476
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A Review on Synthesis and Biological Applications of Quinoline Derivative as Fused Aromatic Compounds

, , , , &
Received 12 Apr 2023, Accepted 29 Sep 2023, Published online: 27 Oct 2023

References

  • N. Kaur, “Ultrasound-Assisted Synthesis of Six-Membered N-Heterocycles,” Mini-Reviews in Organic Chemistry 15, no. 6 (2018): 520–36. doi:10.2174/1570193x15666180221152535
  • N. Kaur, “Ionic Liquid Promoted Eco-Friendly and Efficient Synthesis of Six-Membered N-Polyheterocycles Curr,” Current Organic Synthesis 15, no. 8 (2018): 1124–46. doi:10.2174/1570179415666180903102542
  • N. Kaur, “Photochemical Reactions: Synthesis of Six-Membered N-Heterocycles Curr,” Organic Syntheses 14 (2017): 972–98.
  • N. Kaur, “Greener and Expeditious Synthesis of Fused Six-Membered N, N-Heterocycles Using Microwave Irradiation, Synth,” Synthetic Communications 45, no. 1 (2015): 1493–1519. doi:10.1080/00397911.2013.813548
  • N. Kaur, “Application of Microwave Irradiation in the Synthesis of Fused Six-Membered Heterocycles with N-Heteroatom,” Synthetic Communications 45 (2015): 1–34.
  • G. F. Zhang, X. F. Liu, S. Zhang, B. F. Pan, and M. L. Liu, “Ciprofloxacin Derivatives and Their Antibacterial Activities,” European Journal of Medicinal Chemistry 146 (2018): 599–612. doi:10.1016/j.ejmech.2018.01.078
  • G. F. Zhang, S. Zhang, B. F. Pan, X. F. Liu, and L. S. Feng, “4-Quinolone Derivatives and Their Activities against Gram Positive Pathogens,” European Journal of Medicinal Chemistry 143 (2018): 710–23. doi:10.1016/j.ejmech.2017.11.082
  • Y. Q. Hu, S. Zhang, Z. Xu, Z. S. Lv, M. L. Liu, and L. S. Feng, “4-Quinolone Hybrids and Their Antibacterial Activities,” European Journal of Medicinal Chemistry 141 (2017): 335–45. doi:10.1016/j.ejmech.2017.09.050
  • Y. Q. Hu, C. Gao, S. Zhang, L. Xu, Z. Xu, L. S. Feng, X. Wu, and F. Zhao, “Quinoline Hybrids and Their Antiplasmodial and Antimalarial Activities,” European Journal of Medicinal Chemistry 139 (2017): 22–47. doi:10.1016/j.ejmech.2017.07.061
  • Y. L. Fan, X. W. Cheng, J. B. Wu, M. Liu, F. Z. Zhang, Z. Xu, and L. S. Feng, “Antiplasmodial and Antimalarial Activities of Quinolone Derivatives: An Overview,” European Journal of Medicinal Chemistry 146 (2018): 1–14. doi:10.1016/j.ejmech.2018.01.039
  • K. D. Upadhyay, N. M. Dodia, R. C. Khunt, R. S. Chaniara, and A. K. Shah, “Synthesis and Biological Screening of Pyrano[3,2-c]Quinoline Analogues as anti-Inflammatory and Anticancer Agents,” ACS Medicinal Chemistry Letters 9, no. 3 (2018): 283–8. doi:10.1021/acsmedchemlett.7b00545
  • P. C. Sharma, M. Chaudhary, A. Sharma, M. Piplani, H. Rajak, and O. Prakash, “Insight View on Possible Role of Fluoroquinolones in Cancer Therapy,” Current Topics in Medicinal Chemistry 13, no. 16 (2013): 2076–96. doi:10.2174/15680266113139990133
  • Z. Y. Zhang, X. P. Xiao, T. Su, J. Y. Wu, J. W. Ren, J. C. Zhu, X. D. Zhang, R. H. Cao, and R. L. Du, “Synthesis, Structure-Activity Relationships and Preliminary Mechanism of Action of Novel Water-Soluble 4-Quinolone-3-Carboxamides as Antiproliferative Agents,” European Journal of Medicinal Chemistry 140 (2017): 239–51. doi:10.1016/j.ejmech.2017.09.017
  • K. C. Sekgota, S. Majumder, M. Isaacs, D. Mnkandhla, H. C. Hoppe, S. D. Khanye, F. H. Kriel, J. Coates, and P. T. Kaye, “Application of the Morita-Baylis-Hillman Reaction in the Synthesis of 3-[(N-Cycloalkylbenzamido)Methyl]-2-Quinolones as Potential HIV-1 Integrase Inhibitors,” Bioorganic Chemistry 75 (2017): 310–6. doi:10.1016/j.bioorg.2017.09.015
  • Z. G. Luo, J. J. Tan, Y. Zeng, C. X. Wang, and L. M. Hu, “Development of Integrase Inhibitors of Quinolone Acid Derivatives for Treatment of AIDS: An Overview,” Mini Reviews in Medicinal Chemistry 10, no. 11 (2010): 1046–57. doi:10.2174/1389557511009011046
  • Z. R. Wang, J. H. Hu, X. P. Yang, X. Feng, X. S. Li, L. Huang, and A. S. C. Chan, “Design, Synthesis, and Evaluation of Orally Bioavailable Quinoline-Indole Derivatives as Innovative Multitarget-Directed Ligands: Promotion of Cell Proliferation in the Adult Murine Hippocampus for the Treatment of Alzheimer’s Disease,” Journal of Medicinal Chemistry 61, no. 5 (2018): 1871–94. doi:10.1021/acs.jmedchem.7b01417
  • Y. L. Fan, J. B. Wu, X. W. Cheng, F. Z. Zhang, and L. S. Feng, “Fluoroquinolone Derivatives and Their anti-Tubercular Activities,” European Journal of Medicinal Chemistry 146 (2018): 554–63. doi:10.1016/j.ejmech.2018.01.080
  • S. Zhang, Z. Xu, C. Gao, Q. C. Ren, L. Chang, Z. S. Lv, and L. S. Feng, “Triazole Derivatives and Their anti-Tubercular Activity,” European Journal of Medicinal Chemistry 138 (2017): 501–13. doi:10.1016/j.ejmech.2017.06.051
  • A. S. Amarasekara, and M. A. Hasan, “1-(1-Alkylsulfonic)- 3-Methylimidazolium Chloride Bronsted Acidic Ionic Liquid Catalyzed Skraup Synthesis of Quinolines under Microwave Heating,” Tetrahedron Letters 55, no. 22 (2014): 3319–21. doi:10.1016/j.tetlet.2014.04.047
  • A. S. Nipate, C. K. Jadhav, A. V. Chate, P. P. Dixit, P. Sharma, and C. H. Gill, “Synthesis and Antimicrobial Activity of New Carbohydrazide Bearing Quinoline Scaffolds in Silico ADMET and Molecular Docking Studies,” Polycyclic Aromatic Compounds 15 (2023): 1–18. doi:10.1080/10406638.2023.2194653
  • N. Anand, T. Chanda, S. Koley, S. Chowdhury, and M. S. Singh, “CuSO4–d-Glucose, an Inexpensive and Eco-Efficient Catalytic System: Direct Access to Diverse Quinolines through Modified Friedländer Approach Involving SNAr/Reduction/Annulation Cascade in One Pot,” RSC Advances 5, no. 10 (2015): 7654–60. doi:10.1039/C4RA14138E
  • H. Yalgin, D. Luart, and C. Len, “First Examples of Doebner-Miller Reaction in Flow: Efficient Production of 2-Methylquinoline Derivatives in Water,” Journal of Flow Chemistry 6, no. 2 (2016): 80–5. doi:10.1556/1846.2015.00044
  • E. Ezzatzadeh, Z. Hossaini, S. Majedi, and F. H. S. Hussain, “Green Synthesis of New Pyrimidine Fused Quinolines Derivatives and Reduction of Organic Pollutants Using Fe3O4/KF/Clinoptilolite Supported on MWCNTs,” Polycyclic Aromatic Compounds 43, no. 5 (2023): 4707–28. doi:10.1080/10406638.2022.2094975
  • A. M. Asiri, S. A. Khan, and S. H. Al-Thaqafya, “One-Pot Synthesis, Spectroscopic and Physicochemical Studies of Quinoline Based Blue Emitting Donor—Acceptor Chromophores with Their Biological Application,” Journal of Fluorescence 25, no. 5 (2015): 1203–13. doi:10.1007/s10895-015-1607-0
  • R. Maltais, J. Roy, and D. Poirier, “Turning a Quinoline-Based Steroidal Anticancer Agent into Fluorescent Dye for Its Tracking by Cell Imaging,” ACS Medicinal Chemistry Letters 12, no. 5 (2021): 822–6. doi:10.1021/acsmedchemlett.1c00111
  • S. Gogoi, K. Shekarrao, A. Duarah, T. C. Bora, S. Gogoi, and R. C. Boruah, “A Microwave Promoted Solvent-Free Approach to Steroidal Quinolines and Their in Vitro Evaluation for Antimicrobial Activities,” Steroids 77, no. 13 (2012): 1438–45. doi:10.1016/j.steroids.2012.08.008
  • Y. T. Yang, S. Du, S. Wang, X. Jia, X. Wang, and X. Zhang, “Synthesis of New Steroidal Quinolines with Antitumor Properties,” Steroids 151 (2019): 108465. doi:10.1016/j.steroids.2019.108465
  • H. Saggadi, D. Luart, N. Thiebault, I. Polaert, L. Estel, and C. Len, “Toward the Synthesis of 6-Hydroxyquinoline Starting from Glycerol via Improved Microwave-Assisted Modified Skraup Reaction,” Catalysis Communications 44 (2014): 15–8. doi:10.1016/j.catcom.2013.07.029
  • Y. Yu, M. S. Tu, B. Jiang, S. L. Wang, and S. J. Tu, “Multicomponent Synthesis of Polysubstituted Dihydroquinoline Derivatives,” Tetrahedron Letters 53, no. 38 (2012): 5071–5. doi:10.1016/j.tetlet.2012.07.008
  • S. Song, Y. Dai, Y. Hong, X. Li, and X. Yan, “A Simple Continuous Reaction for the Synthesis of Quinoline Compounds,” Green Chemistry 24, no. 4 (2022): 1714–20. doi:10.1039/D1GC03064G
  • Z. G. Le, M. Liang, Z. S. Chen, S. H. Zhang, and Z. B. Xie, “Ionic Liquid as an Efficient Medium for the Synthesis of Quinoline Derivatives via α-Chymotrypsin-Catalyzed Friedländer Condensation,” Molecules (Basel, Switzerland) 22, no. 5 (2017): 762. doi:10.3390/molecules22050762
  • F. Shirini, A. Yahyazadeh, K. Mohammadi, and N. G. Khaligh, “Solvent-Free Synthesis of Quinoline Derivatives via the Friedländer Reaction Using 1,3-Disulfonic Acid Imidazolium Hydrogen Sulfate as an Efficient and Recyclable Ionic Liquid Catalyst,” Comptes Rendus Chimie 17, no. 4 (2014): 370–6. doi:10.1016/j.crci.2013.10.007
  • L. D. T. Prola, L. Buriol, C. P. Frizzo, G. S. Caleffi, M. R. B. Marzari, D. N. Moreira, G. B. Helio, Z. Nilo, and M. A. P. Martins, “Synthesis of Novel Quinolines Using TsOH/Ionic Liquid under Microwave,” Journal of the Brazilian Chemical Society 23, no. 9 (2012): 1663–8. doi:10.1590/S0103-50532012005000030
  • X. Xu, Y. Yang, X. Chen, X. Zhang, and W. Yi, “The One-Pot Synthesis of Quinolines via Co(Iii)-Catalyzed C–H Activation/Carbonylation/Cyclization of Anilines,” Organic & Biomolecular Chemistry 15, no. 43 (2017): 9061–5. doi:10.1039/c7ob02310c
  • R. R. Mondal, S. Khamarui, and D. K. Maiti, “CuBr–ZnI2 Combo-Catalysis for Mild CuI–CuIII Switching and sp2 C–H Activated Rapid Cyclization to Quinolines and Their Sugar-Based Chiral Analogues: A UV–Vis and XPS Study,” ACS Omega 1, no. 2 (2016): 251–63. doi:10.1021/acsomega.6b00185
  • B. Li, C. Guo, X. Fan, J. Zhang, and X. Zhang, “Synthesis of Substituted Quinoline via Copper-Catalyzed One-Pot Cascade Reactions of 2-Bromobenzaldehydes with Aryl Methyl Ketones and Aqueous Ammonia,” Tetrahedron Letters 55, no. 43 (2014): 5944–8. doi:10.1016/j.tetlet.2014.09.024
  • X. L. Luo, X. X. Liu, J. H. Pu, W. F. Tian, X. Q. Zhou, D. D. Wei, and G. S. Huang, “Palladium-Catalyzed Aerobic Oxidative Synthesis of 3-Phenylquinoline with Azides and Aldehydes,” ChemistrySelect 2, no. 27 (2017): 8658–60. doi:10.1002/slct.201701312
  • J. X. Zhou, W. Wang, and X. S. Wang, “An Efficient Method for the Synthesis of 3‐Arylnaphtho[2,3‐f] Quinoline‐1,2‐Dicarboxylate Derivatives Catalyzed by Yb(OTf)3,” Journal of Heterocyclic Chemistry 51, no. 2 (2014): 502–6. doi:10.1002/jhet.1624
  • P. Chidurala, V. Jetti, R. Pagadala, J. S. Meshram, and S. B. Jonnalagadda, “A Multicomponent, Catalyst-Free, One-Pot Synthesis of Functionalized 1,4-Dihydroquinolines and Their Antimicrobial Studies,” Journal of Heterocyclic Chemistry 52, no. 5 (2015): 1302–7. doi:10.1002/jhet.2230
  • S. Moloi, S. Maddila, and S. B. Jonnalagadda, “Microwave-Irradiated One-Pot Synthesis of Quinoline Derivatives Catalyzed by Triethylamine,” Research on Chemical Intermediates 43, no. 11 (2017): 6233–43. doi:10.1007/s11164-017-2986-4
  • X. M. Lu, J. Li, Z. J. Cai, R. Wang, S. Y. Wang, and S. J. Ji, “One Pot Synthesis of Pyrrolo[3,4-c]Quinolinone/Pyrrolo[3,4-c]Quinoline Derivatives from 2-Aminoarylacrylates/2-Aminochalcones and Tosylmethyl Isocyanide (TosMIC),” Organic & Biomolecular Chemistry 12, no. 46 (2014): 9471–7. doi:10.1039/c4ob01580k
  • G. K. Verma, K. Raghuvanshi, R. Kumar, and M. S. Singh, “An Efficient One-Pot Three-Component Synthesis of Functionalized Pyrimido[4,5-b]Quinolines and Indeno Fused Pyrido[2,3-d]Pyrimidines in Water,” Tetrahedron Letters 53, no. 4 (2012): 399–402. doi:10.1016/j.tetlet.2011.11.047
  • M. M. Khan, S. Khan, S. Shareef, and S. Hussain, Saigal, “A Facile and Green Approach for One-Pot Synthesis of Functionalized Chromeno[3, 4-b]Quinolines and Spiro Chromeno[3, 4-b]Quinolines by Using Molecular Iodine as a Catalyst,” ChemistrySelect 3, no. 8 (2018): 2261–6. doi:10.1002/slct.201702810
  • A. M. El-Naggar, and S. K. Ramadan, “Efficient Synthesis of Some Pyrimidine and Thiazolidine Derivatives Bearing Quinoline Scaffold under Microwave Irradiation,” Synthetic Communications 50, no. 14 (2020): 2188–98. doi:10.1080/00397911.2020.1769673
  • E. Kowsari, and M. Mallakmohammadi, “Ultrasound Promoted Synthesis of Quinolines Using Basic Ionic Liquids in Aqueous Media as a Green Procedure,” Ultrasonics Sonochemistry 18, no. 1 (2011): 447–54. doi:10.1016/j.ultsonch.2010.07.020
  • A. Aboelnaga, and T. H. EL-Sayed, “Click Synthesis of New 7-Chloroquinoline Derivatives by Using Ultrasound Irradiation and Evaluation of Their Biological Activity,” Green Chemistry Letters and Reviews 11, no. 3 (2018): 254–63. doi:10.1080/17518253.2018.1473505
  • N. C. Desai, B. Y. Patel, and B. P. Dave, “Synthesis and Antimicrobial Activity of Novel Quinoline Derivatives Bearing Pyrazoline and Pyridine Analogues,” Medicinal Chemistry Research 26, no. 1 (2017): 109–19. doi:10.1007/s00044-016-1732-6
  • W. S. Hamama, M. E. Ibrahim, A. A. Gooda, and H. H. Zoorob, “Efficient Synthesis, Antimicrobial, Antioxidant Assessments and Geometric Optimization Calculations of Azoles- Incorporating Quinoline Moiety,” Journal of Heterocyclic Chemistry 55, no. 11 (2018): 2623–34. doi:10.1002/jhet.3322
  • S. A. Khan, A. M. Asiri, H. M. Basisi, M. Asad, M. E. M. Zayed, K. Sharma, and M. Y. Wani, “Synthesis and Evaluation of Quinoline-3-Carbonitrile Derivatives as Potential Antibacterial Agents,” Bioorganic Chemistry 88 (2019): 102968. doi:10.1016/j.bioorg.2019.102968
  • R. R. Soares, J. M. F. da Silva, B. C. Carlos, C. C. da Fonseca, L. S. A. de Souza, F. V. Lopes, R. M. de Paula Dias, P. O. L. Moreira, C. Abramo, G. H. R. Viana, et al. “New Quinoline Derivatives Demonstrate a Promising Antimalarial Activity against Plasmodium falciparum in Vitro and Plasmodium berghei in Vivo,” Bioorganic & Medicinal Chemistry Letters 25, no. 11 (2015): 2308–13. doi:10.1016/j.bmcl.2015.04.014
  • M. C. Lombard, D. D. N’Da, J. C. Breytenbach, N. I. Kolesnikova, C. Tran Van Ba, S. Wein, J. Norman, P. Denti, H. Vial, and L. Wiesner, “Antimalarial and Anticancer Activities of Artemisinin–Quinoline Hybrid-Dimers and Pharmacokinetic Properties in Mice,” European Journal of Pharmaceutical Sciences 47, no. 5 (2012): 834–41. doi:10.1016/j.ejps.2012.09.019
  • S. Verma, S. Pandey, P. Agarwal, P. Verma, S. Deshpande, J. K. Saxena, K. Srivastava, P. M. S. Chauhan, and Y. S. Prabhakar, “N-(7-Chloroquinolinyl-4-Aminoalkyl)Arylsulfonamides as Antimalarial Agents: Rationale for the Activity with Reference to Inhibition of Hemozoin Formation,” RSC Advances 6, no. 30 (2016): 25584–93. doi:10.1039/C6RA00846A
  • T. M. Ibrahim, G. Abada, M. Dammann, R. M. Maklad, W. M. Eldehna, R. Salem, M. M. Abdelaziz, R. A. El-Domany, A. A. Bekhit, and F. M. Beockler, “Etrahydrobenzo[h]Quinoline Derivatives as a Novel Chemotype for Dual Antileishmanial-Antimalarial Activity Graced with Antitubercular Activity: Design, Synthesis and Biological Evaluation,” European Journal of Medicinal Chemistry 257 (2023): 115534. doi:10.1016/j.ejmech.2023.115534
  • V. Manikala, and V. M. Rao, “Synthesis and Biological Evaluation of Chalcone Tethered Quinoline Derivatives as Anticancer Agents,” Chemical Data Collections 28 (2020): 100423. doi:10.1016/j.cdc.2020.100423
  • M. S. Al-Said, M. M. Ghorab, M. S. Al-Dosari, and M. M. Hamed, “Synthesis and in Vitro Anticancer Evaluation of Some Novel Hexahydroquinoline Derivatives Having a Benzenesulfonamide Moiety,” European Journal of Medicinal Chemistry 46, no. 1 (2011): 201–7. doi:10.1016/j.ejmech.2010.11.002
  • D. I. A. Othman, K. B. Selim, M. A. El-Sayed, A. S. Tantawy, Y. Amen, K. Shimizu, T. Okauchi, and M. Kitamura, “Design, “Synthesis and Anticancer Evaluation of New Substituted Thiophene-Quinoline Derivatives,” Bioorganic & Medicinal Chemistry 27, no. 19 (2019): 115026. doi:10.1016/j.bmc.2019.07.042
  • B. Kundu, S. K. Das, S. Paul Chowdhuri, S. Pal, D. Sarkar, A. Ghosh, A. Mukherjee, D. Bhattacharya, B. B. Das, and A. Talukdar, “Discovery and Mechanistic Study of Tailor-Made Quinoline Derivatives as Topoisomerase 1 Poison with Potent Anticancer Activity,” Journal of Medicinal Chemistry 62, no. 7 (2019): 3428–46. doi:10.1021/acs.jmedchem.8b01938
  • B. Akkachairin, W. Rodphon, O. Reamtong, M. Mungthin, J. Tummatorn, C. Thongsornkleeb, and S. Ruchirawat, “Synthesis of Neocryptolepines and Carbocycle-Fused Quinolines and Evaluation of Their Anticancer and Antiplasmodial Activities,” Bioorganic Chemistry 98 (2020): 103732. doi:10.1016/j.bioorg.2020.103732
  • A. Upadhyay, P. Kushwaha, S. Gupta, R. P. Dodda, K. Ramalingam, R. Kant, N. Goyal, and K. V. Sashidhara, “Synthesis and Evaluation of Novel Triazolyl Quinoline Derivatives as Potential Antileishmanial Agents,” European Journal of Medicinal Chemistry 154 (2018): 172–81. doi:10.1016/j.ejmech.2018.05.014
  • A. Tejería, Y. Pérez-Pertejo, R. M. Reguera, R. Carbajo-Andrés, R. Balaña-Fouce, C. Alonso, E. Martin-Encinas, A. Selas, G. Rubiales, and F. Palacios, “Antileishmanial Activity of New Hybrid Tetrahydroquinoline and Quinoline Derivatives with Phosphorus Substituents,” European Journal of Medicinal Chemistry 162 (2019): 18–31. doi:10.1016/j.ejmech.2018.10.065
  • R. Balaña-Fouce, C. F. Prada, J. M. Requena, M. Cushman, Y. Pommier, R. Álvarez-Velilla, J. S. Escudero-Martínez, E. Calvo-Álvarez, Y. Pérez-Pertejo, and R. M. Reguera, “Indotecan (LMP400) and AM13-55: Two Novel Indenoisoquinolines Show Potential for Treating Visceral Leishmaniasis,” Antimicrobial Agents and Chemotherapy 56, no. 10 (2012): 5264–70. doi:10.1128/aac.00499-12
  • M. Perreault, R. Maltais, J. Roy, R. Dutour, and D. Poirier, “Design of a Mestranol 2-N-Piperazino-Substituted Derivative Showing Potent and Selective in Vitro and in Vivo Activities in MCF-7 Breast Cancer Models,” ChemMedChem 12, no. 2 (2017): 177–82. doi:10.1002/cmdc.201600482
  • L. Golea, R. Chebaki, M. Laabassi, and P. Mosset, “Synthesis, Characterization of Some Substituted Quinolines Derivatives: DFT, Computational, in Silico ADME, Molecular Docking and Biological Activities,” Chemical Data Collections 43 (2023): 100977. doi:10.1016/j.cdc.2022.100977
  • X. Y. Sun, R. Wu, X. Wen, L. Guo, C. P. Zhou, J. Li, Z. S. Quan, and J. Bao, “Synthesis and Evaluation of Antibacterial Activity of 7-Alkyloxy-4,5-Dihydro-Imidazo[1,2-a]Quinoline Derivatives,” European Journal of Medicinal Chemistry 60 (2013): 451–5. doi:10.1016/j.ejmech.2012.12.034
  • Y. J. Pragathi, D. Veronica, K. Anitha, M. V. B. Rao, and R. R. Raju, “Synthesis and Biological Evaluation of Chalcone Derivatives of 1,2,4-Thiadiazol-Benzo[d]Imidazol-2-yl)Quinolin-2(1H)-One as Anticancer Agents,” Chemical Data Collections 30 (2020): 100556. doi:10.1016/j.cdc.2020.100556
  • A. Sabt, W. M. Eldehna, T. M. Ibrahim, A. A. Bekhit, and R. Z. Batran, “New Antileishmanial Quinoline Linked Isatin Derivatives Targeting DHFR-TS and PTR1: Design, Synthesis, and Molecular Modeling Studies,” European Journal of Medicinal Chemistry 246 (2023): 114959. doi:10.1016/j.ejmech.2022.114959
  • K. D. Thomas, A. V. Adhikari, S. Telkar, I. H. Chowdhury, R. Mahmood, N. K. Pal, G. Row, and E. Sumesh, “Design, Synthesis and Docking Studies of New Quinoline-3-Carbohydrazide Derivatives as Antitubercular Agents,” European Journal of Medicinal Chemistry 46, no. 11 (2011): 5283–92. doi:10.1016/j.ejmech.2011.07.033
  • S. Kantevari, S. R. Patpi, B. Sridhar, P. Yogeeswari, and D. Sriram, “Synthesis and Antitubercular Evaluation of Novel Substituted Aryl and Thiophenyl Tethered Dihydro-6H-Quinolin-5-Ones,” Bioorganic & Medicinal Chemistry Letters 21, no. 4 (2011): 1214–7. doi:10.1016/j.bmcl.2010.12.082
  • A. Hazra, S. Mondal, A. Maity, S. Naskar, P. Saha, R. Paira, K. B. Sahu, P. Paira, S. Ghosh, C. Sinha, et al. “Amberlite–IRA-402 (OH) Ion Exchange Resin Mediated Synthesis of Indolizines, Pyrrolo [1,2-a] Quinolines and Isoquinolines: Antibacterial and Antifungal Evaluation of the Products,” European Journal of Medicinal Chemistry 46, no. 6 (2011): 2132–40. doi:10.1016/j.ejmech.2011.02.066
  • R. Zuo, A. T. Garrison, A. Basak, P. Zhang, R. W. Huigens, and Y. Ding, “In Vitro Antifungal and Antibiofilm Activities of Halogenated Quinoline Analogues against Candida albicans and Cryptococcus neoformans,” International Journal of Antimicrobial Agents 48, no. 2 (2016): 208–11. doi:10.1016/j.ijantimicag.2016.04.019
  • K. Nakamoto, I. Tsukada, K. Tanaka, M. Matsukura, T. Haneda, S. Inoue, N. Murai, S. Abe, N. Ueda, M. Miyazaki, et al. “Synthesis and Evaluation of Novel Antifungal Agents-Quinoline and Pyridine Amide Derivatives,” Bioorganic & Medicinal Chemistry Letters 20, no. 15 (2010): 4624–6. doi:10.1016/j.bmcl.2010.06.005
  • M. F. El Shehry, M. M. Ghorab, S. Y. Abbas, E. A. Fayed, S. A. Shedid, and Y. A. Ammar, “Quinoline Derivatives Bearing Pyrazole Moiety: Synthesis and Biological Evaluation as Possible Antibacterial and Antifungal Agents,” European Journal of Medicinal Chemistry 143 (2018): 1463–73. doi:10.1016/j.ejmech.2017.10.046
  • A. R. Nesaragi, R. R. Kamble, P. K. Bayannavar, S. K. J. Shaikh, S. R. Hoolageri, B. Kodasi, S. D. Joshi, and V. M. Kumbar, “Microwave Assisted Regioselective Synthesis of Quinoline Appended Triazoles as Potent anti-Tubercular and Antifungal Agents via Copper (I) catalyzed Cycloaddition,” Bioorganic & Medicinal Chemistry Letters 41 (2021): 127984. doi:10.1016/j.bmcl.2021.127984
  • S. Vandekerckhove, H. G. Tran, T. Desmet, and M. D’hooghe, “Evaluation of (4-Aminobutyloxy) Quinolines as a Novel Class of Antifungal Agents,” Bioorganic & Medicinal Chemistry Letters 23, no. 16 (2013): 4641–3. doi:10.1016/j.bmcl.2013.06.014
  • A. M. Ghanim, A. S. Girgis, B. M. Kariuki, N. Samir, M. F. Said, A. Abdelnaser, S. Nasr, M. S. Bekheit, M. F. Abdelhameed, A. J. Almalki, et al. “Design and Synthesis of Ibuprofen-Quinoline Conjugates as Potential anti-Inflammatory and Analgesic Drug Candidates,” Bioorganic Chemistry 119 (2022): 105557. doi:10.1016/j.bioorg.2021.105557
  • L. Huang, L. Yang, J.-P. Wan, L. Zhou, Y. Liu, and G. Hao, “Metal-Free Three-Component Assemblies of Anilines, α-Keto Acids and Alkyl Lactates for Quinoline Synthesis and Their anti-Inflammatory Activity,” Organic & Biomolecular Chemistry 20, no. 21 (2022): 4385–90. doi:10.1039/d2ob00661h
  • S. A. H. El-Feky, Z. K. Abd El-Samii, N. A. Osman, J. Lashine, M. A. Kamel, and H. K. Thabet, “Synthesis, Molecular Docking and anti-Inflammatory Screening of Novel Quinoline Incorporated Pyrazole Derivatives Using the Pfitzinger Reaction II,” Bioorganic Chemistry 58 (2015): 104–16. doi:10.1016/j.bioorg.2014.12.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.