61
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Use of a New Natural Deep Eutectic Mixture for the Acceleration of Some of the Important Multi-Component Reactions

&
Received 13 Jul 2023, Accepted 22 Sep 2023, Published online: 09 Oct 2023

Reference

  • K. A. Shaikh, S. R. Kande, and C. Khillare, “Boric Acid Catalyzed One-Pot Synthesis of [1,2,4]Triazolo Quinazolinone Derivatives,” IOSR Journal of Applied Chemistry 7, no. 5 (2014): 54–58. doi:10.9790/5736-07515458
  • M. R. Mousavi, and M. T. Maghsoodlou, “Nano-SiO2: A Green, Efficient, and Reusable Heterogeneous Catalyst for the Synthesis of Quinazolinone Derivatives,” Journal of the Iranian Chemical Society 12, no. 5 (2015): 743–749. doi:10.1007/s13738-014-0533-4
  • D. Thakur, and H. S. Sohal, “Recent Advances in the Synthesis of Tetraketones via Multi-Component Reaction,” European Journal of Molecular & Clinical Medicine 7 (2020): 4498–4518.
  • M. Biglari, F. Shirini, N. O. Mahmoodi, M. Zabihzadeh, and M. Mashhadinezhad, “A Choline Chloride-Based Deep Eutectic Solvent Promoted Three-Component Synthesis of Tetrahydrobenzo[b]Pyran and Pyrano[2,3-d]Pyrimidinone (Thione) Derivatives,” Journal of Molecular Structure 1205 (2020): 127652–127680. doi:10.1016/j.molstruc.2019.127652
  • M. M. Heravi, F. Derikvand, and L. Ranjbar, “Sulfamic Acid–Catalyzed, Three-Component, One-Pot Synthesis of [1,2,4] Triazolo/Benzimidazolo Quinazolinone Derivatives,” Synthetic Communications 40, no. 5 (2010): 677–685. doi:10.1080/00397910903009489
  • A. Ying, S. Li, X. Liu, J. Wang, Y. Liu, and Z. Liu, “Fabrication of DABCO Functionalized Poly (Ionic Liquids): Vital Role of Ferric Oxides in the Formation of Mesoporous Structure and Used as Highly Efficient and Recyclable Catalysts for Multi-Component Reactions,” Journal of Catalysis 391 (2020): 312–326. doi:10.1016/j.jcat.2020.08.031
  • Z. Liu, Y. Yu, S. Li, Y. Liu, G. Zhang, L. Han, Y. Liu, J. You, and A. Ying, “Collaborative Fabrication of Poly (L-Proline) s with Well-Defined Mesopores and Hydrophobicity: Synergistic Effect of Mesoporous Confinement and Hydrophobic Micro-Environment on Organic Transformations,” Journal of Industrial and Engineering Chemistry 104 (2021): 592–604. doi:10.1016/j.jiec.2021.09.006
  • A. Ying, L. Bai, H. Hou, S. Xu, X. Lu, and, and L. Wang, “Research on Thia-Michael Addition Tandem Reactions Catalyzed by AlCl3@ MNPs,” Chinese Journal of Organic Chemistry 42 (2022): 3843.
  • A. V. Kel’in, and A. Maioli, “Recent Advances in the Chemistry of 1,3-Diketones: Structural Modifications and Synthetic Applications,” Current Organic Chemistry 7, no. 18 (2003): 1855–1886. doi:10.2174/1385272033486134
  • C. Xu, J. K. Bartley, D. I. Enache, D. W. Knight, and G. J. Hutchings, “High Surface Area MgO as a Highly Effective Heterogeneous Base Catalyst for Michael Addition and Knoevenagel Condensation Reactions,” Synthesis, 19 (2005): 3468–3476. doi:10.1055/s-2005-918467
  • H. El. Sayed, L. F. Awad, Y. El. Kilany, and E. I. Ibrahim, “Dimedone: A Versatile Precursor for Annulated Heterocycles,” Advances in Heterocyclic Chemistry 98 (2009): 1–141.
  • T. Matsuzaki, and A. Koiwai, “Antioxidative β-Diketones in Stigma Lipids of Tobacco,” Agricultural and Biological Chemistry 52, no. 9 (1988): 2341–2342. doi:10.1080/00021369.1988.10869033
  • K. Singletary, C. MacDonald, M. Iovinelli, C. Fisher, and M. Wallig, “Effect of the Beta-Diketones Diferuloylmethane (Curcumin) and Dibenzoylmethane on Rat Mammary DNA Adducts and Tumors Induced by 7, 12-Dimethylbenz [a] Anthracene,” Carcinogenesis 19, no. 6 (1998): 1039–1043. doi:10.1093/carcin/19.6.1039
  • L. Francis, and D. Douglas, “Some Observations on the Antihistamine Activity in the Guinea Pig of Aliphatic 2, 4-Diketones, a New Class of Physiological Tissue Components,” Research Communications in Chemical Pathology and Pharmacology 17, no. 2 (1977): 357–364.
  • K. Nikoofar, and F. M. Yielzoleh, “A Concise Study on Dimedone: A Versatile Molecule in Multi-Component Reactions, an Outlook to the Green Reaction Media,” Journal of Saudi Chemical Society 22, no. 6 (2018): 715–741. doi:10.1016/j.jscs.2017.12.005
  • H. B. Rasmussen, S. B. Christensen, L. P. Kvist, and A. Karazmi, “A Simple and Efficient Separation of the Curcumins, the Antiprotozoal Constituents of Curcuma Longa,” Planta Medica 66, no. 4 (2000): 396–398. doi:10.1055/s-2000-8533
  • F. Karimirad, and F. K. Behbahani, “Glycerol-Mediated and Simple Synthesis of 1,8-Dioxo-Decahydroacridines under Transition Metal-Free Conditions,” Polycyclic Aromatic Compounds 41, no. 10 (2021): 2238–2246. doi:10.1080/10406638.2019.1711139
  • M. M Heravi, V. Zadsirjan, B. Fattahi, and N. Nazari, “Applications of Dimedone in the Synthesis of Heterocycles: An Update,” Current Organic Chemistry 20, no. 16 (2016): 1676–1735. doi:10.2174/1385272820666160324154001
  • F. Poyafar, M. Fallah-Mehrjardi, and S. H. Banitaba, “Preparation and Characterization of Polyethylene Glycol-Bis (N-Methylimidazolium) Dihydroxide as a Basic Phase-Transfer Catalyst and Its Application in Knoevenagel Condensation Under Aqueous Media,” Asian Journal of Green Chemistry 2 (2018): 96–106.
  • F. K. Behbahani, and M. Homafar, “Synthesis of Polyhydroquinoline Derivatives Through the Hantzsch Four Component Using Iron (III) Phosphate as a Catalyst,” Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 42, no. 2 (2012): 291–295. doi:10.1080/15533174.2011.610020
  • Naveen Mulakayala, P. V. N. S. Murthy, D. Rambabu, Madhu Aeluri, Raju Adepu, G. R. Krishna, C. Malla Reddy, K. R. S. Prasad, M. Chaitanya, Chitta S. Kumar, et al. “Catalysis by Molecular Iodine: A Rapid Synthesis of 1,8-Dioxo-Octahydroxanthenes and Their Evaluation as Potential Anticancer Agents,” Bioorganic & Medicinal Chemistry Letters 22, no. 6 (2012): 2186–2191. doi:10.1016/j.bmcl.2012.01.126
  • N. Mulakayala, G. P. Kumar, D. Rambabu, M. Aeluri, M. B. Rao, and M. Pal, “A Greener Synthesis of 1,8-Dioxo-Octahydroxanthene Derivatives under Ultrasound,” Tetrahedron Letters 53, no. 51 (2012): 6923–6926. doi:10.1016/j.tetlet.2012.10.024
  • F. R. Khanehkenari, and F. K. Behbahani, “Synthesis of 9,9-Dimethyl-12-Aryl-8,9,10,12-Tetrahydrobenzo [a] Xanthen-11-Ones Using Fe(ClO4)3/SiO2,” Journal of Applied Chemical Science International 4 (2015): 162–167.
  • F. K. Behbahani, and M. Mohammadloo, “L-Proline-Catalyzed Synthesis of Fused Dihydropyridines through Hantzsch Reaction,” European Chemical Bulletin 2 (2013): 916–919.
  • P. Mayurachayakul, W. Pluempanupat, C. Srisuwannaket, and O. Chantarasriwong, “Four-Component Synthesis of Polyhydroquinolines under Catalyst-and Solvent-Free Conventional Heating Conditions: Mechanistic Studies,” RSC Advances 7, no. 89 (2017): 56764–56770. doi:10.1039/C7RA13120H
  • V. Alagarsamy, G. Murugananthan, and R. Venkateshperumal, “Synthesis, Analgesic, anti-Inflammatory and Antibacterial Activities of Some Novel 2-Methyl-3-Substituted Quinazolin-4-(3H)-Ones,” Biological & Pharmaceutical Bulletin 26, no. 12 (2003): 1711–1714. doi:10.1248/bpb.26.1711
  • V. Alagarsamy, R. Venkatesaperumal, S. Vijayakumar, T. Angayarkanni, P. Pounammal, S. Senthilganesh, and S. Kandeeban, “Synthesis and Pharmacological Investigation of Some Novel 2-Phenyl-3-(Substituted Methyl Amino) Quinazolin-4(3H)-Ones as H1-Receptor Blockers,” Pharmazie 57 (2002): 306–307.
  • V. Alagarsamy, R. Revathi, S. Meena, K. Ramaseshu, S. Rajasekaran, and E. De Clerco, “AntiHIV, Antibacterial and Antifungal Activities of Some 2,3-Disubstituted Quinazolin-4(3H)-Ones,” Indian Journal of Pharmaceutical Sciences 66 (2004): 459–462.
  • V. Alagarsamy, “Synthesis and Pharmacological Investigation of Some Novel 2-Methyl-3-(Substituted Methylamino)-(3H)-Quinazolin-4-Ones as Histamine H1-Receptor Blockers,” Pharmazie 59 (2004): 753–755.
  • V. Alagarsamy, V. Solomon, and M. Murugan, “Synthesis and Pharmacological Investigation of Novel 4-Benzyl-1-Substituted-4H-[1,2,4] Triazolo [4, 3-a] Quinazolin-5-Ones as New Class of H1-Antihistaminic Agents,” Bioorganic & Medicinal Chemistry 15, no. 12 (2007): 4009–4015. doi:10.1016/j.bmc.2007.04.001
  • H. Alinezhad, M. Tajbakhsh, M. Norouzi, S. Baghery, and J. Rakhtshah, “Green and Expeditious Synthesis of 1,8-Dioxodecahydroacridine Derivatives Catalysed by Protic Pyridinium Ionic Liquid,” Journal of Chemical Sciences 125, no. 6 (2013): 1517–1522. doi:10.1007/s12039-013-0517-4
  • M. A. Ghasemzadeh, J. Safaei-Ghomi, and H. Molaei, “Fe3O4 Nanoparticles: As an Efficient, Green and Magnetically Reusable Catalyst for the One-Pot Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives Under Solvent-Free Conditions,” Comptes Rendus Chimie 15, no. 11–12 (2012): 969–974. doi:10.1016/j.crci.2012.08.010
  • M. Kidwai, and D. Bhatnagar, “Ceric Ammonium Nitrate (CAN) Catalyzed Synthesis of N-Substituted Decahydroacridine-1,8-Diones in PEG,” Tetrahedron Letters 51, no. 20 (2010): 2700–2703. doi:10.1016/j.tetlet.2010.03.033
  • K. Venkatesan, S. S. Pujari, and K. V. Srinivasan, “Proline-Catalyzed Simple and Efficient Synthesis of 1,8-Dioxo-Decahydroacridines in Aqueous Ethanol Medium,” Synthetic Communications 39, no. 2 (2008): 228–241. doi:10.1080/00397910802044306
  • Y.-G. Ma, W.-W. Qiang, C. Li, M.-M. Zhang, and X.-S. Wang, “Copper-Catalyzed Ullmann Reaction for the Synthesis of Fused Hexacyclic Heterocycles Containing Naphthyridine, Acridine, and Pyrazole (Imidazole) Moieties,” Monatshefte für Chemie - Chemical Monthly 147, no. 7 (2016): 1233–1242. doi:10.1007/s00706-015-1625-2
  • N. Madankumar, and K. Pitchumani, “β‐Cyclodextrin Monosulphonic Acid Promoted Multicomponent Synthesis of 1,8‐Dioxodecahydroacridines in Water,” ChemistrySelect 3, no. 39 (2018): 10886–10891. doi:10.1002/slct.201802244
  • P. N. Chavan, D. N. Pansare, and R. N. Shelke, “Eco‐Friendly, Ultrasound‐Assisted, and Facile Synthesis of One‐Pot Multicomponent Reaction of Acridine‐1,8(2H,5H)‐Diones in an Aqueous Solvent,” Journal of the Chinese Chemical Society 66, no. 8 (2019): 822–828. doi:10.1002/jccs.201800411
  • M. Mazloumi, and F. Shirini, “Introduction of a New Catalyst Containing an Ionic Liquid Bridge on Nanoporous Na+-Montmorillonite for the Synthesis of Hexahydroquinolines and 1,8-Dioxo-Decahydroacridines via Hantzsch Condensation,” Journal of Molecular Structure 1217 (2020): 128326–128349. doi:10.1016/j.molstruc.2020.128326
  • E. Tabrizian, and A. Amoozadeh, “A New Type of SO3H-Functionalized Magnetic-Titania as a Robust Magnetically-Recoverable Solid Acid Nanocatalyst for Multi-Component Reactions,” RSC Advances 6, no. 99 (2016): 96606–96615. doi:10.1039/C6RA21048A
  • A-FE. Mourad, A. A. Aly, H. H. Farag, and E. A. Beshr, “Microwave Assisted Synthesis of Triazoloquinazolinones and Benzimidazoquinazolinones,” Beilstein Journal of Organic Chemistry 3 (2007): 11–15. doi:10.1186/1860-5397-3-11
  • A. Shaabani, E. Farhangi, and S. Shaabani, “A Rapid Combinatorial Library Synthesis of Benzazolo[2,1-b]Quinazolinones and Triazolo[2,1-b]Quinazolinones,” Iranian Journal of Chemistry & Chemical Engineering 32 (2013): 3–10.
  • E. L. Smith, A. P. Abbott, and K. S. Ryder, “Deep Eutectic Solvents (DESs) and Their Applications,” Chemical Reviews 114, no. 21 (2014): 11060–11082. doi:10.1021/cr300162p
  • Q. Zhang, K. D. O. Vigier, S. Royer, and F. Jérôme, “Deep Eutectic Solvents: Syntheses, Properties and Applications,” Chemical Society Reviews 41, no. 21 (2012): 7108–7146. doi:10.1039/c2cs35178a
  • A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah, “Novel Solvent Properties of Choline Chloride/Urea Mixtures,” Chemical Communications (Cambridge, England) 1, no. 1 (2003): 70–71. doi:10.1039/b210714g
  • M. C. Bubalo, S. Vidović, I. R. Redovniković, and S. Jokić, “New Perspective in Extraction of Plant Biologically Active Compounds by Green Solvents,” Food and Bioproducts Processing 109 (2018): 52–73. doi:10.1016/j.fbp.2018.03.001
  • Y. H. Choi, J. van Spronsen, Y. Dai, M. Verberne, F. Hollmann, I. W. Arends, G.-J. Witkamp, and R. Verpoorte, “Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology?,” Plant Physiology 156, no. 4 (2011): 1701–1705. doi:10.1104/pp.111.178426
  • Y. Dai, J. van Spronsen, G.-J. Witkamp, R. Verpoorte, and Y. H. Choi, “Natural Deep Eutectic Solvents as New Potential Media for Green Technology,” Analytica chimica acta 766 (2013): 61–68. doi:10.1016/j.aca.2012.12.019
  • F. S. Mjalli, R. Al‐Hajri, Aa. Al‐Muhtaseb, O. Ahmed, and M. Nagaraju, “Novel Amino Acid‐Based Ionic Liquid Analogues: Neutral Hydroxylic and Sulfur‐Containing Amino Acids,” Asia-Pacific Journal of Chemical Engineering 11, no. 5 (2016): 683–694. doi:10.1002/apj.1995
  • M. Zdanowicz, “Deep Eutectic Solvents Based on Urea, Polyols and Sugars for Starch Treatment,” International Journal of Biological Macromolecules 176 (2021): 387–393. doi:10.1016/j.ijbiomac.2021.02.039
  • L. P. Silva, L. Fernandez, J. H. Conceição, M. A. Martins, A. Sosa, J. Ortega, S. P. Pinho, and J. A. Coutinho, “Design and Characterization of Sugar-Based Deep Eutectic Solvents Using Conductor-like Screening Model for Real Solvents,” ACS Sustainable Chemistry & Engineering 6, no. 8 (2018): 10724–10734. doi:10.1021/acssuschemeng.8b02042
  • A. Hayyan, F. S. Mjalli, I. M. AlNashef, T. Al Wahaibi, Y. M Al Wahaibi, and M. A. Hashim, “Fruit Sugar-Based Deep Eutectic Solvents and Their Physical Properties,” Thermochimica Acta 541 (2012): 70–75. doi:10.1016/j.tca.2012.04.030
  • M. A. Kareem, F. S. Mjalli, M. A. Hashim, and I. M. AlNashef, “Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties,” Journal of Chemical & Engineering Data 55, no. 11 (2010): 4632–4637. doi:10.1021/je100104v
  • Medhat Ahmed Ibrahim, Mousa Allam, Hanan El-Haes, Abraham F. Jalbout, and Aned De Leon, “Analysis of the Structure and Vibrational Spectra of Glucose and Fructose,” Eclética Química 31, no. 3 (2006): 15–21. doi:10.1590/S0100-46702006000300002
  • J.-J. Max, and C. Chapados, “Glucose and Fructose Hydrates in Aqueous Solution by IR Spectroscopy,” The Journal of Physical Chemistry. A 111, no. 14 (2007): 2679–2689. doi:10.1021/jp066882r
  • N. Delgado-Mellado, M. Larriba, P. Navarro, V. Rigual, M. Ayuso, J. García, and F. Rodríguez, “Thermal Stability of Choline Chloride Deep Eutectic Solvents by TGA/FTIR-ATR Analysis,” Journal of Molecular Liquids 260 (2018): 37–43. doi:10.1016/j.molliq.2018.03.076
  • D. A. Türker, and M. Doğan, “Application of Deep Eutectic Solvents as a Green and Biodegradable Media for Extraction of Anthocyanin from Black Carrots,” LWT 138 (2021): 110775–110782. doi:10.1016/j.lwt.2020.110775
  • W. Chen, Z. Xue, J. Wang, J. Jiang, X. Zhao, and T. Mu, “Investigation on the Thermal Stability of Deep Eutectic Solvents,” Acta Physico-Chimica Sinica 34, no. 8 (2018): 904–911. doi:10.3866/PKU.WHXB201712281
  • N. Vollmer, and R. Ayers, “Decomposition Combustion Synthesis of Calcium Phosphate Powders for Bone Tissue Engineering,” International Journal of Self-Propagating High-Temperature Synthesis 21, no. 4 (2012): 189–201. doi:10.3103/S1061386212040073
  • S. Rahmani, and A. Amoozadeh, “Nano Titanium Dioxide: Efficient and Reusable Heterogeneous Nano Catalyst for Synthesis of 1,8-Dioxo-Decahydroacridines,” J. Nanostructures 4 (2014): 91–98.
  • A. Zhu, R. Liu, C. Du, and L. Li, “Betainium-Based Ionic Liquids Catalyzed Multicomponent Hantzsch Reactions for the Efficient Synthesis of Acridinediones,” RSC Advances 7, no. 11 (2017): 6679–6684. doi:10.1039/C6RA25709G
  • S.-J. Yü, S. Wu, X.-M. Zhao, and C.-W. Lü, “Green and Efficient Synthesis of Acridine-1,8-Diones and Hexahydroquinolines via a KH2PO4 Catalyzed Hantzsch-Type Reaction in Aqueous Ethanol,” Research on Chemical Intermediates 43, no. 5 (2017): 3121–3130. doi:10.1007/s11164-016-2814-2
  • R. Taheri-Ledari, M. S. Esmaeili, Z. Varzi, R. Eivazzadeh-Keihan, A. Maleki, and A. E. Shalan, “Facile Route to Synthesize Fe3O4@Acacia–SO3H Nanocomposite as a Heterogeneous Magnetic System for Catalytic Applications,” RSC Advances 10, no. 66 (2020): 40055–40067. doi:10.1039/d0ra07986c
  • Z. Alirezvani, M. G. Dekamin, and E. Valiey, “New Hydrogen-Bond-Enriched 1,3,5-Tris (2-Hydroxyethyl) Isocyanurate Covalently Functionalized MCM-41: An Efficient and Recoverable Hybrid Catalyst for Convenient Synthesis of Acridinedione Derivatives,” ACS Omega 4, no. 24 (2019): 20618–20633. doi:10.1021/acsomega.9b02755
  • M. A. Zolfigol, F. Karimi, M. Yarie, and M. Torabi, “Catalytic Application of Sulfonic Acid‐Functionalized Titana‐Coated Magnetic Nanoparticles for the Preparation of 1,8‐Dioxodecahydroacridines and 2,4,6‐Triarylpyridines via Anomeric‐Based Oxidation,” Applied Organometallic Chemistry 32 (2018): 4063–4073.
  • A. Amoozadeh, S. Rahmani, M. Bitaraf, F. B. Abadi, and E. Tabrizian, “Nano-Zirconia as an Excellent Nano Support for Immobilization of Sulfonic Acid: A New, Efficient and Highly Recyclable Heterogeneous Solid Acid Nanocatalyst for Multicomponent Reactions,” New Journal of Chemistry 40, no. 1 (2016): 770–780. doi:10.1039/C5NJ02430G
  • P. Molina, A. Pastor, and M. J. Vilaplana, “Unusual Reactivity of (Vinylimino) Phosphoranes and Their Utility in the Preparation of Pyridine and Dihydropyridine Derivatives,” The Journal of Organic Chemistry 61, no. 23 (1996): 8094–8098. doi:10.1021/jo960940v
  • R. Motamedi, G. Rezanejade Bardajee, and S. Makenali Rad, “Cu (II)-Schiff Base/SBA-15 as an Efficient Catalyst for Synthesis of Decahydroacridine-1,8-Diones,” Asian Journal of Green Chemistry 2, no. 2 (2017): 89–97. doi:10.22631/ajgc.2017.94130.1008
  • A. Maleki, V. Eskandarpour, J. Rahimi, and N. Hamidi, “Cellulose Matrix Embedded Copper Decorated Magnetic Bionanocomposite as a Green Catalyst in the Synthesis of Dihydropyridines and Polyhydroquinolines,” Carbohydrate Polymers 208 (2019): 251–260. doi:10.1016/j.carbpol.2018.12.069
  • M. Tajbakhsh, H. Alinezhad, M. Norouzi, S. Baghery, and M. Akbari, “Protic Pyridinium Ionic Liquid as a Green and Highly Efficient Catalyst for the Synthesis of Polyhydroquinoline Derivatives via Hantzsch Condensation in Water,” Journal of Molecular Liquids 177 (2013): 44–48. doi:10.1016/j.molliq.2012.09.017
  • M. Yarie, M. A. Zolfigol, Y. Bayat, A. Asgari, D. A. Alonso, and A. Khoshnood, “Novel Magnetic Nanoparticles with Ionic Liquid Tags as a Reusable Catalyst in the Synthesis of Polyhydroquinolines,” RSC Advances 6, no. 86 (2016): 82842–82853. doi:10.1039/C6RA16459E
  • L. Moradi, and M. Zare, “Ultrasound-Promoted Green Synthesis of 1,4-Dihydropyridines Using Fuctionalized MWCNTs as a Highly Efficient Heterogeneous Catalyst,” Green Chemistry Letters and Reviews 11, no. 3 (2018): 197–208. doi:10.1080/17518253.2018.1458160
  • O. Goli-Jolodar, F. Shirini, and M. Seddighi, “Introduction of a Novel Nanosized N-Sulfonated Brönsted Acidic Catalyst for the Promotion of the Synthesis of Polyhydroquinoline Derivatives via Hantzsch Condensation under Solvent-Free Conditions,” RSC Advances 6, no. 31 (2016): 26026–26037. doi:10.1039/C6RA04148E
  • M. A. Zolfigol, and M. Yarie, “Synthesis and Characterization of Novel Silica-Coated Magnetic Nanoparticles with Tags of Ionic Liquid. Application in the Synthesis of Polyhydroquinolines,” RSC Advances 12, no. 43 (2022): 28020–103624. doi:10.1039/d2ra90094g
  • M. Maheswara, V. Siddaiah, G. L. V. Damu, and C. V. Rao, “An Efficient One-Pot Synthesis of Polyhydroquinoline Derivatives via Hantzsch Condensation Using a Heterogeneous Catalyst Under Solvent-Free Conditions,” Arkivoc 2006, no. 2 (2006): 201–206. doi:10.3998/ark.5550190.0007.223
  • A. Khazaei, A. R. Moosavi-Zare, H. Afshar-Hezarkhani, and V. Khakyzadeh, “Nano-Ferrous Ferric Oxide (nano-Fe3O4): Magnetite Catalytic System for the One-Pot Four-Component Tandem Imine/Enamine formation-Knoevenagel–Michael-Cyclocondensation Reaction of Dimedone, Aldehydes, β-Ketoesters and Ammonium Acetate Under Green Media,” RSC Advances 4, no. 61 (2014): 32142–32147. doi:10.1039/C4RA03980G
  • M. M. Heravi, M. Saeedi, N. Karimi, M. Zakeri, Y. S. Beheshtiha, and A. Davoodnia, “Brønsted Acid Ionic Liquid [(CH2)4SO3HMIM][HSO4] as Novel Catalyst for One-Pot Synthesis of Hantzsch Polyhydroquinoline Derivatives,” Synthetic Communications 40, no. 4 (2010): 523–529. doi:10.1080/00397910902994194
  • M. Yarhosseini, S. Javanshir, M. G. Dekamin, and M. Farhadnia, “Tetraethylammonium 2-(Carbamoyl) Benzoate as a Bifunctional Organocatalyst for One-Pot Synthesis of Hantzsch 1,4-Dihydropyridine and Polyhydroquinoline Derivatives,” Monatshefte für Chemie - Chemical Monthly 147, no. 10 (2016): 1779–1787. doi:10.1007/s00706-016-1666-1
  • M. Zabihzadeh, A. Omidi, F. Shirini, H. Tajik, and M. S. N. Langarudi, “Introduction of an Efficient DABCO-Based Bis-Dicationic Ionic Salt Catalyst for the Synthesis of Arylidenemalononitrile, Pyran and Polyhydroquinoline Derivatives,” Journal of Molecular Structure 1206 (2020): 127730–127759. doi:10.1016/j.molstruc.2020.127730
  • U. C. Rajesh, S. Manohar, and D. S. Rawat, “Hydromagnesite as an Efficient Recyclable Heterogeneous Solid Base Catalyst for the Synthesis of Flavanones, Flavonols and 1,4‐Dihydropyridines in Water,” Advanced Synthesis & Catalysis 355, no. 16 (2013): 3170–3178. doi:10.1002/adsc.201300555
  • M. Nasr-Esfahani, S. J. Hoseini, M. Montazerozohori, R. Mehrabi, and H. Nasrabadi, “Magnetic Fe3O4 Nanoparticles: Efficient and Recoverable Nanocatalyst for the Synthesis of Polyhydroquinolines and Hantzsch 1,4-Dihydropyridines Under Solvent-Free Conditions,” Journal of Molecular Catalysis A: Chemical 382 (2014): 99–105. doi:10.1016/j.molcata.2013.11.010
  • R. H. Nia, M. Mamaghani, F. Shirini, K. Tabatabaeian, and M. Heidary, “Rapid and Efficient Synthesis of 1,4-Dihydropyridines Using a Sulfonic Acid-Functionalized Ionic Liquid,” Organic Preparations and Procedures International 46, no. 2 (2014): 152–163. doi:10.1080/00304948.2014.884372
  • M. A. Zolfigol, S. Baghery, A. R. Moosavi-Zare, S. M. Vahdat, H. Alinezhad, and M. Norouzi, “Synthesis of the First Nano Ionic Liquid 1-Methylimidazolium Trinitromethanide {[HMIM]C(NO2)3} and Its Catalytic Use for Hanztsch Four-Component Condensation,” RSC Advances 4, no. 101 (2014): 57662–57670. doi:10.1039/C4RA09117E
  • U. Rose, “Hexahydrochinolinone mit calciummodulatorischem Effekt‐Synthese und pharmakologische Wirkung,” Archiv der Pharmazie 323, no. 5 (1990): 281–286. doi:10.1002/ardp.19903230506
  • B. Bandgar, P. More, V. Kamble, and J. Totre, “Synthesis of Polyhydroquinoline Derivatives under Aqueous Media,” Arkivoc 2008, no. 15 (2008): 1–8. doi:10.3998/ark.5550190.0009.f01
  • R. Surasani, D. Kalita, A. D. Rao, K. Yarbagi, and K. Chandrasekhar, “FeF3 as a Novel Catalyst for the Synthesis of Polyhydroquinoline Derivatives via Unsymmetrical Hantzsch Reaction,” Journal of Fluorine Chemistry 135 (2012): 91–96. doi:10.1016/j.jfluchem.2011.09.005
  • M. R. Mousavi, and M. T. Maghsoodlou, “Catalytic Systems Containing p-Toluenesulfonic Acid Monohydrate Catalyzed the Synthesis of Triazoloquinazolinone and Benzimidazoquinazolinone Derivatives,” Monatshefte für Chemie - Chemical Monthly 145, no. 12 (2014): 1967–1973. doi:10.1007/s00706-014-1273-y
  • S. Gajaganti, S. Kumari, D. Kumar, B. K. Allam, V. Srivastava, and S. Singh, “An Efficient, Green, and Solvent‐Free Multi‐Component Synthesis of Benzimidazolo/Benzothiazolo Quinazolinone Derivatives Using Sc(OTf)3 Catalyst Under Controlled Microwave Irradiation,” Journal of Heterocyclic Chemistry 55, no. 11 (2018): 2578–2584. doi:10.1002/jhet.3314
  • A. Shaabani, E. Farhangi, and A. Rahmati, “Synthesis of Tetrahydrobenzimidazo[1,2-b]Quinazolin-1(2H)-One and Tetrahydro-1,2,4-Triazolo[5,1-b]Quinazolin-8(4H)-One Ring Systems under Solvent-Free Conditions,” Combinatorial Chemistry & High Throughput Screening 9, no. 10 (2006): 771–776. doi:10.2174/138620706779026060
  • B. Insuasty, A. Salcedo, J. Quiroga, R. Abonia, M. Nogueras, J. Cobo, and S. Salido, “Regioselective Three-Component Synthesis of Tetrahydrobenzimidazo[2,1-b]Quinazolin-1(2H)-Ones,” Heterocyclic Communications 10 (2004): 399–404.
  • S. M. Vahdat, S. Khaksar, M. Akbari, and S. Baghery, “Sulfonated Organic Heteropolyacid Salts as a Highly Efficient and Green Solid Catalysts for the Synthesis of 1,8-Dioxo-Decahydroacridine Derivatives in Water,” Arabian Journal of Chemistry 12, no. 7 (2019): 1515–1521. doi:10.1016/j.arabjc.2014.10.026
  • V. N. Mahire, V. E. Patel, and P. P. Mahulikar, “Facile DES-Mediated Synthesis and Antioxidant Potency of Benzimidazoquinazolinone Motifs,” Research on Chemical Intermediates 43, no. 3 (2017): 1847–1861. doi:10.1007/s11164-016-2734-1
  • S. Makone, and S. Mahurkar, “Innovative Protocol for the Synthesis of Acridine Derivatives Using Ionic Liquid,” The International Journal of Science and Research 4 (2015): 2493–2496.
  • L. Wang, K.-Q. Zhu, Q. Chen, and M.-Y. He, “Facile and Green Synthesis of Hantzsch Derivatives in Deep Eutectic Solvent,” Green Processing and Synthesis 3, no. 6 (2014): 457–461. doi:10.1515/gps-2014-0056
  • X. Xiong, C. Yi, X. Liao, and S. Lai, “An Effective One-Pot Access to 2-Amino-4H-Benzo[b]Pyrans and 1,4-Dihydropyridines via γ-Cyclodextrin-Catalyzed Multi-Component Tandem Reactions in Deep Eutectic Solvent,” Catalysis Letters 149, no. 6 (2019): 1690–1700. doi:10.1007/s10562-019-02767-x
  • M. Biglari, F. Shirini, N. O. Mahmoodi, M. Zabihzadeh, M. Safarpoor Nikoo Langarudi, and M. Alipour Khoshdel, “Taurine/Choline Chloride Deep Eutectic Solvent as a Novel Eco-Compatible Catalyst to Facilitate the Multi-Component Synthesis of Pyrano[2,3-d]Pyrimidinone (Thione), Hexahydroquinoline, and Biscoumarin Derivatives,” Polycyclic Aromatic Compounds 42, no. 4 (2022): 1452–1473. doi:10.1080/10406638.2020.1781212
  • C. Yao, S. Lei, C. Wang, T. Li, C. Yu, X. Wang, and S. Tu, “Three‐Component Synthesis of 4‐Aryl‐1H‐Pyrimido[1,2‐a]Benzimidazole Derivatives in Ionic Liquid,” Journal of Heterocyclic Chemistry 47 (2010): 26–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.