66
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, Anti-Proliferative Activity, DFT and Docking Studies of Some Novel Chloroquinoline-Based Heterocycles

, , &
Received 28 Jun 2023, Accepted 10 Oct 2023, Published online: 26 Oct 2023

References

  • P. Panda and S. Chakroborty, “Navigating the Synthesis of Quinoline Hybrid Molecules as Promising Anticancer Agents,” ChemistrySelect 5, no. 33 (2020): 10187–10199. doi:10.1002/slct.202002790
  • H. Brown, “WHO Puts Cancer on Global Health Agenda,” The Lancet. Oncology 5, no. 11 (2004): 644. doi:10.1016/s1470-2045(04)01620-1
  • R. Musiol, “An Overview of Quinoline as a Privileged Scaffold in Cancer Drug Discovery,” Expert Opinion on Drug Discovery 12, no. 6 (2017): 583–597. doi:10.1080/17460441.2017.1319357
  • H. Mohamed, M. Abdel-Latif, and S. Ahmed, “Synthesis, Characterization, and DFT Calculations of Quinoline and Quinazoline Derivatives,” Russian Journal of Organic Chemistry 56, no. 9 (2020): 1660–1668. doi:10.1134/S1070428020090250
  • A. Aboelnaga, E. Mansour, A.M. Fahim, and G.H. Elsayed, “Synthesis, Anti-Proliferative Activity, Gene Expression, Docking and DFT Investigation of Novel Pyrazol-1-yl-Thiazol-4 (5H)-One Derivatives,” Journal of Molecular Structure 1251 (2022): 131945. doi:10.1016/j.molstruc.2021.131945
  • M. Bingul, O. Tan, C.R. Gardner, S.K. Sutton, G.M. Arndt, G.M. Marshall, B.B. Cheung, N. Kumar, and D. S. C. Black, “Synthesis, Characterization and Anti-Cancer Activity of Hydrazide Derivatives Incorporating a Quinoline Moiety,” Molecules (Basel, Switzerland) 21, no. 7 (2016): 916. doi:10.3390/molecules21070916
  • S. Jain, V. Chandra, P. Kumar Jain, K. Pathak, D. Pathak, and A. Vaidya, “Comprehensive Review on Current Developments of Quinoline-Based Anticancer Agents,” Arabian Journal of Chemistry 12, no. 8 (2019): 4920–4946. doi:10.1016/j.arabjc.2016.10.009
  • J. Ramírez-Prada, et al. “Synthesis of Novel Quinoline-Based 4,5-Dihydro-1H-Pyrazoles as Potential Anticancer, Antifungal, Antibacterial and Antiprotozoal Agents,” European Journal of Medicinal Chemistry 131 (2017): 237–254. doi:10.1016/j.ejmech.2017.03.016
  • A. Dorababu, “Recent Update on Antibacterial and Antifungal Activity of Quinoline Scaffolds,” Archiv der Pharmazie 354, no. 3 (2021): E 2000232. doi:10.1002/ardp.202000232
  • L. Senerovic, et al. “Quinolines and Quinolones as Antibacterial, Antifungal, Anti-Virulence, Antiviral and Anti-Parasitic Agents,” in Advances in Microbiology, Infectious Diseases and Public Health, edited by G. Donelli, vol. 14 (Cham, Switzerland: Springer, 2020), 37–69.
  • K. Douadi, S. Chafaa, T. Douadi, M. Al-Noaimi, and I. Kaabi, “Azoimine Quinoline Derivatives: Synthesis, Classical and Electrochemical Evaluation of Antioxidant, Anti-Inflammatory, Antimicrobial Activities and the DNA/BSA Binding,” Journal of Molecular Structure 1217 (2020): 128305. doi:10.1016/j.molstruc.2020.128305
  • B.S. Matada, R. Pattanashettar, and N.G. Yernale, “A Comprehensive Review on the Biological Interest of Quinoline and Its Derivatives,” Bioorganic & Medicinal Chemistry 32 (2021): 115973. doi:10.1016/j.bmc.2020.115973
  • D. Insuasty, O. Vidal, A. Bernal, E. Marquez, J. Guzman, B. Insuasty, J. Quiroga, L. Svetaz, S. Zacchino, G. Puerto, et al. “Antimicrobial Activity of Quinoline-Based Hydroxyimidazolium Hybrids,” Antibiotics 8, no. 4 (2019): 239. doi:10.3390/antibiotics8040239
  • J. Zhang, S. Wang, Y. Ba, and Z. Xu, “1,2,4-Triazole-Quinoline/Quinolone Hybrids as Potential Anti-Bacterial Agents,” European Journal of Medicinal Chemistry 174 (2019): 1–8. doi:10.1016/j.ejmech.2019.04.033
  • H.-G. Fu, Z.-W. Li, X.-X. Hu, S.-Y. Si, X.-F. You, S. Tang, Y.-X. Wang, and D.-Q. Song, “Synthesis and Biological Evaluation of Quinoline Derivatives as a Novel Class of Broad-Spectrum Antibacterial Agents,” Molecules (Basel, Switzerland) 24, no. 3 (2019): 548. doi:10.3390/molecules24030548
  • B. Sureshkumar, Y.S. Mary, C.Y. Panicker, S. Suma, S. Armaković, S.J. Armaković, C. Van Alsenoy, and B. Narayana, “Quinoline Derivatives as Possible Lead Compounds for Anti-Malarial Drugs: Spectroscopic, DFT and MD Study,” Arabian Journal of Chemistry 13, no. 1 (2020): 632–648. doi:10.1016/j.arabjc.2017.07.006
  • A. Aboelnaga and T.H. EL-Sayed, “Click Synthesis of New 7-Chloroquinoline Derivatives by Using Ultrasound Irradiation and Evaluation of Their Biological Activity,” Green Chemistry Letters and Reviews 11, no. 3 (2018): 254–263. doi:10.1080/17518253.2018.1473505
  • H.-T. Li and X. Zhu, “Quinoline-Based Compounds with Potential Activity against Drugresistant Cancers,” Current Topics in Medicinal Chemistry 21, no. 5 (2021): 426–437. doi:10.2174/1568026620666200618113957
  • R.-J. Man, N. Jeelani, C. Zhou, and Y.-S. Yang, “Recent Progress in the Development of Quinoline Derivatives for the Exploitation of Anti-Cancer Agents,” Anti-Cancer Agents in Medicinal Chemistry 21, no. 7 (2021): 825–838. doi:10.2174/1871520620666200516150345
  • B.S. Mathada, “The Versatile Quinoline and Its Derivatives as Anti-Cancer Agents: An Overview,” Polycyclic Aromatic Compounds 43, no. 5 (2023): 4333–4345. doi:10.1080/10406638.2022.2089177
  • P.P. Jain, M.S. Degani, A. Raju, A. Anantram, M. Seervi, S. Sathaye, M. Ray, and M.G.R. Rajan, “Identification of a Novel Class of Quinoline–Oxadiazole Hybrids as Anti-Tuberculosis Agents,” Bioorganic & Medicinal Chemistry Letters 26, no. 2 (2016): 645–649. doi:10.1016/j.bmcl.2015.11.057
  • J. Casal and S. Asís, “Natural and Synthetic Quinoline Derivatives as Anti-Tuberculosis Agents,” J Austin Tuberc. Res. Treat 2, no. 1 (2017): 1007–1010.
  • K. Murugan, et al. “Synthesis of New Series of Quinoline Derivatives with Insecticidal Effects on Larval Vectors of Malaria and Dengue Diseases,” Scientific Reports 12, no. 1 (2022): 4765.
  • D. Singh, V. Kumar, C.C. Malakar, and V. Singh, “Structural Diversity Attributed by Aza-Diels-Alder Reaction in Synthesis of Diverse Quinoline Scaffolds,” Current Organic Chemistry 23, no. 8 (2019): 920–958. doi:10.2174/1385272823666190423140805
  • V. Kumar, S. Chaudhary, M. Mathur, A.K. Swami, C.C. Malakar, and V. Singh, “A Tandem Approach towards Diastereoselective Synthesis of Quinoline C‐3 Tethered γ‐Lactones,” ChemistrySelect 3, no. 2 (2018): 399–404. doi:10.1002/slct.201702923
  • R. Kaur and K. Kumar, “Synthetic and Medicinal Perspective of Quinolines as Antiviral Agents,” European Journal of Medicinal Chemistry 215 (2021): 113220. doi:10.1016/j.ejmech.2021.113220
  • X.-L. Zhang, Z.-M. Li, J.-T. Ye, J. Lu, L.L. Ye, C.-X. Zhang, P.-Q. Liu, and D.D. Duan, “Pharmacological and Cardiovascular Perspectives on the Treatment of COVID-19 with Chloroquine Derivatives,” Acta Pharmacologica Sinica 41, no. 11 (2020): 1377–1386. doi:10.1038/s41401-020-00519-x
  • W. Zhou, H. Wang, Y. Yang, Z.-S. Chen, C. Zou, and J. Zhang, “Chloroquine against Malaria, Cancers and Viral Diseases,” Drug Discovery Today 25, no. 11 (2020): 2012–2022. doi:10.1016/j.drudis.2020.09.010
  • M.A.A. Al-Bari, “Chloroquine Analogues in Drug Discovery: New Directions of Uses, Mechanisms of Actions and Toxic Manifestations from Malaria to Multifarious Diseases,” The Journal of Antimicrobial Chemotherapy 70, no. 6 (2015): 1608–1621. doi:10.1093/jac/dkv018
  • O.C. Odhiambo, H.N. Wamakima, G.N. Magoma, P.G. Kirira, B.J. Malala, F.T. Kimani, and F.W. Muregi, “Efficacy and Safety Evaluation of a Novel Trioxaquine in the Management of Cerebral Malaria in a Mouse Model,” Malaria Journal 16, no. 1 (2017): 268. doi:10.1186/s12936-017-1917-6
  • C.O. Onyango, Evaluation of Efficacy and Pharmacokinetic Profile of a Novel Trioxaquine in Management of Cerebral Malaria in Mice (JKUAT, Kenya, 2018).
  • M.G. Abouelenein, A.E.A. Ismail, A. Aboelnaga, M.A. Tantawy, N.M.A. El-Ebiary, and S.A. El-Assaly, “Synthesis, DFT Calculations, In Silico Studies, and Biological Evaluation of Pyrano [2,3-c] Pyrazole and Pyrazolo [4′,3′:5,6] Pyrano [2,3‐d] Pyrimidine Derivatives,” Journal of Molecular Structure 1275 (2023): 134587. doi:10.1016/j.molstruc.2022.134587
  • M.F. Ismail, A.F. Aly, S.S. Abdel-Wahab, and A.A. El-Sayed, “Synthesis, Characterization and Insecticidal Activity against Cotton Leaf Worm of New Heterocyclics Which Scaffold on Hydrazide-Hydrazone Derivative,” Polycyclic Aromatic Compounds 43, no. 2 (2023): 1288–1308. doi:10.1080/10406638.2022.2026990
  • N.A. Hamed, M.I. Marzouk, M.F. Ismail, and M.H. Hekal, “N′-(1-([1,1′-Biphenyl]-4-yl) Ethylidene)-2-Cyanoacetohydrazide as Scaffold for the Synthesis of Diverse Heterocyclic Compounds as Prospective Antitumor and Antimicrobial Activities,” Synthetic Communications 49, no. 21 (2019): 3017–3029. doi:10.1080/00397911.2019.1655578
  • G.A. Elsayed, S.A. Omara, and R.M. Kamel, “Utility of N′‐((2‐Chloroquinolin‐3‐yl) Methylene)‐2‐Cyanoacetohydrazide as a Source of Biologically Active Novel Heterocycles,” Journal of Heterocyclic Chemistry 54, no. 6 (2017): 3427–3433. doi:10.1002/jhet.2965
  • M.F. Ismail, A.I. Hashem, R.A. Sleem, and A.I. Hassaballah, “Utility of 5,5′‐Methylenebis (2‐Hydroxybenzaldehyde)–Cyanoacetohydrazide Hybrid as Scaffold for the Synthesis of Bis‐Heterocyclic Moieties and Study of Their Insecticidal Activity,” ChemistrySelect 8, no. 9 (2023): e202204946. doi:10.1002/slct.202204946
  • A.M.M. Mohamed, M.F. Ismail, H.M.F. Madkour, A.F. Aly, and M.S. Salem, “Straightforward Synthesis of 2-Chloro-N-(5-(Cyanomethyl)-1,3,4-Thiadiazol-2-yl) Benzamide as a Precursor for Synthesis of Novel Heterocyclic Compounds with Insecticidal Activity,” Synthetic Communications 50, no. 22 (2020): 3424–3442. doi:10.1080/00397911.2020.1802652
  • M.F. Ismail and A.A. El-Sayed, “Synthesis and In-Vitro Antioxidant and Antitumor Evaluation of Novel Pyrazole-Based Heterocycles,” Journal of the Iranian Chemical Society 16, no. 5 (2019): 921–937. doi:10.1007/s13738-018-1566-x
  • M.F. Ismail and G.A. Elsayed, “Dodecanoyl Isothiocyanate and N′-(2-Cyanoacetyl) Dodecanehydrazide as Precursors for the Synthesis of Different Heterocyclic Compounds with Interesting Antioxidant and Antitumor Activity,” Synthetic Communications 48, no. 8 (2018): 892–905. doi:10.1080/00397911.2018.1428345
  • M.R. Mahmoud, S.A. Shiba, A.K. El-Ziaty, F.S.M. Abu El-Azm, and M.F. Ismail, “Synthesis and Reactions of Novel 2,5-Disubstituted 1,3,4-Thiadiazoles,” Synthetic Communications 44, no. 8 (2014): 1094–1102. doi:10.1080/00397911.2013.846381
  • M.R. Mahmoud, A.K. El-Ziaty, F.S.M. Abu El-Azm, M.F. Ismail, and S.A. Shiba, “Utility of Cyano-N-(2-Oxo-1,2-Dihydroindol-3-Ylidene) Acetohydrazide in the Synthesis of Novel Heterocycles,” Journal of Chemical Research 37, no. 2 (2013): 80–85. doi:10.3184/174751912X13567100793191
  • A. Aboelnaga, S. Soror, E. Nassar, S. Elabbady, and A.M. Fahim, “Novel Bis Pyrimidine-Pyrazolone and Pyridinyl-4,5-Dihydropyrimido [2,1[1]-c][1, 2, 4] Triazepine Utilized Ultrasonic Energy, Anti-Proliferative Activity, Docking Simulation, and Theoretical Investigations,” Journal of Molecular Structure 1294 (2023): 136517. doi:10.1016/j.molstruc.2023.136517
  • E. Mansour, A. Aboelnaga, E.M. Nassar, and S.I. Elewa, “A New Series of Thiazolyl Pyrazoline Derivatives Linked to Benzo [1,3] Dioxole Moiety: Synthesis and Evaluation of Antimicrobial and Anti-Proliferative Activities,” Synthetic Communications 50, no. 3 (2020): 368–379. doi:10.1080/00397911.2019.1695839
  • M.A.S. Gouda, M.A.I. Salem, M.I. Marzouk, N.F.H. Mahmoud, and M.F. Ismail, “Synthesis, Antioxidant and Antiproliferative Evaluation, Molecular Docking and DFT Studies of Some Novel Coumarin and Fused Coumarin Derivatives,” Chemistry & Biodiversity 20, no. 7 (2023): e202300706. doi:10.1002/cbdv.202300706
  • R. Ferrer, “Synthesis of [(7-Chloroquinolin-4-yl) Amino] Chalcones: Potential Antimalarial and Anticancer Agents,” Scientia Pharmaceutica 77, no. 4 (2009): 725–742. doi:10.3797/scipharm.0905-07
  • D. Chakravarty, A. Bose, and S. Bose, “Synthesis and Antitubercular Activity of Isonicotinoyl and Cyanoacetyl Hydrazones,” Journal of Pharmaceutical Sciences 53, no. 9 (1964): 1036–1039. doi:10.1002/jps.2600530911
  • G. Minotti, P. Menna, E. Salvatorelli, G. Cairo, and L. Gianni, “Anthracyclines: Molecular Advances and Pharmacologic Developments in Antitumor Activity and Cardiotoxicity,” Pharmacological Reviews 56, no. 2 (2004): 185–229. doi:10.1124/pr.56.2.6
  • G. Xiong, Z. Wu, J. Yi, L. Fu, Z. Yang, C. Hsieh, M. Yin, X. Zeng, C. Wu, A. Lu, et al. “ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties,” Nucleic Acids Research 49, NO. W1 (2021): W5–W14. doi:10.1093/nar/gkab255
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 23, no. 1–3 (1997): 3–25. doi:10.1016/S0169-409X(96)00423-1
  • J.D. Hughes, J. Blagg, D.A. Price, S. Bailey, G.A. Decrescenzo, R.V. Devraj, E. Ellsworth, Y.M. Fobian, M.E. Gibbs, R.W. Gilles, et al. “Physiochemical Drug Properties Associated with In Vivo Toxicological Outcomes,” Bioorganic & Medicinal Chemistry Letters 18, no. 17 (2008): 4872–4875. doi:10.1016/j.bmcl.2008.07.071
  • G.R. Bickerton, G.V. Paolini, J. Besnard, S. Muresan, and A.L. Hopkins, “Quantifying the Chemical Beauty of Drugs,” Nature Chemistry 4, no. 2 (2012): 90–98. doi:10.1038/nchem.1243
  • A. McCormick, H. Swaisland, V.P. Reddy, M. Learoyd, and G. Scarfe, “In Vitro Evaluation of the Inhibition and Induction Potential of Olaparib, a Potent Poly (ADP-Ribose) Polymerase Inhibitor, on Cytochrome P450,” Xenobiotica; the Fate of Foreign Compounds in Biological Systems 48, no. 6 (2018): 555–564. doi:10.1080/00498254.2017.1346332
  • A. Daina, O. Michielin, and V. Zoete, “SwissTargetPrediction: Updated Data and New Features for Efficient Prediction of Protein Targets of Small Molecules,” Nucleic Acids Research 47, No. W1 (2019): W357–W364. doi:10.1093/nar/gkz382
  • M. Fernandez-Gallardo, R. González-Ramírez, A. Sandoval, R. Felix, and E. Monjaraz, “Adenosine Stimulate Proliferation and Migration in Triple Negative Breast Cancer Cells,” PLoS One 11, no. 12 (2016): e0167445. doi:10.1371/journal.pone.0167445
  • Q. Wei, S. Costanzi, Q.-Z. Liu, Z.-G. Gao, and K.A. Jacobson, “Activation of the P2Y1 Receptor Induces Apoptosis and Inhibits Proliferation of Prostate Cancer Cells,” Biochemical Pharmacology 82, no. 4 (2011): 418–425. doi:10.1016/j.bcp.2011.05.013
  • D.-F. Ma, T. Kondo, T. Nakazawa, D.-F. Niu, K. Mochizuki, T. Kawasaki, T. Yamane, and R. Katoh, “Hypoxia-Inducible Adenosine A2B Receptor Modulates Proliferation of Colon Carcinoma Cells,” Human Pathology 41, no. 11 (2010): 1550–1557. doi:10.1016/j.humpath.2010.04.008
  • H.-J. Xiang, Z.-C. Liu, D.-S. Wang, Y. Chen, Y.-L. Yang, and K.-F. Dou, “Adenosine A2b Receptor is Highly Expressed in Human Hepatocellular Carcinoma,” Hepatology Research: The Official Journal of the Japan Society of Hepatology 36, no. 1 (2006): 56–60. doi:10.1016/j.hepres.2006.06.008
  • D. Mittal, D. Sinha, D. Barkauskas, A. Young, M. Kalimutho, K. Stannard, F. Caramia, B. Haibe-Kains, J. Stagg, K.K. Khanna, et al. “Adenosine 2B Receptor Expression on Cancer Cells Promotes Metastasis,” Cancer Research 76, no. 15 (2016): 4372–4382. doi:10.1158/0008-5472.CAN-16-0544
  • C. Cekic and J. Linden, “Purinergic Regulation of the Immune System,” Nature Reviews. Immunology 16, no. 3 (2016): 177–192. doi:10.1038/nri.2016.4
  • Q. Wei, S. Costanzi, R. Balasubramanian, Z.-G. Gao, and K.A. Jacobson, “A 2B Adenosine Receptor Blockade Inhibits Growth of Prostate Cancer Cells,” Purinergic Signalling 9, no. 2 (2013): 271–280. doi:10.1007/s11302-012-9350-3
  • E.A. Vecchio, C.Y.R. Tan, K.J. Gregory, A. Christopoulos, P.J. White, and L.T. May, “Ligand-Independent Adenosine A2B Receptor Constitutive Activity as a Promoter of Prostate Cancer Cell Proliferation,” The Journal of Pharmacology and Experimental Therapeutics 357, no. 1 (2016): 36–44. doi:10.1124/jpet.115.230003
  • J.T. Ortega, et al. “Unrevealing Sequence and Structural Features of Novel Coronavirus Using In Silico Approaches: The Main Protease as Molecular Target,” EXCLI Journal 19 (2020): 400.
  • C. Liu, Y. Ma, J. Zhao, R. Nussinov, Y.-C. Zhang, F. Cheng, and Z.-K. Zhang, “Computational Network Biology: Data, Models, and Applications,” Physics Reports 846 (2020): 1–66. doi:10.1016/j.physrep.2019.12.004
  • F. Wohlrab, A.T. Jamieson, J. Hay, R. Mengel, and W. Guschlbauer, “The Effect of 2′-Fluoro-2′-Deoxycytidine on Herpes Virus Growth,” Biochimica et Biophysica Acta 824, no. 3 (1985): 233–242. doi:10.1016/0167-4781(85)90053-3
  • R. Sato, S. Vohra, S. Yamamoto, K. Suzuki, K. Pavel, S. Shulga, Y. Blume, and N. Kurita, “Specific Interactions between Tau Protein and Curcumin Derivatives: Molecular Docking and Ab Initio Molecular Orbital Simulations,” Journal of Molecular Graphics & Modelling 98 (2020): 107611. doi:10.1016/j.jmgm.2020.107611
  • D.F. Lewis, “Quantitative Structure–Activity Relationships (QSARs) within the Cytochrome P450 System: QSARs Describing Substrate Binding, Inhibition and Induction of P450s,” Inflammopharmacology 11, no. 1 (2003): 43–73. doi:10.1163/156856003321547112
  • S. Xavier, S. Periandy, and S. Ramalingam, “NBO, Conformational, NLO, HOMO–LUMO, NMR and Electronic Spectral Study on 1-Phenyl-1-Propanol by Quantum Computational Methods,” Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 137 (2015): 306–320. doi:10.1016/j.saa.2014.08.039
  • S. Soror, A.M. Fahim, S. Elabbady, E. Nassar, and A. Aboelnaga, “Synthesis, Antimicrobial Activities, Docking Studies and Computational Calculations of New Bis-1,4-Phenylene-1H-1,2,3-Triazole Derivatives Utilized Ultrasonic Energy,” Journal of Biomolecular Structure & Dynamics 40, no. 12 (2022): 5409–5426. doi:10.1080/07391102.2021.1875051
  • T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods 65, no. 1–2 (1983): 55–63. doi:10.1016/0022-1759(83)90303-4
  • F. Denizot and R. Lang, “Rapid Colorimetric Assay for Cell Growth and Survival: Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability,” Journal of Immunological Methods 89, no. 2 (1986): 271–277. doi:10.1016/0022-1759(86)90368-6
  • J. Eberhardt, D. Santos-Martins, A.F. Tillack, and S. Forli, “AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings,” Journal of Chemical Information and Modeling 61, no. 8 (2021): 3891–3898. doi:10.1021/acs.jcim.1c00203
  • L. Schrödinger and W. DeLano, PyMOL (2020). http://www.pymol.org/pymol.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson, “AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility,” Journal of Computational Chemistry 30, no. 16 (2009): 2785–2791. doi:10.1002/jcc.21256
  • N. O'Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, G.R. Hutchison, and B. Open, “An Open Chemical Toolbox,” Journal of Cheminformatics. 3, no. 1 (2011): 33.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al., Gaussian 09, Revision A.1, vol. 121 (Wallingford, CT: Gaussian Inc., 2009), 150–166.
  • R. Dennington, T. Keith, and J. Millam, GaussView, Version 5 (Shawnee Mission, KS: Semichem Inc., 2009), 8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.