63
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design, Characterization and Antimicrobial Efficiency of Novel Annulated Furo[3'',2'':6',7']Chromeno[3',4':4,5]Furo [3,2-b]Pyridines

Received 06 Sep 2023, Accepted 30 Sep 2023, Published online: 19 Oct 2023

References

  • S.I. Balbaa, A.Y. Zaki, and S.M. Abdel-Wahab, “A Micro-Method for the Estimation of Khellin in Presence of Other Constituents of Ammi Visnaga Fruits,” Planta Medica 16, no. 3 (1968): 329–34. doi:10.1055/s-0028-1099916
  • V. Adımcılar, N. Beyazit, and F.B. Erim, “Khellin and Visnagin in Different Organs of Ammi Visnaga and Ammi Majus,” Natural Product Research 37, no. 1 (2023): 164–6. doi:10.1080/14786419.2021.1956924
  • A.A. Abu-Hashem and M. El-Shazly, “Synthesis, Reactions and Biological Activities of Furochromones: A Review,” European Journal of Medicinal Chemistry 90 (2015): 633–65. doi:10.1016/j.ejmech.2014.12.001
  • P. Vanachayangkul, K. Byer, S. Khan, and V. Butterweck, “An Aqueous Extract of Ammi Visnaga Fruits and Its Constituents Khellin and Visnagin Prevent Cell Damage Caused by Oxalate in Renal Epithelial Cells,” Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 17, no. 8-9 (2010): 653–8. doi:10.1016/j.phymed.2009.10.011
  • H.A. Abu Shady, S.T. Hassib, A.N. Mikhael, and S.L. El Ansary, “Synthesis of Some Chromones and Angular Furochromones of Expected Pharmacological Activities,” Egyptian Journal of Pharmaceutical Sciences 29 (1988): 393–407.
  • E.A. Abdel-Aal, S. Daosukho, and H. El-Shall, “Effect of Supersaturation Ratio and Khella Extract on Nucleation and Morphology of Kidney Stones,” Journal of Crystal Growth. 311, no. 9 (2009): 2673–81. doi:10.1016/j.jcrysgro.2009.02.027
  • G.V. Anrep, M.R. Kenawy, and G.S. Barsoum, “The Coronary Vasodilator Action of Khellin,” American Heart Journal 37, no. 4 (1949): 531–42. doi:10.1016/0002-8703(49)91131-X
  • A.A. Abu-Hashem and M.M. Youssef, “Synthesis of New Visnagen and Khellin Furochromone Pyrimidine Derivatives and Their Anti-Inflammatory and Analgesic Activity,” Molecules (Basel, Switzerland) 16, no. 3 (2011): 1956–72. doi:10.3390/molecules16031956
  • V.R. Askari, Z. Najafi, V.B. Rahimi, and M.H. Boskabady, “Comparative Study on the Impacts of Visnagin and Its Methoxy Derivative Khellin on Human Lymphocyte Proliferation and Th1/Th2 Balance,” Pharmacological Reports 75, no. 2 (2023): 411–22. doi:10.1007/s43440-023-00452-w
  • M.A. Ibrahim, S.A. Al-Harbi, E.S. Allehyani, E.A. Alqurashi, and A.O. Alqarni, “Utility of 3-Chloro-3-(4,9-Dimethoxy-5-Oxo-5H-Furo[3,2-g]Chromen-6-yl)Prop-2-Enal for Construction of Novel Heterocyclic Systems: Synthesis, Characterization, Antimicrobial and Anticancer Evaluation, Synth,” Synthetic Communications 52, no. 4 (2022): 608–21. doi:10.1080/00397911.2022.2039712
  • A.A. Selim, B.M. Essa, I.M. Abdelmonem, M.A. Amin, and M.O. Sarhan, “Extraction, Purification and Radioiodination of Khellin as Cancer Theranostic Agent,” Applied Radiation and Isotopes 178 (2021): 109970. doi:10.1016/j.apradiso.2021.109970
  • F.A. Ragab, N.A. El-Sayed, A.A.M. Eissa, and A.M. El Kerdawy, “Synthesis and Anticonvulsant Activity of Certain Substituted Furochromone, Benzofuran and Flavone Derivatives,” Chemical & Pharmaceutical Bulletin 58, no. 9 (2010): 1148–56. doi:10.1248/cpb.58.1148
  • M.A. Ibrahim, S.A. Al-Harbi, and E.S. Allehyani, “Synthesis and Antimicrobial Evaluation of the Novel Heteroannulated Furo[3`,2`:6,7]Chromeno[2,3-b]Pyridines: Part 1,” Journal of Heterocyclic Chemistry 57, no. 10 (2020): 3632–41. doi:10.1002/jhet.4082
  • N. Harb, A.G. Sarhan, K.A. El Dougdoug, and H.H.A. Gomaa, “Ammi-Visnaga Extract; a Novel Phyto-Antiviral Agent against Bovine Rotavirus,” Virusdisease 34, no. 1 (2023): 76–87. doi:10.1007/s13337-022-00803-w
  • L. Trabalzini, P. Martelli, L. Bovalini, F. Dall’Acqua, and E. Sage, “Photosensitization of DNA of Defined Sequence by Furochromones, Khellin and Visnagin,” Journal of Photochemistry and Photobiology B, Biology 7, no. 2-4 (1990): 317–36. doi:10.1016/1011-1344(90)85165-s
  • D. Vedaldi, S. Caffieri, F. Dall’Acqua, L. Andreassi, L. Bovalini, and P. Martelli, “Khellin, a Naturally Occurring Furochromone, Used for the Photochemotherapy of Skin Diseases: Mechanism of Action,” Il Farmaco; Edizione Scientifica 43, no. 4 (1988): 333–46.
  • A. Abdel-Fattah, M.N. Aboul-Enein, G.M. Wassel, and B.S. El-Menshawi, “An Approach to the Treatment of Vitiligo by Khellin,” Dermatologica 165, no. 2 (1982): 136–40. doi:10.1159/000249932
  • A. Ez-Zahir, A. Lahna, F. Marnissi, M. Oudghiri, and A. Naya, “Immuno-Modulatory, anti-Psoriatic Effects and Furanochromone (Khellin and Visnagin) Contents of Ammi Visnaga (L.) Hydroethanolic Extract,” Biomedical and Pharmacology Journal 15, no. 3 (2022): 1623–35. doi:10.13005/bpj/2500
  • I. Esentürk-Güzel, S. Topuzoğlu, L. Abdo, E.S. Gürer, and E.A. Yapar, “Ammi Visnaga L. and Nanocarrier Approaches in the Treatment of Skin Diseases,” Journal of Research in Pharmacy 26 (2022): 820–7. doi:10.29228/jrp.181
  • I.O. Akchurin, A.I. Yakhutina, A.Y. Bochkov, N.P. Solovjova, M.G. Medvedev, and V.F. Traven, “Novel Push-Pull Fluorescent Dyes–7-(Diethylamino)Furo-and Thieno[3,2-c]Coumarins Derivatives: Structure, Electronic Spectra and TD-DFT Study,” Journal of Molecular Structure 1160 (2018): 215–21. doi:10.1016/j.molstruc.2018.01.086
  • S. Abdel Halim and M.A. Ibrahim, “Synthesis, FT-IR, Structural, Thermochemical, Electronic Absorption Spectral, and NLO Analysis of the Novel 10-Methoxy-10H-Furo[3,2-g]Chromeno[2,3-b][1,3]Thiazolo[5,4-e]Pyridine-2,10(3H)-Dione (MFCTP): a DFT/TD-DFT Study,” RSC Advances 11, no. 51 (2021): 32047–66. doi:10.1039/D1RA06134H
  • S. Abdel Halim and M.A. Ibrahim, “Synthesis, Spectral Analysis, Quantum Studies, NLO, and Thermodynamic Properties of the Novel 5-(6-Hydroxy-4-Methoxy-1-Benzofuran-5-Ylcarbonyl)-6-Amino-3-Methyl-1H-Pyrazolo[3,4-b]Pyridine (HMBPP,” RSC Advances 12, no. 21 (2022): 13135–53. doi:10.1039/D2RA01469F
  • S. Abdel Halim and M.A. Ibrahim, “Quantum Computational, Spectroscopic Investigations on Benzofuranylcarbonylpyrazolopyridine by DFT/TD-DFT: Synthesis, Structure, NBO and NLO Research,” Journal of Molecular Structure. 1293 (2023): 136201. doi:10.1016/j.molstruc.2023.136201
  • M.A. Ibrahim, A. Badran, N.M. El-Gohary, and N.A. Abdel-Fatah, “Chemical Reactions of Furochromones, Visnagin and Khellin,” Heterocycles 94, no. 3 (2017): 389–440. doi:10.3987/REV-16-852
  • M.A. Ibrahim and N.M. El-Gohary, “Construction and Biological Evaluations of Some Novel Chromeno[2,3-b]Pyridines and Chromeno[2,3-b]Quinolines Using 6-Methylchromone-3-Carbonitrile,” Heterocycles 102, no. 3 (2021): 489–505. doi:10.3987/COM-20-14388
  • M.A. Ibrahim, S.A. Al-Harbi, and E.S. Allehyani, “Synthetic Approach for Building Heteroannulated Furo[3,2-g]Chromenes Using 4,9-Dimethoxy-5-Oxo-5H-Furo[3,2-g]Chromene-6-Carbonitrile and Cyclic Carbon Nucleophiles,” Heterocycles 100, no. 9 (2020): 1450–62. doi:10.3987/COM-20-14294
  • M.A. Ibrahim, S.A. Al-Harbi, and E.S. Allehyani, “Chemical Transformations with 4,9-Dimethoxy-5-Oxo-5H-Furo[3,2-g]Chromene-6-Carbonitrile: Construction and Antimicrobial Evaluation of the Novel Heteroannulated Furochromenopyridines,” Heterocycles 100, no. 8 (2020): 1172–88. doi:10.3987/COM-20-14273
  • M.A. Ibrahim and E.S. Allehyani, “Reactivity of 4,9-Dimethoxy-5-Oxo-5H-Furo[3,2-g]Chromene-6-Carbonitrile towards Some Nitrogen Nucleophilic Reagents,” Heterocycles 100, no. 12 (2020): 2091–107. doi:10.3987/COM-20-14347
  • N.M. El-Gohary, M.A. Ibrahim, E.R. El-Sawy, and N.A. Abdel-Fatah, “Chemical Reactivity of 4,9-Dimethoxy-5-Oxo-5H-Furo[3,2-g]Chromene-6-Carboxaldehyde toward Some Nucleophilic Reagents,” Journal of Heterocyclic Chemistry 54, no. 2 (2017): 1467–78. doi:10.1002/jhet.2733
  • M.A. Ibrahim and A. Badran, “Synthesis and Chemical Reactivity of Novel Pyrano[3,2-c]Quinoline-3-Carbonitriles, Synth,” Synthetic Communications 50, no. 12 (2020): 1871–1882. doi:10.1080/00397911.2020.1759095
  • V.V. Mulwad and A.S. Hegde, “Synthesis and Antimicrobial Screening of 4H-2-Acetyl-3-Acetyamidofuro[3,2-c]Benzopyran 4-One, 11H -2,4-Dimethyl-3,4-Dihydro-3-Amino-4-Hydroxy-Pyrimido[3,2-d]Furo[3,2-c]Benzopyran-11-One and 4H-2-Acetyl-3-(3´-Methyl-1´,2´,4´-Triazol-4´-yl)Furo[3,2-c]Benzopyran 4-One,” Indian Journal of Chemistry 48B (2009): 1558–64.
  • S. Ghosh, J. Krishnan, V. Karthik, A. Rana, A. Dhakshinamoorthy, and S. Biswas, “Friedlander Condensation Reaction Catalyzed by Hafnium-Based Metal-Organic Framework,” Molecular Catalysis 533 (2022): 112748. doi:10.1016/j.mcat.2022.112748
  • S. Genovese, F. Epifano, M.C. Marcotullio, C. Pelucchini, and M. Curini, “An Alternative Quinoline Synthesis by via Friedlander Reaction Catalyzed by Yb(OTf),” Tetrahedron Letters 52, no. 27 (2011): 3474–7. doi:10.1016/j.tetlet.2011.04.109
  • S.S. Ibrahim, H.A. Allimony, A.M. Abdel-Halim, and M.A. Ibrahim, “Synthesis and Reactions of 8-Allylchromone-3-Carboxaldehyde,” Arkivoc 2009, no. 14 (2010): 28–38. doi:10.3998/ark.5550190.0010.e03
  • S. Abdel Halim and M.A. Ibrahim, “Simple Quantum Computation Composition, DFT Modeling, Spectroscopic Characterization, and Charge, NLO Analysis of the Novel Pyridopyrimidineamide,” Journal of Molecular Structure 1251 (2022): 132020. doi:10.1016/j.molstruc.2021.132020
  • M.A. Ibrahim, S.A. Al-Harbi, E.S. Allehyani, E.A. Alqurashi, and F.M. Alshareef, “Novel Heteroannulated Chromeno[3′,2′:5,6]Pyrido[2,3-d]Pyrido[2′,3′:4,5][1,3] Thiazolo[3,2-a]Pyrimidines: Synthesis, Characterization and Antimicrobial Evaluation,” Polycyclic Aromatic Compounds (2023): 1–14. doi:10.1080/10406638.2023.2172050
  • Z. Hussain, M.A. Ibrahim, N.M. El-Gohary, and A. Badran, “Synthesis, Characterization, DFT, QSAR, Antimicrobial, and Antitumor Studies of Some Novel Pyridopyrimidines,” Journal of Molecular Structure 1269 (2022): 133870. doi:10.1016/j.molstruc.2022.133870
  • N.A. Alshaye and M.A. Ibrahim, “4-Amino-3-Formylcoumarin as Building Block for Construction of Novel Heteroannulated Coumarins: Synthesis, Characterization and Antimicrobial Evaluation,” Heterocycles 104 (2022): 2179–94. doi:10.3987/COM-2214748
  • H. Kargar, M. Fallah-Mehrjardi, and K.S. Munawar, “Dioxovanadium(V) Complex Incorporating Tridentate ONO Donor Aminobenzohydrazone Ligand: Synthesis, Spectral Characterization and Application as a Homogeneous Lewis Acid Catalyst in the Friedländer Synthesis of Substituted Quinolines,” Polycyclic Aromatic Compounds 42, no. 9 (2022): 6485–500. doi:10.1080/10406638.2021.1984258
  • J.C. Gould and J.M. Bowie, “The Determination of Bacterial Sensitivity to Antibiotics,” Edinburgh Medical Journal 59 (1952): 178–99.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.