91
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Recent Advances on Multicomponent Synthesis of Pyranopyrazoles Using Magnetically Recoverable Nanocatalysts

, , &
Received 25 Apr 2023, Accepted 31 Aug 2023, Published online: 13 Sep 2023

References

  • A. D. Zahra Hoseini, “Another Successful Application of Newly Prepared GO-SiC3-NH3-H2PW as Highly Efficient Nanocatalyst for Fast Synthesis of Tetrahydrobenzo[b]Pyrans,” Adv. J. Chem. A 4 (2021): 68–77. doi:10.22034/ajca.2021.259593.1228
  • Hridoydip, S. M. Ranjan Dasgupta, and P. Ghosh, “Onion Extract Catalyzed Novel Synthesis of Pyrazine,” Asian J. Green Chem 5 (2021): 235–247. doi:10.22034/ajgc.2021.261484.1289
  • M. Khalil Arjmandi, and R. Asharein, “Case Study of Femoral and Radial Angiography in Cardiovascular Patients,” Chem. Methodol 5 (2021): 1–10. doi:10.22034/chemm.2021.118221
  • C. Zhao, C. F. Cheung, and P. Xu, “High-Efficiency Sub-Microscale Uncertainty Measurement Method Using Pattern Recognition,” ISA Transactions 101 (2020): 503–514. doi:10.1016/j.isatra.2020.01.038
  • A. S. M, and L. S. َAhamed, “Synthesis of New Heterocyclic Derivatives from 2-Furyl Methanethiol and Study Their Applications,” Eurasian Chem. Commun 3 (2021): 452–460. doi:10.22034/ecc.2021.285563.1176
  • G. G. M, B. S. Hote, and D. B. Muley, “Simple and Efficient Synthesis of 2-Styryl-4H-Chromone-4-One Derivatives by Modification of the Baker-Venkataraman Method,” J. Appl. Organomet. Chem 1 (2021): 9–16. doi:10.22034/jaoc.2021.275519.1001
  • Y. F. Mustafa, “Classical Approaches and Their Creative Advances in the Synthesis of Coumarins: A Brief Review,” J. Med. Chem. Sci 4 (2021): 612–625. doi:10.26655/JMCHEMSCI.2021.6.10
  • L. Kong, H. Sun, Y. Nie, Y. Yan, R. Wang, Q. Ding, S. Zhang, H. Yu, and G. Luan, “Luminescent Properties and Charge Compensator Effects of SrMo0.5W0.5O4:Eu3+ for White Light LEDs,” Molecules 28, no. 6 (2023): 2681. doi:10.3390/molecules28062681
  • Y. Liu, B. Fan, B. Xu, and B. Yang, “Ambient-Stable Polyethyleneimine Functionalized Ti3C2T Nanohybrid Corrosion Inhibitor for Copper in Alkaline Electrolyte,” Materials Letters. 337 (2023): 133979. doi:10.1016/j.matlet.2023.133979
  • S. A, E. T, and H. Jain, “Morpholine and Thiomorpholine: A Privileged Scaffold Possessing Diverse Bioactivity Profile,” J. Chem. Rev 4 (2021): 247–272. doi:10.22034/jcr.2021.295839.1123
  • C. Spiteri, D. J. Ritson, A. Awaad, and J. E. Moses, “Silver Mediated One-Step Synthesis of Oxazoles from α-Haloketones,” Journal of Saudi Chemical Society 15, no. 4 (2011): 375–378. doi:10.1016/j.jscs.2011.06.021
  • A. Monga, S. Bagchi, R. K. Soni, and A. Sharma, “Synthesis of Benzothiazoles via Photooxidative Decarboxylation of α‐Keto Acids,” Advanced Synthesis & Catalysis 362, no. 11 (2020): 2232–2237. doi:10.1002/adsc.201901617
  • Q. Wan, Z. Zhang, Z.-W. Hou, and L. Wang, “Recent Advances in the Electrochemical Generation of 1,3-Dicarbonyl Radicals from C–H Bonds,” Organic Chemistry Frontiers 10, no. 11 (2023): 2830–2848. doi:10.1039/D3QO00408B
  • M. Ghobadi, P. Pourmoghaddam Qhazvini, M. Eslami, and M. Kazemi, “Magnetic Nanoparticles Supported Bromine Sources: Catalysis in Organic Synthesis,” Synthetic Communications. 51, no. 3 (2021): 325–350. doi:10.1080/00397911.2020.1829646
  • Z. N. Sakineh Alizadeh, “Amphetamine, Methamphetamine, Morphine @ AuNPs Kit Based on PARAFAC,” Adv. J. Chem. A 5 (2022): 253–262. doi:10.22034/ajca.2022.345350.1318
  • N. M. S. Elnazeer, H. M. Elageed, Abuelgasim, A. A. Mohammed, and Guohua Gao, “One-Pot Conversion of Arylamines, DEC and Ethylene Oxide to Oxazolidinones Catalyzed by Ionic Liquids,” Asian J. Green Chem 5 (2021): 125–134. doi:10.22034/ajgc.2021.114556
  • N. Kaur, “Ionic Liquid Assisted Synthesis of Six-Membered Oxygen Heterocycles,” SN Applied Sciences 1, no. 8 (2019): 932. doi:10.1007/s42452-019-0861-1
  • N. Kaur, M. Devi, Y. Verma, P. Grewal, P. Bhardwaj, N. Ahlawat, and N. K. Jangid, “Applications of Metal and Non-Metal Catalysts for the Synthesis of Oxygen Containing Five-Membered Polyheterocylces: A Mini Review,” SN Applied Sciences 1, no. 9 (2019): 963. doi:10.1007/s42452-019-1007-1
  • M. S. T. R. Khanivar, and A. Zare, “Nano-N,N,N’,N’-tetramethyl-N-(Silica-n-Propyl)-N’-Sulfo-Ethane-1,2-Diaminium Chloride as an Efficient and Recyclable Catalyst for the Green Synthesis of 3,4‐Dihydropyrimidin‐2‐(1H)‐ Ones/Thiones,” Asian J. Green Chem 5 (2021): 1–11. doi:10.22034/ajgc.2020.102862
  • P. G. Rabindranath Singha, D. Brahman, and B. Sinha, “A Greener and Sustainable Approach towards the Synthesis of Propargylamine Using Multicomponent A3-Coupling Reaction,” Asian J. Green Chem 5 (2021): 91–110. doi:10.22034/ajgc.2021.109230
  • N. Kaur, “Ionic Liquid: An Efficient and Recyclable Medium for the Synthesis of Fused Six-Membered Oxygen Heterocycles,” Synthetic Communications. 49, no. 13 (2019): 1679–1707. doi:10.1080/00397911.2019.1568149
  • N. Kaur, “Benign Approaches for the Microwave-Assisted Synthesis of Five-Membered 1,2- N, N -Heterocycles,” Journal of Heterocyclic Chemistry 52, no. 4 (2015): 953–973. doi:10.1002/jhet.2129
  • M. Ameri Akhtiar Abadi, M. Masrournia, and M. Abedi, “Simultaneous Extraction and Preconcentration of Benzene, Toluene, Ethylbenzene and Xylenes from Aqueous Solutions Using Magnetite–Graphene Oxide Composites,” Chem. Methodol 5 (2021): 11–20. doi:10.22034/chemm.2021.118260
  • N. Jabbari, and R. Ghasemi, “Investigating Methylene Blue Dye Adsorption Isotherms Using Silver Nano Particles Provided by Aqueous Extract of Tragopogon Buphthalmoides,” Chem. Methodol 5 (2021): 21–29. doi:10.22034/chemm.2021.118446
  • F. Kamali, and Shirini, “Effective and Convenient Synthesis of 2-Amino-4H-Chromenes Promoted by Melamine as a Recyclable Organocatalyst,” Eurasian Chem. Commun 4 (2021): 278–290. doi:10.22034/ecc.2021.272326.1136
  • N. Kaur, and D. Kishore, “Microwave-Assisted Synthesis of Six-Membered O-Heterocycles,” Synthetic Communications 44, no. 21 (2014): 3047–3081. doi:10.1080/00397911.2013.796383
  • N. Kaur, “Ruthenium Catalysis in Six-Membered O -Heterocycles Synthesis,” Synthetic Communications. 48, no. 13 (2018): 1551–1587. doi:10.1080/00397911.2018.1457698
  • N. Kaur, “Photochemical Reactions: Synthesis of Six-Membered N-Heterocycles, Curr,” Organic Syntheses. 14 (2017): 972-998. doi:10.2174/1570179414666170201150701
  • N. Kaur, “Ionic Liquid Promoted Eco-Friendly and Efficient Synthesis of Six-Membered Npolyheterocycles,” Current Organic Synthesis 15, no. 8 (2018): 1124–1146. doi:10.2174/1570179415666180903102542
  • N. Kaur, P. Bhardwaj, M. Devi, Y. Verma, and P. Grewal, “Gold-Catalyzed C–O Bond Forming Reactions for the Synthesis of Six-Membered O-Heterocycles,” SN Applied Sciences 1, no. 8 (2019): 903. doi:10.1007/s42452-019-0920-7
  • B. Baghernejad, “Application of Ninhydrin as an Efficient and Novel Catalyst for the Preparation of 2-Amino-4H-Pyran Derivatives,” J. Appl. Organomet. Chem 1 (2021): 17–21. doi:10.22034/jaoc.2021.277050.1007
  • J. G.-Y. Navid Keikhosravi, E. Dehghan-Ghahfarokhi, S. Abdollahi, M Piramoon, and R. Rezaeinasab, “Solvent-Free Synthesis and Antimicrobial Activity of Dihydroquinazolinone Derivatives,” J. Med. Chem. Sci 5 (2022): 308–314. doi:10.26655/JMCHEMSCI.2022.3.3
  • J.U.A, M.S.S, O.R.A.I, H, Ibrahim. “Recent Advances in Isolation and Antimicrobial Efficacy of Selected Strychnos Species: A Mini Review,” J. Chem. Rev 4 (2022): 15–24. doi:10.22034/jcr.2022.314381.1129
  • X. Sun, Z. Chen, Z. Sun, S. Wu, K. Guo, Z. Dong, and Y. Peng, “High-Efficiency Utilization of Waste Shield Slurry: A Geopolymeric Flocculation-Filtration-Solidification Method,” Construction and Building Materials. 387 (2023): 131569. doi:10.1016/j.conbuildmat.2023.131569
  • M. Kazemi, and M. Mohammadi, “Magnetically Recoverable Catalysts: Catalysis in Synthesis of Polyhydroquinolines,” Applied Organometallic Chemistry 34, no. 3 (2020): e5400. doi:10.1002/aoc.5400
  • H. Khabazzadeh, E. T. Kermani, D. Afzali, A. Amiri, and A. Jalaladini, “Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives Using Cs2.5H0.5PW12O40 as a Heterogeneous and Reusable Catalyst in Molten Salt Media,” Arabian Journal of Chemistry 5, no. 2 (2012): 167–172. doi:10.1016/j.arabjc.2010.08.009
  • Z. Liu, B. Fan, J. Zhao, B. Yang, and X. Zheng, “Benzothiazole Derivatives-Based Supramolecular Assemblies as Efficient Corrosion Inhibitors for Copper in Artificial Seawater: Formation, Interfacial Release and Protective Mechanisms,” Corrosion Science. 212 (2023): 110957. doi:10.1016/j.corsci.2022.110957
  • S. C. Jadhvar, H. M. Kasraliker, S. V. Goswami, A. V. Chakrawar, and S. R. Bhusare, “One-Pot Synthesis and Evaluation of Anticancer Activity of Polyhydroquinoline Derivatives Catalyzed by [Msim]Cl,” Research on Chemical Intermediates 43, no. 12 (2017): 7211–7221. doi:10.1007/s11164-017-3069-2
  • F. K. Behbahani, and M. Homafar, “Synthesis of Polyhydroquinoline Derivatives through the Hantzsch Four Component Using Iron (III) Phosphate as a Catalyst, Synth,” React. Inorganic, Met. Nano-Metal Chem 42, no. 2 (2012): 291–295. doi:10.1080/15533174.2011.610020
  • M. Asif, “Quorum Sensing Inhibitors: Current Progress of the Natural Antimicrobials,” J. Chem. Rev 3 (2021): 20–39. doi:10.22034/jcr.2021.118274
  • B. R, M. M, M. M. R.G, m K. Murthy, R. V, and H. B. Bollikolla, “Strategies to Synthesis of 1,3,4-Oxadiazole Derivatives and Their Biological Activities: A Mini Review,” J. Chem. Rev 4 (2022): 255–271. doi:10.22034/jcr.2022.341351.1170
  • M Ghobadi, “Based on Copper Ferrite Nanoparticles (CuFe2O4 NPs): Catalysis in Synthesis of Heterocycles,” J. Synth. Chem 1 (2022): 84–96. doi:10.22034/jsc.2022.155234
  • Z. Huang, S. Cao, J. Yu, X. Tang, Y. Guo, Y. Guo, L. Wang, S. Dai, and W. Zhan, “Total Oxidation of Light Alkane over Phosphate-Modified Pt/CeO2 Catalysts,” Environmental Science & Technology 56, no. 13 (2022): 9661–9671. doi:10.1021/acs.est.2c00135
  • X. Feng, L. Xia, Z. Jiang, M. Tian, S. Zhang, and C. He, “Dramatically Promoted Toluene Destruction over Mn@Na-Al2O3@Al Monolithic Catalysts by Ce Incorporation: Oxygen Vacancy Construction and Reaction Mechanism,” Fuel 326 (2022): 125051. doi:10.1016/j.fuel.2022.125051
  • C.-H. Ou, Y.-M. Pan, and H.-T. Tang, “Electrochemically Promoted N-Heterocyclic Carbene Polymer-Catalyzed Cycloaddition of Aldehyde with Isocyanide Acetate,” Science China Chemistry 65, no. 10 (2022): 1873–1878. doi:10.1007/s11426-022-1360-3
  • A. R. T, J. D. H, R. G.-O. A, and O. R. A. Lyun, Synthesis, “Reactions and Pharmacological Applications of Chalcones and Their Derivatives- A Mini Review,” J. Chem. Rev 4 (2022): 100–119. doi:10.22034/jcr.2022.326696.1143
  • Q. Wan, C.-Y. Huang, Z.-W. Hou, H. Jiang, and L. Wang, “Organophotoelectrochemical Silylation Cyclization for the Synthesis of Silylated 3-CF 3 -2-Oxindoles,” Organic Chemistry Frontiers 10, no. 14 (2023): 3585–3590. doi:10.1039/D3QO00728F
  • X. Zhao, Y. Zhang, Z. Hou, and L. Wang, “Chloride‐Promoted Photoelectrochemical C–H Silylation of Heteroarenes,” Chinese J. Chem (2023). doi:10.1002/cjoc.202300288
  • H. E. Hashem, “A Short Review on the Synthesis of 1,2,4-Triazine Derivatives as Bioactive Compounds,” Mini-Reviews in Organic Chemistry 18, no. 8 (2021): 1127–1133. doi:10.2174/1570193X18666210122154419
  • Y. Wu, Y. Zheng, X. Wang, P. Tang, W. Guo, H. Ma, A. Zhang, D. Li, Y. Xie, C.-Z. Wang, et al. “Ginseng-Containing Sijunzi Decoction Ameliorates Ulcerative Colitis by Orchestrating Gut Homeostasis in Microbial Modulation and Intestinal Barrier Integrity,” The American Journal of Chinese Medicine 51, no. 3 (2023): 677–699. doi:10.1142/S0192415X23500325
  • S. Singh, M. K. Mandal, A. Masih, A. Saha, S. K. Ghosh, H. R. Bhat, and U. P. Singh, “1,3,5‐Triazine: A Versatile Pharmacophore with Diverse Biological Activities,” Archiv Der Pharmazie 354, no. 6 (2021): e2000363. doi:10.1002/ardp.202000363
  • S. Payra, A. Saha, and S. Banerjee, “Recent Advances on Fe-Based Magnetic Nanoparticles in Organic Transformations,” Journal of Nanoscience and Nanotechnology 17, no. 7 (2017): 4432–4448. doi:10.1166/jnn.2017.14195
  • A. Manafi Khajeh Pasha, S. Raoufi, M. Ghobadi, and M. Kazemi, “Biologically Active Tetrazole Scaffolds: Catalysis in Magnetic Nanocomposites,” Synthetic Communications. 50, no. 24 (2020): 3685–3716. doi:10.1080/00397911.2020.1811872
  • H. Lin, L. Wu, and M. Kazemi, “A Decade Updates (2011–2020): Reduction of Sulfoxides to Sulfides,” Synthetic Communications. 51 (2021): 1609–1635. doi:10.1080/00397911.2021.1894578
  • M. Ghobadi, P. Pourmoghaddam Qhazvini, and M. Kazemi, “Catalytic Application of Zinc (II) Bromide (ZnBr 2) in Organic Synthesis, Synth,” Commun 50 (2020): 3717–3738. doi:10.1080/00397911.2020.1811873
  • L. Chen, A. Noory Fajer, Z. Yessimbekov, M. Kazemi, and M. Mohammadi, “Diaryl Sulfides Synthesis: Copper Catalysts in C–S Bond Formation,” Journal of Sulfur Chemistry. 40, no. 4 (2019): 451–468. doi:10.1080/17415993.2019.1596268
  • W. Zhao, H. Suo, S. Wang, L. Ma, L. Wang, Q. Wang, and Z. Zhang, “Mg Gas Infiltration for the Fabrication of MgB2 Pellets Using Nanosized and Microsized B Powders,” Journal of the European Ceramic Society. 42, no. 15 (2022): 7036–7048. doi:10.1016/j.jeurceramsoc.2022.08.029
  • C. Zhao, M. Xi, J. Huo, C. He, and L. Fu, “Computational Design of BC3N2 Based Single Atom Catalyst for Dramatic Activation of Inert CO2 and CH4 Gasses into CH3COOH with Ultralow CH4 Dissociation Barrier,” Chinese Chemical Letters 34, no. 1 (2023): 107213. doi:10.1016/j.cclet.2022.02.018
  • Y. Huang, and W. Zhang, “Magnetic Nanoparticle-Supported Organocatalysis,” gps 2, no. 6 (2013): 603–609. doi:10.1515/gps-2013-0076
  • M. Kazemi, “Based on CuFe2O4 MNPs: Magnetically Recoverable Nanocatalysts in Coupling Reactions,” Synthetic Communications. 50, no. 14 (2020): 2114–2131. doi:10.1080/00397911.2020.1728335
  • L. S. Ardakani, A. Arabmarkadeh, and M. Kazemi, “Multicomponent Synthesis of Highly Functionalized Piperidines,” Synthetic Communications. 51 (2021): 856–879. doi:10.1080/00397911.2020.1861301
  • J. Zhang, L. Wang, A. Zhong, G. Huang, F. Wu, D. Li, M. Teng, J. Wang, and D. Han, “Deep Red PhOLED from Dimeric Salophen Platinum(II) Complexes,” Dyes and Pigments 162 (2019): 590–598. doi:10.1016/j.dyepig.2018.10.053
  • P. Rai, and D. Gupta, “Magnetic Nanoparticles as Green Catalysts in Organic Synthesis-a Review,” Synthetic Communications. 51, no. 20 (2021): 3059–3083. doi:10.1080/00397911.2021.1968910
  • A. Arabmarkadeh, R. Javahershenas, and M. Kazemi, “Nanomaterials: Catalysis in Synthesis of Highly Substituted Heterocycles,” Synthetic Communications 51 (2021): 880–903. doi:10.1080/00397911.2020.1864646
  • M. Kargar Razi, R. Javahershenas, M. Adelzadeh, M. Ghobadi, and M. Kazemi, “Synthetic Routes to Rhodanine Scaffolds,” Synthetic Communications 50, no. 24 (2020): 3739–3756. doi:10.1080/00397911.2020.1812658
  • H. Yu, J. Zhu, R. Qiao, N. Zhao, M. Zhao, and L. Kong, “Facile Preparation and Controllable Absorption of a Composite Based on PMo 12/Ag Nanoparticles: Photodegradation Activity and Mechanism,” ChemistrySelect 7, no. 2 (2022): e202103668. doi:10.1002/slct.202103668
  • X.-M. Wang, P. Zhang, Q. Xu, C.-Q. Guo, D.-B. Zhang, C.-J. Lu, and R.-R. Liu, “Enantioselective Synthesis of Nitrogen–Nitrogen Biaryl Atropisomers via Copper-Catalyzed Friedel–Crafts Alkylation Reaction,” Journal of the American Chemical Society 143, no. 37 (2021): 15005–15010. doi:10.1021/jacs.1c07741
  • B. Zeynizadeh, E. Gholamiyan, and M. Gilanizadeh, “Magnetically Recoverable CuFe2O4 Nanoparticles as an Efficient Heterogeneous Catalyst for Green Formylation of Alcohols,” Current Chemistry Letters 7 (2018): 121–130. doi:10.5267/j.ccl.2018.11.001
  • Z. Chen, S. M. Nasr, M. Kazemi, and M. Mohammadi, “A Mini-Review: Achievements in the Thiolysis of Epoxides,” Mini-Reviews in Organic Chemistry 17, no. 4 (2020): 352–362. doi:10.2174/1570193X16666190723111746
  • L. Shiri, A. Ghorbani-Choghamarani, and M. Kazemi, “S–S Bond Formation: Nanocatalysts in the Oxidative Coupling of Thiols,” Australian Journal of Chemistry 70, no. 1 (2017): 9. doi:10.1071/CH16318
  • L. Kong, Y. Liu, L. Dong, L. Zhang, L. Qiao, W. Wang, and H. You, “Enhanced Red Luminescence in CaAl12O19:Mn4+ via Doping Ga3+ for Plant Growth Lighting,” Dalton Transactions 49, no. 6 (2020): 1947–1954. doi:10.1039/C9DT04086B
  • M. Zhou, T. Tang, D. Qin, H. Cheng, X. Wang, J. Chen, T. Wågberg, and G. Hu, “Hematite Nanoparticle Decorated MIL-100 for the Highly Selective and Sensitive Electrochemical Detection of Trace-Level Paraquat in Milk and Honey,” Sensors and Actuators B: Chemical 376 (2023): 132931. doi:10.1016/j.snb.2022.132931
  • D. D. Stueber, J. Villanova, I. Aponte, Z. Xiao, and V. L. Colvin, “Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends,” Pharmaceutics 13, no. 7 (2021): 943. doi:10.3390/pharmaceutics13070943
  • M. Kazemi, M. Ghobadi, and A. Mirzaie, “Cobalt Ferrite Nanoparticles (CoFe 2 O 4 MNPs) as Catalyst and Support: Magnetically Recoverable Nanocatalysts in Organic Synthesis,” Nanotechnology Reviews 7, no. 1 (2018): 43–68. doi:10.1515/ntrev-2017-0138
  • M. Ghobadi, M. Kargar Razi, R. Javahershenas, and M. Kazemi, “Nanomagnetic Reusable Catalysts in Organic Synthesis,” Synthetic Communications. 51, no. 5 (2021): 647–669. doi:10.1080/00397911.2020.1819328
  • M. Aqeel Ashraf, Z. Liu, Y. Yang, C. Li, and D. Zhang, “Magnetic Nanomaterials Catalyzed Synthesis of Tetrazoles,” Synthetic Communications. 50, no. 17 (2020): 2629–2646. doi:10.1080/00397911.2020.1783685
  • M. Kazemi, “Based on Magnetic Nanoparticles: Gold Reusable Nanomagnetic Catalysts in Organic Synthesis,” Synthetic Communications. 50, no. 14 (2020): 2079–2094. doi:10.1080/00397911.2020.1725058
  • M. Abedi, M. Hosseini, A. Arabmarkadeh, and M. Kazemi, “Magnetic Nanocatalysts in A3-Coupling Reactions, Synth,” Communications 51 (2021): 835-855. doi:10.1080/00397911.2020.1858320
  • R. Dalpozzo, “Magnetic Nanoparticle Supports for Asymmetric Catalysts,” Green Chemistry 17, no. 7 (2015): 3671–3686. doi:10.1039/C5GC00386E
  • M. Kazemi, “Reusable Nanomagnetic Catalysts in Synthesis of Imidazole Scaffolds,” Synthetic Communications. 50, no. 14 (2020): 2095–2113. doi:10.1080/00397911.2020.1728334
  • M. Kazemi, and M. Ghobadi, “Magnetically Recoverable Nano-Catalysts in Sulfoxidation Reactions,” Nanotechnology Reviews 6, no. 6 (2017): 549–571. doi:10.1515/ntrev-2016-0113
  • N. Zhang, X. Li, Y. Guo, Y. Guo, Q. Dai, L. Wang, and W. Zhan, “Crystal Engineering of TiO2 for Enhanced Catalytic Oxidation of 1,2-Dichloroethane on a Pt/TiO2 Catalyst,” Environmental Science & Technology 57, no. 17 (2023): 7086–7096. doi:10.1021/acs.est.3c00165
  • L. M. Rossi, N. J. S. Costa, F. P. Silva, and R. Wojcieszak, “Magnetic Nanomaterials in Catalysis: Advanced Catalysts for Magnetic Separation and beyond,” Green Chemistry 16, no. 6 (2014): 2906. doi:10.1039/c4gc00164h
  • L. Shiri, A. Ghorbani-Choghamarani, and M. Kazemi, “Sulfides Synthesis: Nanocatalysts in C-S Cross-Coupling Reactions,” Australian Journal of Chemistry 69, no. 6 (2016): 585. doi:10.1071/CH15528
  • M. Kazemi, “Magnetically Reusable Nanocatalysts in Biginelli Synthesis of Dihydropyrimidinones (DHPMs),” Synthetic Communications. 50, no. 10 (2020): 1409–1445. doi:10.1080/00397911.2020.1720740
  • M. Kazemi, “Based on MFe 2 O 4 (M = Co, Cu, and Ni): Magnetically Recoverable Nanocatalysts in Synthesis of Heterocyclic Structural Scaffolds,” Synthetic Communications 50 (2020): 1899–1935. doi:10.1080/00397911.2020.1723109
  • D. Chen, and T. Savidge, “Comment on “Extreme Electric Fields Power Catalysis in the Active Site of Ketosteroid Isomerase,” Science (New York, N.Y.) 349, no. 6251 (2015): 936–936. doi:10.1126/science.aab0095
  • Z. Wang, L. Dai, J. Yao, T. Guo, D. Hrynsphan, S. Tatsiana, and J. Chen, “Enhanced Adsorption and Reduction Performance of Nitrate by Fe–Pd–Fe3O4 Embedded Multi-Walled Carbon Nanotubes,” Chemosphere 281 (2021): 130718. doi:10.1016/j.chemosphere.2021.130718
  • L. S. Mosstafa Kazemi, “Ionic Liquid Immobilized on Magnetic Nanoparticles: A Nice and Efficient Catalytic Strategy in Synthesis of Heterocycles,” J. Synth. Chem 1 (2022): 1–7. doi:10.22034/jsc.2022.149201
  • F. Sadeghi, R. Shiri, and M. Naderi, “Ionic Liquid Supported on Fe3O4 Nanoparticles as a Catalyst for Synthesis of Pyrimido[5,4-e][1,3]Oxazine Derivatives,” J. Synth. Chem 2 (2023): 44–53. doi:10.22034/jsc.2023.174313
  • M. A. E. A. A. A. El-Remaily, “Synthesis of Pyranopyrazoles Using Magnetic Fe3O4 Nanoparticles as Efficient and Reusable Catalyst,” Tetrahedron 70, no. 18 (2014): 2971–2975. doi:10.1016/j.tet.2014.03.024
  • K. Pradhan, S. Paul, and A. R. Das, “Magnetically Retrievable Nano Crystalline CuFe2O4 Catalyzed Multi-Component Reaction: A Facile and Efficient Synthesis of Functionalized Dihydropyrano[2,3-c]Pyrazole, Pyrano[3,2-c]Coumarin and 4H-Chromene Derivatives in Aqueous Media,” Catalysis Science & Technology 4, no. 3 (2014): 822. doi:10.1039/c3cy00901g
  • E. Soleimani, M. Jafarzadeh, P. Norouzi, J. Dayou, C. S. Sipaut, R. F. Mansa, and P. Saei, “Synthesis of Pyranopyrazoles Using Magnetically Recyclable Heterogeneous Iron Oxide-Silica Core-Shell Nanocatalyst,” Journal of the Chinese Chemical Society 62, no. 12 (2015): 1155–1162. doi:10.1002/jccs.201400387
  • M. Dadaei, and H. Naeimi, “An Environment-Friendly Method for Green Synthesis of Pyranopyrazole Derivatives Catalyzed by CoCuFe2O4 Magnetic Nanocrystals under Solvent-Free Conditions,” Polycyclic Aromatic Compounds 42, no. 1 (2022): 204–217. doi:10.1080/10406638.2020.1725897
  • M. Arghan, N. Koukabi, and E. Kolvari, “Polyvinyl Amine as a Modified and Grafted Shell for Fe3O4 Nanoparticles: As a Strong Solid Base Catalyst for the Synthesis of Various Dihydropyrano[2,3-c]Pyrazole Derivatives and the Knoevenagel Condensation,” Journal of Saudi Chemical Society 23, no. 2 (2019): 150–161. doi:10.1016/j.jscs.2018.05.008
  • F. Mir, N. Hazeri, M. T. Maghsoodlou, and M. Lashkari, “Synthesis of Pyrazolopyranopyrimidine and Dihydropyrano[2,3-c]Pyrazole Derivatives Using Fe3O4@THAM-Piperazine as a Superparamagnetic Nanocatalyst under Green Condition,” Polycycl. Aromat. Compd 43 (2023): 5375–5390. doi:10.1080/10406638.2022.2101488
  • M. Dadaei, and H. Naeimi, “Nano Cobalt Ferrite Encapsulated‐Silica Particles Bearing Melamine as an Easily Recyclable Catalyst for the Synthesis of Dihydropyrano[2,3‐ c] Pyrazoles under Green Conditions,” Applied Organometallic Chemistry 35, no. 10 (2021): e6365. doi:10.1002/aoc.6365
  • Z. Hajizadeh, and A. Maleki, “Poly(Ethylene Imine)-Modified Magnetic Halloysite Nanotubes: A Novel, Efficient and Recyclable Catalyst for the Synthesis of Dihydropyrano[2,3-c]Pyrazole Derivatives,” Molecular Catalysis 460 (2018): 87–93. doi:10.1016/j.mcat.2018.09.018
  • D. Azarifar, and Y. Abbasi, “Sulfonic Acid–Functionalized Magnetic Fe3-x TixO4 Nanoparticles: New Recyclable Heterogeneous Catalyst for One-Pot Synthesis of Tetrahydrobenzo[b]Pyrans and Dihydropyrano[2,3-c]Pyrazole Derivatives, Synth,” Synthetic Communications 46, no. 9 (2016): 745–758. doi:10.1080/00397911.2016.1171360
  • F. Moeinpour, and A. Khojastehnezhad, “Polyphosphoric Acid Supported on Ni0.5Zn0.5Fe2O4 Nanoparticles as a Magnetically-Recoverable Green Catalyst for the Synthesis of Pyranopyrazoles,” Arabian Journal of Chemistry 10 (2017): S3468–S3474. doi:10.1016/j.arabjc.2014.02.009
  • D. Azarifar, M. Tadayoni, and M. Ghaemi, “γ-Fe2O3@Cu3 Al-LDH-TUD as a New Amphoteric, Highly Efficient and Recyclable Heterogeneous Catalyst for the Solvent-Free Synthesis of Dihydropyrano[3,2- c] Pyrazoles and Dihydropyrano[3,2- c] Chromens,” Applied Organometallic Chemistry 32, no. 4 (2018): e4293. doi:10.1002/aoc.4293
  • H. Faroughi Niya, N. Hazeri, and M. T. Maghsoodlou, “Synthesis and Characterization of Fe3O4 @THAM‐SO3H as a Highly Reusable Nanocatalyst and Its Application for the Synthesis of Dihydropyrano[2,3‐ c] Pyrazole Derivatives,” Applied Organometallic Chemistry 34, no. 4 (2020): e5472. doi:10.1002/aoc.5472
  • S. Karami, M. G. Dekamin, E. Valiey, and P. Shakib, “DABA MNPs: A New and Efficient Magnetic Bifunctional Nanocatalyst for the Green Synthesis of Biologically Active Pyrano[2,3- c] Pyrazole and Benzylpyrazolyl Coumarin Derivatives,” New Journal of Chemistry 44, no. 33 (2020): 13952–13961. doi:10.1039/D0NJ02666B
  • T. Akbarpour, J. Yousefi Seyf, A. Khazaei, and N. Sarmasti, “Synthesis of Pyrano [2,3-c] Pyrazole Derivatives Using a Novel Ionic-Liquid Based Nano-Magnetic Catalyst (Fe3O4@SiO2@(CH2)3 NH@CC@Imidazole@SO3 H+Cl−,” Polycyclic Aromatic Compounds 42, no. 6 (2022): 3844–3864. doi:10.1080/10406638.2021.1873152
  • J. E. Gholtash, and M. Farahi, “Tungstic Acid-Functionalized Fe3O4@TiO2 : preparation, Characterization and Its Application for the Synthesis of Pyrano[2,3- c] Pyrazole Derivatives as a Reusable Magnetic Nanocatalyst,” RSC Advances 8, no. 71 (2018): 40962–40967. doi:10.1039/C8RA06886K
  • R. Ghorbani‐Vaghei, and V. Izadkhah, “Preparation and Characterization of Hexamethylenetetramine‐Functionalized Magnetic Nanoparticles and Their Application as Novel Catalyst for the Synthesis of Pyranopyrazole Derivatives,” Applied Organometallic Chemistry 32, no. 2 (2018): e4025. doi:10.1002/aoc.4025
  • A. Javid, A. Khojastehnezhad, H. Eshghi, F. Moeinpour, F. F. Bamoharram, and J. Ebrahimi, “Synthesis of Pyranopyrazoles Using a Magnetically Separable Modified Preyssler Heteropoly Acid,” Organic Preparations and Procedures International. 48, no. 5 (2016): 377–384. doi:10.1080/00304948.2016.1206424
  • N. Rahman, G. S. Nongthombam, J. W. S. Rani, R. Nongrum, G. K. Kharmawlong, and R. Nongkhlaw, “An Environment-Friendly Magnetic Organo-Nanomaterial as a Potent Catalyst in Synthesis of Pyranopyrazole Derivatives,” Current Organocatalysis 5, no. 2 (2018): 150–161. doi:10.2174/2213337205666180731095751
  • M. Kamalzare, M. R. Ahghari, M. Bayat, and A. Maleki, “Fe3O4@Chitosan-Tannic Acid Bionanocomposite as a Novel Nanocatalyst for the Synthesis of Pyranopyrazoles,” Scientific Reports 11, no. 1 (2021): 20021. doi:10.1038/s41598-021-99121-2
  • M. Beiranvand, and D. Habibi, “Design, Preparation and Application of the Semicarbazide-Pyridoyl-Sulfonic Acid-Based Nanocatalyst for the Synthesis of Pyranopyrazoles,” Scientific Reports 12, no. 1 (2022): 14347. doi:10.1038/s41598-022-18651-5
  • F. Moeinpour, and A. Khojastehnezhad, “Cesium Carbonate Supported on Hydroxyapatite Coated Ni0.5Zn0.5Fe2O4 Magnetic Nanoparticles as an Efficient and Green Catalyst for the Synthesis of Pyrano[2,3-c]Pyrazoles,” Chinese Chemical Letters 26, no. 5 (2015): 575–579. doi:10.1016/j.cclet.2015.01.033
  • P. G. Kargar, G. Bagherzade, and H. Eshghi, “Novel Biocompatible Core/Shell Fe3O4@NFC@Co(II) as a New Catalyst in a Multicomponent Reaction: An Efficient and Sustainable Methodology and Novel Reusable Material for One-Pot Synthesis of 4 H-Pyran and Pyranopyrazole in Aqueous Media,” RSC Advances 10, no. 61 (2020): 37086–37097. doi:10.1039/D0RA04698A
  • S. A. Hamrahian, S. Salehzadeh, J. Rakhtshah, F. Haji Babaei, and N. Karami, “Preparation, Characterization and Catalytic Application of Molybdenum Schiff-Base Complex Immobilized on Silica-Coated Fe3O4 as a Reusable Catalyst for the Synthesis of Pyranopyrazole Derivatives,” Applied Organometallic Chemistry 33, no. 2 (2019): e4723. doi:10.1002/aoc.4723
  • P. Moradi, and M. Hajjami, “Magnetization of Biochar Nanoparticles as a Novel Support for Fabrication of Organo Nickel as a Selective, Reusable and Magnetic Nanocatalyst in Organic Reactions,” New Journal of Chemistry 45, no. 6 (2021): 2981–2994. doi:10.1039/D0NJ04990E
  • Y. Chen, Z. Zhang, W. Jiang, M. Zhang, and Y. Li, “RuIII@CMC/Fe3O4 Hybrid: An Efficient, Magnetic, Retrievable, Self-Organized Nanocatalyst for Green Synthesis of Pyranopyrazole and Polyhydroquinoline Derivatives,” Molecular Diversity 23, no. 2 (2019): 421–442. doi:10.1007/s11030-018-9887-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.