62
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Anticancer and anti-Inflammatory Activities of Garcinol and Its Analogs

Received 01 Aug 2023, Accepted 06 Oct 2023, Published online: 16 Oct 2023

References

  • S. Bhattacharjee, and R. Devi, “A Comprehensive Review of Garcinia pedunculata Roxb. and Its Therapeutic Potential,” Mini Reviews in Medicinal Chemistry 21, no. 20 (2021): 3113–3143. doi:10.2174/1389557521666210217094152
  • K.S. Triyasa, A. Diantini, and M.I. Barliana, “A Review of Herbal Medicine-Based Phytochemical of Garcinia as Molecular Therapy for Breast Cancer,” Drug Design, Development and Therapy 16 (2022): 3573–3588. doi:10.2147/DDDT.S358229
  • K. Barve, “Garcinol Enriched Fraction from the Fruit Rind of Garcinia indica Ameliorates Atherosclerotic Risk Factor in Diet Induced Hyperlipidemic C57BL/6 Mic,” Journal of Traditional and Complementary Medicine 11, no. 2 (2021) : 95–102. doi:10.1016/j.jtcme.2019.11.001
  • R.B. Semwal, D.K. Semwal, I. Vermaak, and A. Viljoen, “A Comprehensive Scientific Overview of Garcinia Cambogia” Fitoterapia,” Fitoterapia 102 (2015): 134–148. doi:10.1016/j.fitote.2015.02.012
  • R. Schobert, and B. Biersack, “Chemical and Biological Aspects of Garcinol and Isogarcinol: Recent Developments,” Chemistry & Biodiversity 16, no. 9 (2019): e1900366. doi:10.1002/cbdv.201900366
  • A.W. Sorum, J.H. Shrimp, A.M. Roberts, D.C. Montgomery, N.K. Tiwari, M. Lal-Nag, A. Simeonov, A. Jadhav, and J.L. Meier, “Microfluidic Mobility Shift Profiling of Lysine Acetyltransferases Enables Screening and Mechanistic Analysis of Cellular Acetylation Inhibitors,” ACS Chemical Biology 11, no. 3 (2016): 734–741. doi:10.1021/acschembio.5b00709
  • J.A. Richard, R. Pouwer, and D.Y. Chen, “The Chemistry of the Polycyclic Polyprenylated Acylphloroglucinols,” Angewandte Chemie (International ed. in English) 51, no. 19 (2012): 4536–4561. doi:10.1002/anie.201103873
  • H.N. Murthy, G.G. Yadav, S.S. Kadapatti, and M. Sandhya, “Phytochemical Analysis, GC-MS. Identification of Bioactive Compounds, and in Vitro Antioxidant Activities of Resin of Garcinia indica (Thouars) Choisy,” Applied Biochemistry and Biotechnology 195, no. 7 (2023): 4570–4582. doi:10.1007/s12010-023-04343-x
  • M.F. Ullah, A. Ahmad, S.H. Bhat, F.M. Abuduhier, S.K. Mustafa, and S. Usmani, “Diet-Derived Small Molecules (Nutraceuticals) Inhibit Cellular Proliferation by Interfering with Key Oncogenic Pathways: An Overview of Experimental Evidence in Cancer Chemoprevention,” Biologia Futura 73, no. 1 (2022): 55–69. doi:10.1007/s42977-022-00110-x
  • C. Bailly, and G. Vergoten, “Anticancer Properties and Mechanism of Action of Oblongifolin C, Guttiferone K and Related Polyprenylated Acylphloroglucinols,” Natural Products and Bioprospecting 11, no. 6 (2021): 629–641. doi:10.1007/s13659-021-00320-1
  • S.H. Lim, H.S. Lee, C.H. Lee, and C.I. Choi, “Pharmacological Activity of Garcinia indica (Kokum): an Updated Review,” Pharmaceuticals (Basel, Switzerland) 14, no. 12 (2021): 1338. doi:10.3390/ph14121338
  • C. Liu, P.C. Ho, F.C. Wong, G. Sethi, L.Z. Wang, and B.C. Goh, “Garcinol: Current Status of Its anti-Oxidative, anti-Inflammatory and anti-Cancer Effects,” Cancer Letters 362, no. 1 (2015): 8–14. doi:10.1016/j.canlet.2015.03.019
  • A.P. Aravind, K.R. Asha, and K.B. Rameshkumar, “Phytochemical Analysis and Antioxidant Potential of the Leaves of Garcinia Travancorica Bedd,” Natural Product Research 30, no. 2 (2016): 232–236. doi:10.1080/14786419.2015.1043551
  • A.T. Anilkumar, S. Manoharan, S. Balasubramanian, and E. Perumal, “Garcinia Gummi-Gutta: Phytochemicals and Pharmacological Applications,” BioFactors (Oxford, England) 49, no. 3 (2023): 584–599. doi:10.1002/biof.1943
  • N. Krishnamurthy, B. Ravindranath, TNGuruRow, and K. Venkatesan, “Crystal and Molecular Structure of Isogarcinol,” Tetrahedron Letters 23, no. 21 (1982): 2233–2236. doi:10.1016/S0040-4039(00)87309-8
  • C. Socolsky, and B. Plietker, “Total Synthesis and Absolute Configuration Assignment of MRSA Active Garcinol and Isogarcinol,” Chemistry (Weinheim an Der Bergstrasse, Germany) 21, no. 7 (2015): 3053–3061. doi:10.1002/chem.201406077
  • M. Guha, S. Srinivasan, K. Guja, E. Mejia, M. Garcia-Diaz, F.B. Johnson, G. Ruthel, B.A. Kaufman, E.F. Rappaport, M.R. Glineburg, et al. “HnRNPA2 is a Novel Histone Acetyltransferase That Mediates Mitochondrial Stress-Induced Nuclear Gene Expression,” Cell Discovery 2, no. 1 (2016): 16045. doi:10.1038/celldisc.2016.45
  • K. Mantelingu, B.A. Reddy, V. Swaminathan, A.H. Kishore, N.B. Siddappa, G.V. Kumar, G. Nagashankar, N. Natesh, S. Roy, P.P. Sadhale, et al. “Specific Inhibition of p300-HAT Alters Global Gene Expression and Represses HIV Replication,” Chemistry & Biology 14, no. 6 (2007): 645–657. doi:10.1016/j.chembiol.2007.04.011
  • M. Arif, S. Pradhan, G.R. Thanuja, B.M. Vedamurthy, S. Agrawal, D. Dasgupta, and T.K. Kundu, “Mechanism of p300 Specific Histone Acetyltransferase Inhibition by Small Molecules,” Journal of Medicinal Chemistry 52, no. 2 (2009): 267–277. doi:10.1021/jm800657z
  • C.M. Han, X. Zhou, J. Cao, X.Y. Zhang, and X. Chen, “13,14-Dihydroxy Groups Are Critical for the anti-Cancer Effects of Garcinol,” Bioorganic Chemistry 60 (2015): 123–129. doi:10.1016/j.bioorg.2015.04.010
  • X.Y. Zhou, J. Cao, C.M. Han, S.W. Li, C. Zhang, Y.D. Du, Q.Q. Zhou, X.Y. Zhang, and X. Chen, “The C8 Side Chain is One of the Key Functional Groups of Garcinol for Its anti-Cancer Effects,” Bioorganic Chemistry 71 (2017): 74–80. doi:10.1016/j.bioorg.2017.01.013
  • V. Aggarwal, H.S. Tuli, J. Kaur, D. Aggarwal, G. Parashar, N. Chaturvedi Parashar, S. Kulkarni, G. Kaur, K. Sak, M. Kumar, et al. “Garcinol Exhibits anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells,” Biomedicines 8, no. 5 (2020): 103. doi:10.3390/biomedicines8050103
  • K. Balasubramanyam, M. Altaf, R.A. Varier, V. Swaminathan, A. Ravindran, P.P. Sadhale, and T.K. Kundu, “Polyisoprenylated Benzophenone, Garcinol, a Natural Histone Acetyltransferase Inhibitor, Represses Chromatin Transcription and Alters Global Gene Expression,” The Journal of Biological Chemistry 279, no. 32 (2004): 33716–33726. doi:10.1074/jbc.M402839200
  • W. Yao, J. Xia, T. Wang, J. Li, L. Huang, and F. Huang, “Garcinol Promotes Hepatic Gluconeogenesis by Inhibiting P300/CBP-Associated Factor in Late-Pregnant Sows,” The British Journal of Nutrition 126, no. 1 (2021): 1–8. doi:10.1017/S000711452000375X
  • S. Kim, S.U. Seo, K.J. Min, S.M. Woo, J.O. Nam, P. Kubatka, S. Kim, J.W. Park, and T.K. Kwon, “Garcinol Enhances TRAIL-Induced Apoptotic Cell Death through up-Regulation of DR5 and down-Regulation of c-FLIP Expression,” Molecules (Basel, Switzerland) 23, no. 7 (2018): 1614. doi:10.3390/molecules23071614
  • F. Li, M.K. Shanmugam, L. Chen, S. Chatterjee, J. Basha, A.P. Kumar, T.K. Kundu, and G. Sethi, “Garcinol, a Polyisoprenylated Benzophenone Modulates Multiple Proinflammatory Signaling Cascades Leading to the Suppression of Growth and Survival of Head and Neck Carcinoma,” Cancer Prevention Research (Philadelphia, Pa.) 6, no. 8 (2013): 843–854. doi:10.1158/1940-6207.CAPR-13-0070
  • C.C. Huang, C.M. Lin, Y.J. Huang, L. Wei, L.L. Ting, C.C. Kuo, C. Hsu, J.F. Chiou, A.T.H. Wu, and W.H. Lee, “Garcinol Downregulates Notch1 Signaling via Modulating miR-200c and Suppresses Oncogenic Properties of PANC-1 Cancer Stem-like Cells,” Biotechnology and Applied Biochemistry 64, no. 2 (2017): 165–173. doi:10.1002/bab.1446
  • G. Zhang, J. Fu, Y. Su, and X. Zhang, “Opposite Effects of Garcinol on Tumor Energy Metabolism in Oral Squamous Cell Carcinoma Cells,” Nutrition and Cancer 71, no. 8 (2019): 1403–1411. doi:10.1080/01635581.2019.1607409
  • H.W. Liu, P.M. Lee, O.A. Bamodu, Y.K. Su, I.H. Fong, C.T. Yeh, M.H. Chien, I.H. Kan, and C.M. Lin, “Enhanced Hsa-miR-181d/p-STAT3 and Hsa-miR-181d/p-STAT5A Ratios Mediate the Anticancer Effect of Garcinol in STAT3/5A-Addicted Glioblastoma,” Cancers 12, no. 10 (2020): 1888. doi:10.3390/cancers11121888
  • J. Zhao, T. Yang, J. Ji, C. Li, Z. Li, and L. Li, “Garcinol Exerts anti-Cancer Effect in Human Cervical Cancer Cells through Upregulation of T-Cadherin,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 107 (2018): 957–966. doi:10.1016/j.biopha.2018.08.060
  • W.C. Huang, K.T. Kuo, B.O. Adebayo, C.H. Wang, Y.J. Chen, K. Jin, T.H. Tsai, and C.T. Yeh, “Garcinol Inhibits Cancer Stem Cell-like Phenotype via Suppression of the Wnt/β-Catenin/STAT3 Axis Signalling Pathway in Human Non-Small Cell Lung Carcinomas,” The Journal of Nutritional Biochemistry 54 (2018): 140–150. doi:10.1016/j.jnutbio.2017.12.008
  • R.H. Gaonkar, S. Ganguly, S. Dewanjee, S. Sinha, A. Gupta, S. Ganguly, D. Chattopadhyay, and M. Chatterjee Debnath, “Garcinol Loaded Vitamin E TPGS Emulsified PLGA Nanoparticles: Preparation, Physicochemical C, in Vitro and in Vivo Studies,” Scientific Reports 7, no. 1 (2017): 530. doi:10.1038/s41598-017-00696-6
  • P. Warriar, K. Barve, and B. Prabhakar, “Anti-Arthritic Effect of Garcinol Enriched Fraction against Adjuvant Induced Arthritis,” Recent Patents on Inflammation & Allergy Drug Discovery 13, no. 1 (2019): 49–56. doi:10.2174/1872213X12666181120091528
  • P. Zhou, D. Li, F. Luo, and X. Wan, “NCOA2 Coordinates with the Transcriptional KAT2B-NF-κB Partner to Trigger Inflammation Response in Acute Kidney Injury,” Gene 832 (2022): 146583. doi:10.1016/j.gene.2022.146583
  • C. Sharma, and S.C. Kang, “Garcinol Pacifies Acrylamide Induced Cognitive Impairments, Neuroinflammation and Neuronal Apoptosis by Modulating GSK Signaling and Activation of pCREB by Regulating Cathepsin B in the Brain of Zebrafish Larvae,” Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 138 (2020): 111246. doi:10.1016/j.fct.2020.111246
  • M. Li, X. Li, and L. Yang, “Cardioprotective Effects of Garcinol following Myocardial Infarction in Rats with Isoproterenol-Induced Heart Failure,” AMB Express 10, no. 1 (2020): 137. doi:10.1186/s13568-020-01065-9
  • E.M. Moustafa, A.A. Hassan, I.H. EL-Khasha, and S.Z. Mansour, “The Role of Garcinol in Abrogating Cyclophosphamide/Radiation Nephrotoxicity via Suppressing Mincle/Syk/NF-κB Signaling Pathway,” Toxin Reviews 40, no. 4 (2021): 791–802. doi:10.1080/15569543.2020.1780450
  • M.A. Carrillo-Sepulveda, N. Maddie, C.M. Johnson, C. Burke, O. Lutz, B. Yakoub, B. Kramer, and D. Persand, “Vascular Hyperacetylation is Associated with Vascular Smooth Muscle Dysfunction in a Rat Model of Non-Obese Type 2 Diabetes,” Molecular Medicine (Cambridge, Mass.) 28, no. 1 (2022): 30. doi:10.1186/s10020-022-00441-4
  • B. Chetia Phukan, A. Dutta, S. Deb, R. Saikia, M.K. Mazumder, R. Paul, P. Bhattacharya, R. Sandhir, and A. Borah, “Garcinol Blocks Motor Behavioural Deficits by Providing Dopaminergic Neuroprotection in MPTP Mouse Model of Parkinson’s Disease: Involvement of anti-Inflammatory Response,” Experimental Brain Research 240, no. 1 (2022): 113–122. doi:10.1007/s00221-021-06237-y
  • M.K. Mazumder, R. Paul, B.C. Phukan, A. Dutta, J. Chakrabarty, P. Bhattacharya, and A. Borah, “Garcinol, an Effective Monoamine oxidase-B Inhibitor for the Treatment of Parkinson’s Disease,” Medical Hypotheses 117 (2018): 54–58. doi:10.1016/j.mehy.2018.06.009
  • J. Hanquier, T. Gimeno, V. Jeffers, and W.J. Jr. Sullivan, “Evaluating the GCN5b Bromodomain as a Novel Therapeutic Target against the Parasite Toxoplasma gondii. Experimental Parasitology,” Experimental Parasitology 211 (2020): 107868. doi:10.1016/j.exppara.2020.107868
  • S. Padhye, A. Ahmad, N. Oswal, P. Dandawate, R.A. Rub, J. Deshpande, K.V. Swamy, and F.H. Sarkar, “Fluorinated 2'-Hydroxychalcones as Garcinol Analogs with Enhanced Antioxidant and Activities,” Bioorganic & Medicinal Chemistry Letters 20, no. 19 (2010): 5818–5821. doi:10.1016/j.bmcl.2010.07.128
  • G.M. Sangaonkar, and K.D. Pawar, “Garcinia indica Mediated Biogenic Synthesis of Silver Nanoparticles with Antibacterial and Antioxidant Activities,” Colloids and Surfaces. B, Biointerfaces 164 (2018): 210–217. doi:10.1016/j.colsurfb.2018.01.044
  • Z. Feng, J. Chen, C. Chen, L. Feng, R. Wang, J. Zhu, R. Lou, J. Liu, Y. Ye, and L. Lin, “Bioactivity-Based Molecular Networking-Guided Identification of Guttiferone J from Garcinia Cambogia as an anti-Obesity Candidate,” BritishJournal of Pharmacology 180, no. 5 (2023): 589–608. doi:10.1111/bph.15979
  • P.S. Lee, K. Nagabhushanam, C.T. Ho, and M.H. Pan, “Inhibitory Effect of Garcinol on Obesity-Exacerbated, Colitis-Mediated Colon Carcinogenesis,” Molecular Nutrition & Food Research 65, no. 17 (2021): e2100410. doi:10.1002/mnfr.202100410
  • H.N. Fernando, KGUR. Kumarasinghe, TDCP. Gunasekara, HPSK. Wijekoon, EMAK. Ekanayaka, S.P. Rajapaksha, S.S.N. Fernando, and P.M. Jayaweera, “Synthesis, Characterization and Antimicrobial Activity of Garcinol Capped Silver Nanoparticles,” Journal of Microbiology and Biotechnology 29, no. 11 (2019): 1841–1851. doi:10.4014/jmb.1904.04032
  • A. Corona, S. Seibt, D. Schaller, R. Schobert, A. Volkamer, B. Biersack, and E. Tramontano, “Garcinol from Garcinia indica Inhibits HIV-1 Reverse Transcriptase-Associated Ribonuclease H,” Archiv Der Pharmazie 354, no. 9 (2021): e2100123. doi:10.1002/ardp.202100123
  • L. Qiu, X. Liu, H. Xia, and C. Xu, “Downregulation of p300/CBP-Associated Factor Protects from Vascular Aging via Nrf2 Signal Pathway Activation,” International Journal of Molecular Sciences 23, no. 20 (2022): 12574. doi:10.3390/ijms232012574
  • M.S. Monsey, S.G. Ruiz, and J.R. Taylor, “Regulation of Garcinol on Histone Acetylation in the Amygdala and on the Reconsolidation of a Cocaine-Associated Memory,” Frontiers in Behavioral Neuroscience 13 (2019): 281. doi:10.3389/fnbeh.2019.00281
  • A. Bhattacharya, S. Chatterjee, U. Bhaduri, A.K. Singh, M. Vasudevan, K.V. Sashidhara, R. Guha, A. Nazir, S.K. Rath, N. Natesh, et al. “Butyrylation Meets Adipogenesis-Probed by a p300-Catalyzed Acylation-Specific Small Molecule Inhibitor: Implication in anti-Obesity Therap,” Journal of Medicinal Chemistry 65, no. 18 (2022): 12273–12291. doi:10.1021/acs.jmedchem.2c00943
  • S. Deb, B.C. Phukan, M.K. Mazumder, A. Dutta, R. Paul, P. Bhattacharya, R. Sandhir, and A. Borah, “Garcinol, a Multifaceted Sword for the Treatment of Parkinson’s Disease,” Neurochemistry International 128 (2019): 50–57. doi:10.1016/j.neuint.2019.04.004
  • V. Jeffers, H. Gao, L.A. Checkley, Y. Liu, M.T. Ferdig, and W.J. Jr Sullivan, “Garcinol Inhibits GCN5-Mediated Lysine Acetyltransferase Activity and Prevents Replication of the Parasite Toxoplasma gondii,” Antimicrobial Agents and Chemotherapy 60, no. 4 (2016): 2164–2170. doi:10.1128/AAC.03059-15
  • C.W. Hsia, W.C. Huang, T. Jayakumar, C.H. Hsia, S.M. Hou, C.C. Chang, T.L. Yen, and J.R. Sheu, “Garcinol Acts as a Novel Integrin αIIbβ3 Inhibitor in Human Platelets,” Life Sciences 326 (2023): 121791. doi:10.1016/j.lfs.2023.121791
  • J. Wang, M. Wu, D. Zheng, H. Zhang, Y. Lv, L. Zhang, H.S. Tan, H. Zhou, Y.Z. Lao, and H.X. Xu, “Garcinol Inhibits Esophageal Cancer Metastasis by Suppressing the p300 and TGF-β1 Signaling Pathways,” Acta Pharmacologica Sinica 41, no. 1 (2020): 82–92. doi:10.1038/s41401-019-0271-3
  • A.K. Behera, M.M. Swamy, N. Natesh, and T.K. Kundu, “Garcinol and Its Role in Chronic Diseases,” Advances in Experimental Medicine and Biology 928 (2016): 435–452. doi:10.1007/978-3-319-41334-1_18
  • P. Kopytko, K. Piotrowska, J. Janisiak, and M. Tarnowski, “Garcinol-A Natural Histone Acetyltransferase Inhibitor and New anti-Cancer Epigenetic Drug,” International Journal of Molecular Sciences 22, no. 6 (2021): 2828. doi:10.3390/ijms22062828
  • S. Desai, P. Sharma, P. Kashyap, B. Choudhary, and J. Kaur, “Bioactive Compounds, Bio-Functional Properties, and Food Applications of Garcinia indica: A Review,” Journal of Food Biochemistry 46, no. 10 (2022): e14344. doi:10.1111/jfbc.14344
  • R. Ali, Z. Mirza, G.M. Ashraf, M.A. Kamal, S.A. Ansari, G.A. Damanhouri, A.M. Abuzenadah, A.G. Chaudhary, and I.A. Sheikh, “New Anticancer Agents: Recent Developments in Tumor Therapy,” Anticancer Research 32, no. 7 (2012): 2999–3005.
  • N.J. Basha, and S.M. Basavarajaiah, “Anticancer Potential of Bioactive Molecule Luteolin and Its Analogs: An Update,” Polycyclic Aromatic Compounds 43, no. 5 (2023): 3958–3976. doi:10.1080/10406638.2022.2080728
  • L. López-Bañuelos, and L. Vega, “Inhibition of Acetylation, is It Enough to Fight Cancer?,” Critical Reviews in Oncology/Hematology 176 (2022): 103752. doi:10.1016/j.critrevonc.2022.103752
  • O. Belmehdi, D. Taha, J. Abrini, L.C. Ming, A. Khalid, A.N. Abdalla, A.S. Algarni, A. Hermansyah, and A. Bouyahya, “Anticancer Properties and Mechanism Insights of α-Hederin,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 165 (2023): 115205. doi:10.1016/j.biopha.2023.11520
  • N.J. Basha, S.M. Basavarajaiah, Swathi. Baskaran, and Prasanna. Kumar, “A Comprehensive Insight on the Biological Potential of Embelin and Its Derivatives,” Natural Product Research 36, no. 12 (2022): 3054–3068. doi:10.1080/14786419.2021.1955361
  • N.J. Basha, and N.M. Goudgaon, “A Comprehensive Review on Pyrimidine Analogs-Versatile Scaffold with Medicinal and Biological Potential,” Journal of Molecular Structure 1246 (2021): 131168. doi:10.1016/j.molstruc.2021.131168
  • S.I. Son, D. Su, T.T. Ho, and H. Lin, “Garcinol is an HDAC11 Inhibitor,” ACS Chemical Biology 15, no. 11 (2020): 2866–2871. doi:10.1021/acschembio.0c00719
  • X.W. Yang, R.B. Grossman, and G. Xu, “Research Progress of Polycyclic Polyprenylated Acylphloroglucinols,” Chemical Reviews 118, no. 7 (2018): 3508–3558. doi:10.1021/acs.chemrev.7b00551
  • X. Wang, Y. Phang, J. Feng, S. Liu, H. Zhang, W. Fu, H. Zhou, G. Xu, H. Xu, and C. Zheng, “Stereodivergent Strategy in Structural Determination: Asymmetric Total Synthesis of Garcinol, Cambogin, and Related Analogues,” Organic Letters 23, no. 11 (2021): 4203–4208. doi:10.1021/acs.orglett.1c01139
  • G. Sethi, S. Chatterjee, P. Rajendran, F. Li, M.K. Shanmugam, K.F. Wong, A.P. Kumar, P. Senapati, A.K. Behera, K.M. Hui, et al. “Inhibition of STAT3 Dimerization and Acetylation by Garcinol Suppresses the Growth of Human Hepatocellular Carcinoma in Vitro and in Vivo,” Molecular Cancer 13, no. 1 (2014): 66. doi:10.1186/1476-4598-13-66
  • J. Zhang, H. Fang, J. Zhang, W. Guan, and G. Xu, “Garcinol Alone and in Combination with Cisplatin Affect Cellular Behavior and PI3K/AKT Protein Phosphorylation in Human Ovarian Cancer Cells,” Dose-Response : a Publication of International Hormesis Society 18, no. 2 (2020): 1559325820926732. doi:10.1177/1559325820926732
  • X. Wang, J. Feng, R. Wu, J. Tan, Q. Huang, Y. Phang, L. Zhang, W. Fu, H. Xu, and C. Zheng, “Garcinol and Its Analogues: Synthesis, Cytotoxic Activity and Mechanistic Investigation,” Bioorganic Chemistry 133 (2023): 106389. doi:10.1016/j.bioorg.2023.106389
  • S. Jin, W. Wang, F. Gan, W. Xie, J. Xu, Y. Chen, Z. Mei, and G. Yang, “Discovery of Novel Polycyclic Polyprenylated Acylphloroglucinols from the Fruits of Garcinia Xanthochymus as Antitumor Agents by Suppressing the STAT3 Signaling,” International Journal of Molecular Sciences 22, no. 19 (2021): 10365. doi:10.3390/ijms221910365
  • M. Zhang, Q. Lu, H. Hou, D. Sun, M. Chen, F. Ning, P. Wu, D. Wei, Y. Duan, Y. Pan, et al. “Garcinol Inhibits the Proliferation of Endometrial Cancer Cells by Inducing Cell Cycle Arrest,” Oncology Reports 45, no. 2 (2021): 630–640. doi:10.3892/or.2020.7900
  • Y. Zheng, C. Guo, X. Zhang, X. Wang, and A. Ma, “Garcinol Acts as an Antineoplastic Agent in Human Gastric Cancer by Inhibiting the PI3K/AKT Signaling Pathway,” Oncology Letters 20, no. 1 (2020): 667–676. doi:10.3892/ol.2020.11585
  • B. Paul, R.H. Gaonkar, D. Dutta, R. Dasi, B. Mukherjee, S. Ganguly, and S.K. Das, “Inhibitory Potential of iRGD Peptide-Conjugated Garcinol-Loaded Biodegradable Nanoparticles in Rat Colorectal Carcinoma,” Biomaterials Advances 134 (2022): 112714. doi:10.1016/j.msec.2022.112714
  • M.A. Bjornsti, and S.H. Kaufmann, “Topoisomerases and Cancer Chemotherapy: Recent Advances and Unanswered Questions,” F1000research. 8 (2019): 1704. doi:10.12688/f1000research.20201.1
  • S. Di Micco, M. Masullo, A.F. Bandak, J.M. Berger, R. Riccio, S. Piacente, and G. Bifulco, “Garcinol and Related Polyisoprenylated Benzophenones as Topoisomerase II Inhibitors: Biochemical and Molecular Modeling Studies,” Journal of Natural Products 82, no. 10 (2019): 2768–2779. doi:10.1021/acs.jnatprod.9b00382
  • N. Saadat, S. Akhtar, A. Goja, N.H. Razalli, A. Geamanu, D. David, Y. Shen, and S.V. Gupta, “Dietary Garcinol Arrests Pancreatic Cancer in p53 and K-Ras Conditional Mutant Mouse Model,” Nutrition and Cancer 70, no. 7 (2018): 1075–1087. doi:10.1080/01635581.2018.1502327
  • M. Farhan, A. Malik, M.F. Ullah, S. Afaq, M. Faisal, A.A. Farooqi, B. Biersack, R. Schobert, and A. Ahmad, “Garcinol Sensitizes NSCLC Cells to Standard Therapies by Regulating EMT-Modulating miRNAs,” International Journal of Molecular Sciences 20, no. 4 (2019): 800. doi:10.3390/ijms20040800
  • N.J. Basha, S.M. Basavarajaiah, and K. Shyamsunder, “Therapeutic Potential of Pyrrole and Pyrrolidine Analogs: An Update,” Molecular Diversity 26, no. 5 (2022): 2915–2937. doi:10.1007/s11030-022-10387-8
  • B.S. Mathada, N.J. Basha, M. Javeed, P. Karunakar, A. Venkatesulu, K. Erappa, and A. Varsha, “Novel Pyrimidines as COX-2 Selective Inhibitors: Synthesis, DFT Analysis, Molecular Docking and Dynamic Simulation Studies,” Journal of Biomolecular Structure & Dynamics 27 (2023): 1–14. doi:10.1080/07391102.2023.2202248
  • Y.W. Wang, X. Zhang, C.L. Chen, Q.Z. Liu, J.W. Xu, Q.Q. Qian, W.Y. Li, and Y.N. Qian, “Protective Effects of Garcinol against Neuropathic pain - Evidence from in Vivo and in Vitro Studies,” Neuroscience Letters 647 (2017): 85–90. doi:10.1016/j.neulet.2017.03.015
  • N.J. Basha, “Small Molecules as anti-Inflammatory Agents: Molecular Mechanisms and Heterocycles as Inhibitors of Signaling Pathways,” ChemistrySelect 8, no. 9 (2023): e202204723. doi:10.1002/slct.202204723
  • B. Choudhury, R. Kandimalla, R. Elancheran, R. Bharali, and J. Kotoky, “Garcinia Morella Fruit, a Promising Source of Antioxidant and anti-Inflammatory Agents Induces Breast Cancer Cell Death via Triggering Apoptotic Pathway,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 103 (2018): 562–573. doi:10.1016/j.biopha.2018.04.068
  • N.C. Chang, C.T. Yeh, Y.K. Lin, K.T. Kuo, I.H. Fong, N.G. Kounis, P. Hu, and M.Y. Hung, “Garcinol Attenuates Lipoprotein(a)-Induced Oxidative Stress and Inflammatory Cytokine Production in Ventricular Cardiomyocyte through α7-Nicotinic Acetylcholine Receptor-Mediated Inhibition of the p38 MAPK and NF-κB Signaling Pathways,” Antioxidants (Basel, Switzerland) 10, no. 3 (2021): 461. doi:10.3390/antiox10030461
  • P. Chantree, P. Martviset, N. Thongsepee, K. Sangpairoj, and P. Sornchuer, “Anti-Inflammatory Effect of Garcinol Extracted from Garcinia Dulcis via Modulating NF-κB Signaling Pathway,” Nutrients 15, no. 3 (2023): 575. doi:10.3390/nu15030575
  • J.Y. Kim, J. Jo, J. Leem, and K.K. Park, “Inhibition of p300 by Garcinol Protects against Cisplatin-Induced Acute Kidney Injury through Suppression of Oxidative Stress, Inflammation, and Tubular Cell Death in Mice,” Antioxidants (Basel, Switzerland) 9, no. 12 (2020): 1271. doi:10.3390/antiox9121271
  • M. Majeed, S. Majeed, K. Nagabhushanam, L. Lawrence, and L. Mundkur, “Novel Combinatorial Regimen of Garcinol and Curcuminoids for Non-Alcoholic Steatohepatitis (NASH) in Mice,” Scientific Reports 10, no. 1 (2020): 7440. doi:10.1038/s41598-020-64293-w
  • E.M. Jacob, A. Borah, S.C. Pillai, and D.S. Kumar, “Garcinol Encapsulated Ph-Sensitive Biodegradable Nanoparticles: A Novel Therapeutic Strategy for the Treatment of Inflammatory Bowel Disease,” Polymers 13, no. 6 (2021): 862. doi:10.3390/polym13060862
  • S. Chung, S. Kim, M. Son, M. Kim, E.S. Koh, S.J. Shin, C.W. Park, and H.S. Kim, “Inhibition of p300/CBP-Associated Factor Attenuates Renal Tubulointerstitial Fibrosis through Modulation of NF-kB and Nrf2,” International Journal of Molecular Sciences 20, no. 7 (2019): 1554. doi:10.3390/ijms20071554
  • Q. Yang, A.C. Burkardt, L.T. Sunkara, K. Xiao, and G. Zhang, “Natural Cyclooxygenase-2 Inhibitors Synergize with Butyrate to Augment Chicken Host Defense Peptide Gene Expression,” Frontiers in Immunology 13 (2022): 819222. doi:10.3389/fimmu.2022.819222
  • R. Jaganathan, and P. Kumaradhas, “Binding Mechanism of Anacardic Acid, Carnosol and Garcinol with PCAF: A Comprehensive Study Using Molecular Docking and Molecular Dynamics Simulations and Binding Free Energy Analysis,” Journal of Cellular Biochemistry 124, no. 5 (2023): 731–742. doi:10.1002/jcb.30400
  • L. Bolla, P. Srivastava, V. Ravichandiran, and S.K. Nanjappan, “Cytochrome P450 and P-gp Mediated Herb-Drug Interactions and Molecular Docking Studies of Garcinol,” Membranes 11, no. 12 (2021): 992. doi:10.3390/membranes11120992
  • H. Fouotsa, J.P. Dzoyem, A.M. Lannang, H.G. Stammler, C.D. Mbazoa, M. Luhmer, A.E. Nkengfack, E. Allemann, F. Delie, F. Meyer, et al. “Antiproliferative Activity of a New Xanthone Derivative from Leaves of Garcinia Nobilis Engl,” Natural Product Research 35, no. 24 (2021): 5604–5611. doi:10.1080/14786419.2020
  • P. Tomasiak, J. Janisiak, D. Rogińska, M. Perużyńska, B. Machaliński, and M. Tarnowski, “Garcinol and Anacardic Acid, Natural Inhibitors of Histone Acetyltransferases, Inhibit Rhabdomyosarcoma Growth and Proliferation,” Molecules (Basel, Switzerland) 28, no. 14 (2023): 5292. doi:10.3390/molecules28145292

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.