78
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Metal- and Hazardous Reagent-Free Transamidation Process: the NH2OH⦁HCl Promoted N-Formylation and N-Acylation Reaction under Solvent-Less Conditions

, , , , , , & show all
Received 09 Feb 2023, Accepted 02 Sep 2023, Published online: 14 Sep 2023

References

  • (1a) L. Wang, N. Liu, and B. Dai, “Metal-free site-selective C–N bond-forming reaction of polyhalogenated pyridines and pyrimidines,” RSC Advances 5, no. 100 (2015): 82097. (1b) M.L. Deb, C. Das, B. Deka, P.J. Saikia, and P.K. Baruah, “Hydrogen-Bond-Catalyzed Arylation of 3-(Aminoalkyl)indoles via C–N Bond Cleavage with Thiourea under Microwave Irradiation: An Approach to 3-(α,α-Diarylmethyl)indoles,” Synlett 27, no. 20 (2016): 2788. (1c) J. Zhang, M. Jiang, C.S. Wang, K. Guo, Q. -X. Li, C. Ma, S.-F. Ni, G.Q. Chen, Y. Zong, H. Lu, L.-W. Xu, and X. Shao, “Transition-metal free C–N bond formation from alkyl iodides and diazonium salts via halogen-atom transfer,” Nature Communications 13, no. 1 (2022): 7961.(1d) N. Al-jaar, M.M. Ibrahim, E.A. Younes, M. Al-Noaimi, K.A. Abu-Safieh, B.F. Ali, K. Kant, N. Al-Zaqri, R. Sengupta, and C.C. Malakar, “Strategies towards the Synthesis of 2-Ketoaryl Azole Derivatives using C-H Functionalization Approach and 1,2-Bis-Nucleophile Precursors,” Asian Journal of Organic Chemistry 12, no. 4 (2023): e202300036. (1e) R. Gujjarappa, N. Vodnala, and C.C. Malakar, “Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008,” Advanced Synthesis and Catalysis 362, no. 22 (2020): 4896. (1f) M. Nasrollahzadeh, N. Motahharifar, A.M. Aghbolagh, M. Sajjadi, M. shokouhimehr, and R.S. Varma, “Recent advances in N-formylation of amines and nitroarenes using efficient (nano)catalysts in eco-friendly media,” Green Chemistry 21, no. 19 (2019): 5144.
  • (a) B. L. Bray, “Large-Scale Manufacture of Peptide Therapeutics by Chemical Synthesis,” Nature Reviews. Drug Discovery 2, no. 7 (2003): 587–593. doi:10.1038/nrd1133 (b) R. C. Larock, Comprehensive Organic Transformations, 2nd ed. (New York: Wiley-VCH, 1999)
  • (a) A.M. Larson, J. Polson, R.J. Fontana, T.J. Davern, E. Lalani, L.S. Hynan, J.S. Reisch, F.V. Schiødt, G. Ostapowicz, A.O. Shakil, and W.M. Lee, “Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study” Hepatology 42, no. 6 (2005): 1364. (b) K.M. Tramposch, X. Nair, G.J. Gendimenico, G.B. Tetrault, S. Chen, I. Kiss, G. Whiting, and R.J. Bonney, “The pharmacology of a novel topical retinoid, BMY 30123: comparison with tretinoin,” Journal of Pharmacy and Pharmacology 44, no. 5 (1992): 379-86. (c) F.R. Batchelor, F.P. Doyle, J.H.C. Nayler, and G.N. Rolinson, “Synthesis of Penicillin: 6-Aminopenicillanic Acid in Penicillin Fermentations,” Nature 183, no. 4656 (1959): 257.
  • A. R. Kniss, “Long-Term Trends in the Intensity and Relative Toxicity of Herbicide Use,” Nature Communications 8, no. 1 (2017): 14865. doi:10.1038/ncomms14865
  • M. K. Ghosh, and K. L. Mittal, Polyimides Fundamentals and Applications (New York: Marcel Dekker, 1996).
  • (a) M. Arefi1, M. K. Miraki, R. Mostafalu, M. Satari, and A. Heydari, “Citric Acid Stabilized on the Surface of Magnetic Nanoparticles as an Efficient and Recyclable Catalyst for Transamidation of Carboxamides, Phthalimide, Urea and Thiourea with Amines under Neat Conditions,” Journal of the Iranian Chemical Society 16, no. 2 (2019): 393–400. (b) M. Arefi, and A. Heydari, “Transamidation of Primary Carboxamides, Phthalimide, Urea and Thiourea with Amines Using Fe(OH)3@Fe3O4 Magnetic Nanoparticles as an Efficient Recyclable Catalyst,” RSC Advances 6 (2016): 24684–24689. doi:10.1007/s13738-018-1523-8
  • (a) M. Tamura, T. Tonomura, K. Shimizu, and A. Satsuma, “Transamidation of Amides with Amines under Solvent-Free Conditions Using a CeO2 Catalyst,” Green Chemistry 14, no. 3 (2012): 717–24. (b) S. Li, T. Rajeshkumar, J. Liu, L. Maron, and X. Zhou, “La-Catalyzed Decarbonylation of Formamides and Its Applications,” Organic Letters 25, no. 1 (2022) 163–68. (c) X. Chen, Y. Yang, H. Wang, and Z. Mo, “Cooperative Bond Activation and Catalytic CO2 Unctionalization with a Geometrically Constrained Bis(Silylene)-Stabilized Borylene,” Journal of the American Chemical Society 145, no. 12 (2023) 7011–7020. (d) D. K. Yoo, and S. H. Jhung, “N-Formylation of Amines with CO2 by Using Zr-Based Metal-Organic Frameworks: Contribution of Defect Sites of MOFs to N- Formylation,” Applied Catalysis A: General 659 (2023): 119170. doi:10.1039/c2gc16316k
  • D.-W. Gu, and X.-X. Guo, “Synthesis of N-Arylcarboxamides by the Efficient Transamidation of DMF and Derivatives with Anilines,” Tetrahedron 71, no. 48 (2015): 9117–9122. doi:10.1016/j.tet.2015.10.008
  • R. B. Sonawane, N. K. Rasal, and S. V. Jagtap, “Nickel-(II)-Catalyzed N-Formylation and N-Acylation of Amines,” Organic Letters 19, no. 8 (2017): 2078–2081. doi:10.1021/acs.orglett.7b00660
  • (a) R.B. Sonawane, N.K. Rasal, D.S. Bhange, and S.V. Jagtap, “Copper-(II) Catalyzed N-Formylation and N-Acylation of Aromatic, Aliphatic, and Heterocyclic Amines and a Preventive Study in the C-N Cross Coupling of Amines with Aryl Halides,” ChemCatChem 10, no. 17 (2018): 3907. (b) M. Zhang, S. Imm, S. Bähn, L. Neubert, H. Neumann, and M. Beller, “Efficient Copper(II)‐Catalyzed Transamidation of Non‐Activated Primary Carboxamides and Ureas with Amines,” Angewandte Chemie International Edition 51, no. 16 (2012): 3905. (c) D.-Z. Lin, and J.-M. Huang, “Electrochemical N-Formylation of Amines via Decarboxylation of Glyoxylic Acid,” Organic Letters 20, no. 7 (2018): 2112. (d) V. Kumar, S. Dhawan, R. Bala, S.B. Mohite, P. Singh, and R. Karpoormath, “Cu-catalysed transamidation of unactivated aliphatic amides,” Organic and Biomolecular Chemistry 20, no. 34 (2022): 6931. (e) Z.-M. Zheng, N. Chen, M.-S. Dai, and S.-L. Zhang, “Base‐Controlled Chemoselective Reaction of High‐Valent Cu(III)-CF3 Compounds with Anilines: Access to Formamides or Hydrazines,” Advanced Synthesis and Catalysis 365, no. 8 (2023): 1262.
  • A. P. Marjani, S. A. Hosseini, Z. Shokri, and N. Maleki, “Co3O4 Nanoparticles Prepared by Oxidative Precipitation Method: An Efficient and Reusable Heterogeneous Catalyst for N-Formylation of Amines,” Research on Chemical Intermediates 43, no. 1 (2017): 413–422. doi:10.1007/s11164-016-2631-7
  • M. Nirmala, G. Prakash, P. Viswanathamurthi, and J. G. Malecki, “An Attractive Route to Transamidation Catalysis: Facile Synthesis of New o-aryloxide-N-Heterocyclic Carbene Ruthenium(II) Complexes Containing Trans Triphenylphosphine Donors,” Journal of Molecular Catalysis A: Chemical 403 (2015): 15–26. doi:10.1016/j.molcata.2015.03.015
  • N. Shah, E. Gravel, D. V. Jawale, E. Doris, and I. N. N. Namboothiri, “Carbon Nanotube–Gold Nanohybrid Catalyzed N-Formylation of Amines by Using Aqueous Formaldehyde,” Chemcatchem. 6, no. 8 (2014): 2201–2205. doi:10.1002/cctc.201402225
  • O. Saidi, M. J. Bamford, A. J. Blacker, J. Lynch, S. P. Marsden, P. Plucinski, R. J. Watson, and J. M. J. Williams, “Iridium-Catalyzed Formylation of Amines with Paraformaldehyde,” Tetrahedron Letters 51, no. 44 (2010): 5804–5806. doi:10.1016/j.tetlet.2010.08.106
  • M. Hosseini-Sarvari, and H. Sharghi, “ZnO as a New Catalyst for N-Formylation of Amines under Solvent-Free Conditions,” The Journal of Organic Chemistry 71, no. 17 (2006): 6652–6654. doi:10.1021/jo060847z
  • (a) R. Fu, Y. Yang, J. Zhang, J. Shao, X. Xia, Y. Ma, and R. Yuan, “Direct Oxidative Amidation of Aldehydes with Amines Catalyzed by Heteropolyanion-Based Ionic Liquids under Solvent-Free Conditions via a Dual-Catalysis Process,” Organic & Biomolecular Chemistry 14, no. 5 (2016): e202200997, 1784–1793. (b) T. A. Gokhale, S. C. Gulhane, and B. M. Bhanage, “Highly Selective Catalyst‐Free Oxidative Synthesis of N ‐Formamides from C2 ‐ and C3 ‐Feedstocks,” European Journal of Organic Chemistry 26, no. 1 (2022) doi:10.1039/C5OB02376A
  • (a) Z. Tan, Z. Li, Y. Ma, J. Qin, and C. Yu, “Potassium tert-Butoxide Prompted Highly Efficient Transamidation and Its Coordination-Radical Mechanism,” European Journal of Organic Chemistry 2019, no. 28 (2019): 4538–4545. doi:10.1002/ejoc.201900666 (b) P. Nad, K. Gupta, A. Sen, A. Mukherjee, “Mechanistic Understanding of KOtBu‐Mediated Direct Amidation of Esters with Anilines: An Experimental Study and Computational Approach,” Chemistry - an Asian Journal 17, no. 21 (2022) e202200800.
  • T. B. Nguyen, L. Ermolenko, M.-E T. H. Dau, A. Al-Mourabit, “Hydrogen Bond Organocatalysis of Benzotriazole in Transamidation of Carboxamides with Amines,” Heterocycles 88, no. 1 (2014): 403–416. doi:10.3987/COM-13-S(S)41
  • R. Vanjari, B. K. Allam, K. N. Singh, “Hypervalent Iodine Catalyzed Transamidation of Carboxamides with Amines,” RSC Adv. 3, no. 6 (2013): 1691–1694. doi:10.1039/C2RA22459C
  • S. N. Rao, D. C. Mohan, S. Adimurthy, “Chitosan: An Efficient Recyclable Catalyst for Transamidation of Carboxamides with Amines under Neat Conditions,” Green Chemistry 16, no. 9 (2014): 4122–4126. doi:10.1039/C4GC01402B
  • J. Yin, J. Zhang, C. Cai, G.-J. Deng, H. Gong, “Catalyst-Free Transamidation of Aromatic Amines with Formamide Derivatives and Tertiary Amides with Aliphatic Amines,” Organic Letters 21, no. 2 (2019): 387–392. doi:10.1021/acs.orglett.8b03542
  • (a) J. Chen, J. Jia, Z. Guo, J. Zhang, and M. Xie, “NH4I-Promoted N-Acylation of Amines via the Transamidation of DMF and DMA under Metal-Free Conditions,” Tetrahedron Letters 60, no. 21 (2019): 1426–1429. (b) C. L. Allen, B. N. Atkinson, J. M. J. Williams, “Transamidation of Primary Amides with Amines Using Hydroxylamine Hydrochloride as an Inorganic Catalyst,” Angewandte Chemie International Edition 51, no. 6 (2012) 1383–1386. doi:10.1016/j.tetlet.2019.04.040
  • S. N. Rao, D. C. Mohan, S. Adimurthy, “L-Proline: An Efficient Catalyst for Transamidation of Carboxamides with Amines,” Organic Letters 15, no. 7 (2013): 1496–1499. doi:10.1021/ol4002625
  • D. G. Ramírez-Vázquez, O. Viñas-Bravo, R. Martínez-Pascual, L. Pérez-Picaso, K. V. Castro-Cerritos, “DMF·HCl as a Versatile and Straightforward N- and O-Formylating Agent,” Synthetic Communications 51, no. 4 (2021): 585–592. doi:10.1080/00397911.2020.1844901
  • A. D. Becke, “Density‐Functional Thermochemistry III. The Role of Exact Exchange,” The Journal of Chemical Physics 98, no. 7 (1993): 5648–5652. doi:10.1063/1.464913
  • C. Lee, W. Yang, R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–789. doi:10.1103/physrevb.37.785
  • S. Ghanta, “Pyrene Radical Cation and the Diffuse Interstellar Band at 4430 Å: A Theoretical Survey,” Journal of Molecular Structure 1191 (2019): 32–42. doi:10.1016/j.molstruc.2019.04.067
  • R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, “Self‐Consistent Molecular Orbital Methods. XX. A Basis Set for Correlated Wave Functions,” The Journal of Chemical Physics 72, no. 1 (1980): 650–654. doi:10.1063/1.438955
  • M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, et al. Gaussian16 Revision C.01 (Wallingford, CT: Gaussian Inc., 2016).
  • S. Ghanta, “Photophysics and Photostability of Pyrimidine Molecule and Its Radical Cation: A Theoretical Study,” Molecular Physics 114, no. 20 (2016): 2958–2973. doi:10.1080/00268976.2016.1211767
  • S. Ghanta, “Theoretically Predicted Fox-7 Based New High Energy Density Molecules,” Journal of Molecular Structure 1118 (2016): 28–33. doi:10.1016/j.molstruc.2016.03.094
  • (a) M. S. Manna, C. K. Das, and S. Ghanta, “Design of C-H-N-O Based New Hetero-Cyclic High Energy Density Molecules: A Theoretical Survey,” Structural Chemistry 32, no. 3 (2021): 1095–1104. (b) C. K. Patel, R. Gujjarappa, K. Kant, S. Ghanta, V. Singh, A. K. Kabi, N. Al-Zaqri, C. C. Malakar, “Copper-Catalyzed C(sp3)-Functionalization and Annulation of 2-Bromoaryl Oximes with Active Methylene Compounds towards Synthesis of Isoquinoline N-Oxides,” Advanced Synthesis and Catalysis 365 (2023). doi:10.1002/adsc.202300217
  • S. Ghanta, “Design of Derivatives of FOX-7-Based New Four-Member Heterocyclic Insensitive High Energy Density Molecules: A Theoretical Prospectives,” Journal of Molecular Modeling 29, no. 1 (2023): 18. doi:10.1007/s00894-022-05414-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.