Biological Evaluation and Molecular Docking Studies of New Coumarin-Based 1,2,3-Triazoles,” RSC Advances 10, no. 20 (2020): 11615–23. doi:10.1039/D0RA01052A
  • N. Kumar, A. Udayabhanu, A.A. Alghamdi, K.M. Mahadevan, and G. Nagaraju, “Solvent Free and Green Synthesis of Efficient Solvochromism Based Coumarin Moieties for Quick Visualization of LFPs and OLEDs Applications,” Journal of Molecular Structure 1223 (2021): 129208. doi:10.1016/j.molstruc.2020.129208
  • R.F. Martínez, G. Cravotto, and P. Cintas, “Organic Sonochemistry: A Chemist’s Timely Perspective on Mechanisms and Reactivity,” The Journal of Organic Chemistry 86, no. 20 (2021): 13833–56. doi:10.1021/acs.joc.1c00805
  • S. Vyas and Y.-P. Ting, “A Review of the Application of Ultrasound in Bioleaching and Insights from Sonication in (Bio)Chemical Processes,” Resources 7, no. 1 (2017): 3. doi:10.3390/resources7010003
  • N.G. Khaligh, “Ultrasound-Assisted One-Pot Synthesis of Substituted Coumarins Catalyzed by Poly(4-Vinylpyridinium) Hydrogen Sulfate as an Efficient and Reusable Solid Acid Catalyst,” Ultrasonics Sonochemistry 20, no. 4 (2013): 1062–8. doi:10.1016/j.ultsonch.2013.01.001
  • S. Kanchithalaivan, R.V. Sumesh, and R.R. Kumar, “Ultrasound-Assisted Sequential Multicomponent Strategy for the Combinatorial Synthesis of Novel Coumarin Hybrids,” ACS Combinatorial Science 16, no. 10 (2014): 566–72. doi:10.1021/co500092b
  • L.S.S. Pinto and M.V.N. de Souza, “Sonochemistry as a General Procedure for the Synthesis of Coumarins-, Including Multigram Synthesis,” Synthesis 49, no. 12 (2017): 2677–82. doi:10.1055/s-0036-1590201
  • V. Neeraj, S. Satya Parkash, K. Surender, and Y. Aruna, “Green Synthesis of 3-(1-Naphthyl), 4-Methyl-3-(1-Naphthyl) Coumarins and 3-Phenylcoumarins Using Dual-Frequency Ultrasonication,” Green Processing and Synthesis 9 (2020): 399–404. doi:10.1515/gps-2020-0042
  • S. Sripathi and K. Logeeswari, “Synthesis of 3-Aryl Coumarin Derivatives Using Ultrasound,” International Journal of Organic Chemistry 3, no. 1 (2013): 42–7. doi:10.4236/ijoc.2013.31004
  • J.S. Ghomi and Z. Akbarzadeh, “Ultrasonic Accelerated Knoevenagel Condensation by Magnetically Recoverable MgFe2O4 Nanocatalyst: A Rapid and Green Synthesis of Coumarins under Solvent-Free Conditions,” Ultrasonics Sonochemistry 40, no. Pt A (2018): 78–83. doi:10.1016/j.ultsonch.2017.06.022
  • J.L. Du, L.J. Li, and D.H. Zhang, “Ultrasound Promoted Synthesis of 3-Carboxycoumarins in Aqueous Media,” E-Journal of Chemistry 3, no. 1 (2006): 1–4. doi:10.1155/2006/278568
  • Z. Akbarzadeh and J. Safaei-Ghomi, “Ultrasound Assisted Eco-Friendly Synthesis of 3-Cinnamoyl Coumarins Using N,N’-(1,2-Phenylene)Bis(2-Aminobenzamide) Dichloro Cobalt Immobilized on Mesoporous Al-SBA-15 as a New and Recyclable Catalyst,” Green Chemistry Letters and Reviews 13, no. 2 (2020): 141–54. doi:10.1080/17518253.2020.1737250
  • I.R. Siddiqui, A. Srivastava, A. Srivastava, S. Shamim,  Shireen, and M.A. Waseem, “Ionic Liquid Promoted One Pot Approach for the Synthesis of Pyrido[1,2-c][1,3,5]Thiadiazin-4-Ones and Thiazolo[3,2-c][1,3,5]Thiadiazin-4-Ones in Water,” Arabian Journal of Chemistry 11, no. 2 (2018): 256–64. doi:10.1016/j.arabjc.2014.07.015
  • J. Durand, E. Teuma, and M. Gómez, “Ionic Liquids as a Medium for Enantioselective Catalysis,” Comptes Rendus Chimie 10, no. 3 (2007): 152–77. doi:10.1016/j.crci.2006.11.010
  • J.M. Nibin, D.B. Yadav, T. Sandeep, and A.B. Vasily, “Synthesis of Coumarins Linked with 1,2,3-Triazoles under Microwave Irradiation and Evaluation of Their Antimicrobial and Antioxidant Activity,” Journal of the Mexican Chemical Society 64 (2020): 564–9. doi:10.29356/jmcs.v64i1.1116
  • M.K. Potdar, M.S. Rasalkar, S.S. Mohile, and M.M. Salunkhe, “Convenient and Efficient Protocols for Coumarin Synthesis via Pechmann Condensation in Neutral Ionic Liquids,” Journal of Molecular Catalysis A: Chemical 235, no. 1–2 (2005): 249–52. doi:10.1016/j.molcata.2005.04.007
  • D.J. Katkar and S.B. Sonawale, “Synthesis of 3-Phenyl Coumarins by Using Ionic Liquid as Green Solvent,” International Journal of Scientific Research in Science and Technology 4 (2018): 924–7.
  • S. Das, A. Majee, and A. Hajra, “A Convenient Synthesis of Coumarins Using Reusable Ionic Liquid as Catalyst,” Green Chemistry Letters and Reviews 4, no. 4 (2011): 349–53. doi:10.1080/17518253.2011.572296
  • F. Keshavarzipour and H. Tavakol, “The Synthesis of Coumarin Derivatives Using Choline Chloride/Zinc Chloride as a Deep Eutectic Solvent,” Journal of the Iranian Chemical Society 13, no. 1 (2016): 149–53. doi:10.1007/s13738-015-0722-9
  • M. Loncaric, M. Susjenka, and M. Molnar, “Green Chemistry Approaches to the Synthesis of Coumarin Derivatives,” Current Organic Synthesis 17, no. 2 (2020): 98–108. doi:10.2174/1570179417666200116155704
  • U. Maliha, J. Arshad, B. Amina, T. Javaria, H.K. Iqra, N. Sadia, F. Sameeta, and S. Misbah, “Green Synthesis of Coumarin Derivatives Using Brønsted Acidic Pyridinium Based Ionic Liquid [MBSPy][HSO4] to Control an Opportunistic Human and a Devastating Plant Pathogenic Fungus Macrophomina phaseolina,” RSC Advances 12 (2022): 23963–72. doi:10.1039/D2RA03774B
  • V. Pedro, S. Francisco, and T. Emilia, “Synthesis of (3-Methoxycarbonyl)Coumarin in an Ionic Liquid: An Advanced Undergraduate Project for Green Chemistry,” Journal of Chemical Education 94 (2017): 505–9. doi:10.1021/acs.jchemed.6b00148
  • S.P. Neofotistos, A. Tzani, and A. Detsi, “Ionic Liquids: Advances and Applications in Phase Transfer Catalysis,” Catalysts 13, no. 3 (2023): 474. doi:10.3390/catal13030474
  • D.C.M. Albanese, F. Foschi, and M. Penso, “Sustainable Oxidations under Phase-Transfer Catalysis Conditions,” Organic Process Research & Development 20, no. 2 (2016): 129–39. doi:10.1021/acs.oprd.5b00385
  • X. Mi, C. Wang, M. Huang, Y. Wu, and Y. Wu, “Preparation of 3-Acyl-4-Arylcoumarins via Metal-Free Tandem Oxidative Acylation/Cyclization between Alkynoates with Aldehydes,” The Journal of Organic Chemistry 80, no. 1 (2015): 148–55. doi:10.1021/jo502220b
  • M. Kobielusz, P. Mikrut, and W. Macyk, “Photocatalytic Synthesis of Chemicals,” in Advances in Inorganic Chemistry, edited by R. van Eldik and W. Macyk (Academic Press, 2018), Vol. 72, 93–144. ISSN 0898-8838, ISBN 9780128150771, doi:10.1016/bs.adioch.2018.05.002
  • R.H. Bartz, L.H. Dapper, J.C. Kazmierczak, R.F. Schumacher, G. Perin, S. Thurow, F. Penteado, and E.J. Lenardão, “Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches,” Catalysts 13, no. 3 (2023): 520. doi:10.3390/catal13030520
  • J. Hou, A. Ee, W. Feng, J.H. Xu, Y. Zhao, and J. Wu, “Visible-Light-Driven Alkyne Hydro-/Carbocarboxylation Using CO2 via Iridium/Cobalt Dual Catalysis for Divergent Heterocycle Synthesis,” Journal of the American Chemical Society 140, no. 15 (2018): 5257–63. doi:10.1021/jacs.8b01561
  • L. Chen, L. Wu, W. Duan, T. Wang, L. Li, K. Zhang, J. Zhu, Z. Peng, and F. Xiong, “Photoredox-Catalyzed Cascade Radical Cyclization of Ester Arylpropiolates with CF3SO2Cl to Construct 3-Trifluoromethyl Coumarin Derivatives,” The Journal of Organic Chemistry 83, no. 15 (2018): 8607–14. doi:10.1021/acs.joc.8b00581
  • Z. Chen, N.W. Liu, M. Bolte, H. Ren, and G. Manolikakes, “Visible-Light Mediated 3-Component Synthesis of Sulfonylated Coumarins from Sulfur Dioxide,” Green Chemistry 20, no. 13 (2018): 3059–70. doi:10.1039/C8GC00838H
  • A.P. Dicks, “A Review of Aqueous Organic Reactions for the Undergraduate Teaching Laboratory,” Green Chemistry Letters and Reviews 2, no. 1 (2009): 9–21. doi:10.1080/17518250902820182
  • C.-J. Li, “Organic Reactions in Aqueous Media with a Focus on Carbon − Carbon Bond Formations: A Decade Update,” Chemical Reviews 105, no. 8 (2005): 3095–165. doi:10.1021/cr030009u
  • G. Brahmachari, “Room Temperature One-Pot Green Synthesis of Coumarin-3-Carboxylic Acids in Water: A Practical Method for the Large-Scale Synthesis,” ACS Sustainable Chemistry & Engineering 3, no. 9 (2015): 2350–2358. doi:10.1021/acssuschemeng.5b00826
  • J.A. Gladysz, “Reaction: Toward Organic-Solvent-Free Synthetic Chemistry,” Chemistry 4, no. 9 (2018): 2007–8. doi:10.1016/j.chempr.2018.08.026
  • A.P. Dicks, “Solvent-Free Reactivity in the Undergraduate Organic Laboratory,” Green Chemistry Letters and Reviews 2, no. 2 (2009): 87–100. doi:10.1080/17518250903164549
  • K.C. Prousis, N. Avlonitis, G.A. Heropoulos, and T. Calogeropoulou, “FeCl3-Catalysed Ultrasonic-Assisted, Solvent-Free Synthesis of 4-Substituted Coumarins. A Useful Complement to the Pechmann Reaction,” Ultrasonics Sonochemistry 21, no. 3 (2014): 937–42. doi:10.1016/j.ultsonch.2013.10.018
  • A. Amoozadeh, M. Ahmadzadeh, and E. Kolvari, “Easy Access to Coumarin Derivatives Using Alumina Sulfuric Acid as an Efficient and Reusable Catalyst under Solvent-Free Conditions,” Journal of Chemistry 2013 (2013): 1–6. doi:10.1155/2013/767825
  • Z. Abbasi, S. Rezayati, M. Bagheri, and R. Hajinasiri, “Preparation of a Novel, Efficient, and Recyclable Magnetic Catalyst, γ-Fe2O3@HAp-Ag Nanoparticles, and a Solvent- and Halogen-Free Protocol for the Synthesis of Coumarin Derivatives,” Chinese Chemical Letters 28, no. 1 (2017): 75–82. doi:10.1016/j.cclet.2016.06.022
  • J.K. Narwal, R.K. Malik, and N. Kumari, “An Efficient Solvent Free Synthesis of Coumarins via Solid Phase Pechmann Reaction,” Chemical Science Transactions 4 (2015): 1092–94. doi:10.7598/cst2015.1123
  • K. Kantharaju and S.Y. Khatavi, “Mechanochemical Synthesis of Coumarin-3-Carboxylic Acid Using Water Extract of Papaya,” International Journal of Engineering Technology Science and Research 4 (2017): 510–13.
  • A.D. Sharapov, R.F. Fatykhov, I.A. Khalymbadzha, V.V. Sharutin, S. Santra, G.V. Zyryanov, O.N. Chupakhin, and B.C. Ranu, “Mechanochemical Synthesis of Coumarins via Pechmann Condensation under Solvent-Free Conditions: An Easy Access to Coumarins and Annulated Pyrano[2,3-f] and [3,2-f]Indoles,” Green Chemistry 24, no. 6 (2022): 2429–37. doi:10.1039/D1GC04564D
  • L.A. Taib, M. Keshavarz, and A. Parhami, “Solvent-Free Synthesis of 4-Substituted Coumarins Catalyzed by Novel Brønsted Acidic Ionic Liquids with Perchlorate Anion: A Convenient and Practical Complementary Method for Pechmann Condensation,” Reaction Kinetics, Mechanisms and Catalysis 133, no. 1 (2021): 383–403. doi:10.1007/s11144-021-01941-w
  • V.S. Tangeti, K.R. Babu, G.S. Prasad, T. Ramu, and C.V. Rao, “One-Pot Access to Diverse Functionalized Pyran Annulated Heterocyclic Systems Using SCMNPs@BPy-SO3H as a Novel Magnetic Nanocatalyst,” Journal of the Iranian Chemical Society 15, no. 4 (2018): 823–9. doi:10.1007/s13738-017-1281-z
  • A. Maleki, P. Ravaghi, H. Movahed, and M. Aghaie, Proceedings of the 20th International Electronic Conference on Synthetic Organic Chemistry, Basel, Switzerland, MDPI, November 1–30, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.