136
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, Characterization, Theoretical Studies and in Vitro Embriyotoxic, Genotoxic and Anticancer Effects of Novel Phenyl(1,4,6-Triphenyl-2-Thioxo-1,2,3,4-Tetrahydropyrimidin-5-yl)Methanone

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 29 Mar 2023, Accepted 23 Oct 2023, Published online: 03 Nov 2023

References

  • V. Sharma, N. Chitranshi, and A. K. Agarwal, “Significance and Biological Importance of Pyrimidine in the Microbial World,” International Journal of Medicinal Chemistry 2014 (2014): 202784. doi:10.1155/2014/202784
  • M. G. Valverde, and T. Torroba, “Sulfur-Nitrogen Heterocycles,” Molecules 10, no. 2 (2005): 318–320. doi:10.3390/10020318
  • R. Dua, S. Shrivastava, S. K. Sonwane, and S. K. Srivastava, “Pharmacological Significance of Synthetic Heterocycles Scaffold: A Review,” Advances in Biological Regulation 5 (2011): 120–144.
  • T. Sasada, F. Kobayashi, N. Sakai, and T. Konakahara, “An Unprecedented Approach to 4, 5-Disubstituted Pyrimidine Derivatives by a ZnCl2-Catalyzed Three-Component Coupling Reaction,” Organic Letters 11, no. 10 (2009): 2161–2164. doi:10.1021/ol900382j
  • S. Yuan, B. Yu, and H. M. Liu, “New Drug Approvals for 2019: Synthesis and Clinical Applications,” European Journal of Medicinal Chemistry 205 (2020): 112667. doi:10.1016/j.ejmech.2020.112667
  • Andrew C. Flick, Carolyn A. Leverett, Hong X. Ding, Emma McInturff, Sarah J. Fink, Christopher J. Helal, Jacob C. DeForest, Peter D. Morse, Subham Mahapatra, Christopher J. O'Donnell, et al. “Synthetic Approaches to New Drugs Approved during 2018,” Journal of Medicinal Chemistry 63, no. 19 (2020): 10652–10704. doi:10.1021/acs.jmedchem.0c00345
  • J. Akhtar, A. A. Khan, Z. Ali, R. Haider, and M. S. Yar, “Structure-Activity Relationship (SAR) Study and Design Strategies of Nitrogen-Containing Heterocyclic Moieties for Their Anticancer Activities,” European Journal of Medicinal Chemistry 125 (2017): 143–189. doi:10.1016/j.ejmech.2016.09.023
  • J. Jampilek, “Heterocycles in Medicinal Chemistry,” Molecules (Basel, Switzerland) 24, no. 21 (2019): 3839. doi:10.3390/molecules24213839
  • F. Shi, J. Ding, S. Zhang, W. J. Hao, C. Cheng, and S. Tu, “Substrate-Controlled Chemoselective Synthesis and Potent Cytotoxic Activity of Novel 5,6,7-Triarylpyrido[2,3-d]Pyrimidin-4-One Derivatives,” Bioorganic & Medicinal Chemistry Letters 21, no. 5 (2011): 1554–1558. doi:10.1016/j.bmcl.2010.09.114
  • S. Kumar, and B. Narasimhan, “Therapeutic Potential of Heterocyclic Pyrimidine Scaffolds,” Chemistry Central Journal. 12 (2018): 1–29.
  • S. B. Patwari, M. S. Murali, and V. B. Jadhav, “Microwave-Assisted Synthesis, Antimicrobial, and Cytotoxicity Activity of N-Tert-Butyl-3-{[2-(Arylamino)Pyrimidin-4-yl]Amino} Benzenesulfonamides,” Journal of Heterocyclic Chemistry 55, no. 12 (2018): 2911–2918. doi:10.1002/jhet.3364
  • K. K. Chikhalia, M. J. Patel, and D. B. Vashi, “Design, Synthesis and Evaluation of Novel Quinolinyl Chalcones as Antibacterial Agentsi,” Arkivoc 2008, no. 13 (2008): 189–197. doi:10.3998/ark.5550190.0009.d21
  • H. Zhang, R. F. Schinazi, and C. K. Chu, “Synthesis of Neplanocin F Analogues as Potential Antiviral Agents,” Bioorganic & Medicinal Chemistry 14, no. 24 (2006): 8314–8322. doi:10.1016/j.bmc.2006.09.007
  • S. A. Rahaman, Y. R. Pasad, P. Kumar, and B. Kumar, “Synthesis and anti-Histaminic Activity of Some Novel Pyrimidines,” Saudi Pharmaceutical Journal: SPJ: The Official Publication of the Saudi Pharmaceutical Society 17, no. 3 (2009): 255–258. doi:10.1016/j.jsps.2009.08.001
  • J. K. Gupta, P. K. Sharma, R. Dudhe, S. C. Mondal, A. Chaudhary, and P. K. Verma, “Synthesis and Analgesic Activity of Novel Pyrimidine Derivatives of Coumarin Moiety,” Acta Pol Pharm Drug Res 68 (2011): 785–793.
  • H. U. Rashid, M. A. U. Martines, A. P. Duarte, J. Jorge, S. Rasool, R. Muhammad, N. Ahmad, and M. N. Umar, “Research Developments in the Syntheses, anti-Inflammatory Activities and Structure–Activity Relationships of Pyrimidines,” RSC Advances 11, no. 11 (2021): 6060–6098. doi:10.1039/d0ra10657g
  • M. K. Sahoo, M. I. Lefterova, F. Yamamoto, J. J. Waggoner, S. Chou, S. P. Holmes, M. W. Anderson, and B. A. Pinsky, “Detection of Cytomegalovirus Drug Resistance Mutations by Next-Generation Sequencing,” Journal of Clinical Microbiology 51, no. 11 (2013): 3700–3710. doi:10.1128/JCM.01605-13
  • A. Faraji, T. O. Bakhshaiesh, Z. Hasanvand, R. Motahari, E. Nazeri, M. A. Boshagh, L. Firoozpour, H. Mehrabi, A. Khalaj, R. Esmaeili, et al. “Design, Synthesis and Evaluation of Novel Thienopyrimidine-Based Agents Bearing Diaryl Urea Functionality as Potential Inhibitors of Angiogenesis,” European Journal of Medicinal Chemistry 214 (2021): 113228. doi:10.1016/j.ejmech.2021.113228
  • A. Katritzky, C. Ramsden, A. Eric, and R. Taylor, “Comprehensive Heterocyclic Chemistry, III,” in Pyrimidines and Their Benzo Derivatives, ed. G. W. Rewcastle (Antwerp, Belgium: Elsevier Ltd., 2008), 117–272.
  • D. J. Brown, R. F. Evans, W. B. Cowden, and M. D. Fenn, Chemistry of Heterocyclic Compounds:The Pyrimidines (Canada: John Wiley & Sons, Inc., 1994).
  • P. Biginelli, “Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones,” Gazzetta Chimica Italiana 23 (1893): 360.
  • M. J. Frisch, G. W., Trucks H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, Gaussian 09, Revision D.01 (Wallingford, CT, USA: Gaussian, Inc., 2009).
  • S. Huo, and S. Wang, “The Effectiveness of Phonological-Based Instruction in English as a Foreign Language Students at Primary School Level: A,” Research Synthesis Educational Psychology 2 (2017).
  • I. V. Tetko, P. Bruneau, H. W. Mewes, D. C. Rohrer, and G. I. Poda, “Can we Estimate the Accuracy of ADME-Tox Predictions?,” Drug Discovery Today 11, no. 15–16 (2006): 700–707. doi:10.1016/j.drudis.2006.06.013
  • T. Hou, and J. Wang, “Structure-ADME Relationship: Still a Long Way to Go?”, Expert,” Expert Opinion on Drug Metabolism & Toxicology 4, no. 6 (2008): 759–770. doi:10.1517/17425255.4.6.759
  • L. Ferreira, R. dos Santos, G. Oliva, and A. Andricopulo, “Molecular Docking and Structure-Based Drug Design Strategies,” Computational Toxicology 20 (2015): 100157.
  • S. Kalyaanamoorthy, and Y-PP. Chen, “Structure-Based Drug Design to Augment Hit Discovery,” Drug Discovery Today 16, no. 17–18 (2011): 831–839. doi:10.1016/j.drudis.2011.07.006
  • A. Amberg, “Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays,” in Silico Methods, ed. , H.G. Vogel (Berlin Heidelberg, Berlin, Heidelberg: Springer, 2013), 1273–1296.
  • F. E. Agamah, G. K. Mazandu, R. Hassan, C. D. Bope, N. E. Thomford, A. Ghansah, and E. R. Chimusa, “Computational/in Silico Methods in Drug Target and Lead Prediction,” Briefings in Bioinformatics 21, no. 5 (2020): 1663–1675. doi:10.1093/bib/bbz103
  • I. Yusuf, U. Adamu, and U. Sani, “Computational Studies of a Series of 2-Substituted Phenyl-2-Oxo-, 2-Hydrox-yl- and 2-Acylloxyethylsulfonamides as Potent anti-Fungal Agents,” Heliyon 6 (2020): 1–6.
  • Thomas B. Knudsen, Douglas A. Keller, Miriam Sander, Edward W. Carney, Nancy G. Doerrer, David L. Eaton, Suzanne Compton Fitzpatrick, Kenneth L. Hastings, Donna L. Mendrick, Raymond R. Tice, et al. “FutureTox II: In Vitro Data and in Silico Models for Predictive Toxicology,” Toxicological Sciences : An Official Journal of the Society of Toxicology 143, no. 2 (2015): 256–267. doi:10.1093/toxsci/kfu234
  • E. Akbas, A. Ruzgar, B. C. Akbas, and E. Sahin, “Synthesis, Characterization and DFT Calculation of Some New Pyrimidine Derivatives and Theoretical Studies on the Corrosion Inhibition Performance,” Iranian Journal of Chemistry and Chemical Engineering 41 (2022): 5.
  • T. Jin, S. Zhang, and T. Li, p-Toluenesulfonic Acid-Catalyzed Efficient Synthesis of Dihydropyrimidines: Improved High Yielding Protocol for the Biginelli Reaction, Marcel Dekker, Inc., (2011) 1847–1851.
  • L. G. Itamar, et al. “Versatility of the Biginelli Reaction: Synthesis of New Biphenyl Dihydropyrimidin-2-Thiones Using Different Ketones as Building Blocks,” Tetrahedron Letters 59 (2018) : 2759–2762.
  • Adithya Adhikari, Balakrishna Kalluraya, K. V. Sujith, and Riaz Mahmood,   Gouthamchandra, “Synthesis, Characterization and Biological Evaluation of Dihydropyrimidine Derivatives,” Saudi Pharmaceutical Journal: The Official Publication of the Saudi Pharmaceutical Society 20, no. 1 (2012): 75–79. Volume doi:10.1016/j.jsps.2011.04.002
  • Gianluigi Lauro, Maria Strocchia, Stefania Terracciano, Ines Bruno, Katrin Fischer, Carlo Pergola, Oliver Werz, Raffaele Riccio, and Giuseppe Bifulco, “Exploration of the Dihydropyrimidine Scaffold for the Development of New Potential anti-Inflammatory Agents Blocking Prostaglandin E2 Synthase-1 Enzyme (mPGES-1),” European Journal of Medicinal Chemistry 80, no. 10 (2014): 407–415. doi:10.1016/j.ejmech.2014.04.061
  • Y. Zhu, Y. Pan, and S. Huang, “Trimethylsilyl Chloride: A Facile and Efficient Reagent for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones,” Synthetic Communications 34, no. 17 (2004): 3167–3174. doi:10.1081/SCC-200028607
  • Z. Shen, X. Xu, and S. Ji, “Brønsted Base-Catalyzed One-Pot Three-Component Biginelli-Type Reaction: An Efficient Synthesis of 4,5,6-Triaryl-3,4-Dihydropyrimidin- 2(1H)-One and Mechanistic Study,” The Journal of Organic Chemistry 75, no. 4 (2010): 1162–1167. doi:10.1021/jo902394y
  • C. T. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review. B, Condensed Matter 37, no. 2 (1988): 785–789. doi:10.1103/physrevb.37.785
  • Esvet Akbaş, Hamza Kahraman, and Begüm Çağla Akbaş, “Calculation of Usability as anti-Corrosion of Pyrimidine-Type Bases by Density Functional Theory,” International Journal of Chemistry and Technology 6, no. 1 (2022): 15–20. doi:10.32571/ijct.936862
  • E. Akbas, E. Yildiz, and A. Erdogan, “Synthesis, Characterization and Theoretical Studies of Novel Pyrimidine Derivatives as Potential Corrosion Inhibitors,” Journal of the Serbian Chemical Society 85, no. 4 (2020) : 481–492. doi:10.2298/JSC190326081A
  • K. Rasheeda, V. D. P. Alva, P. A. Krishnaprasad, and S. Samshuddin, “Pyrimidine Derivatives as Potential Corrosion Inhibitors for Steel in Acid Medium—an Overview,” International Journal of Corrosion and Scale Inhibition 7 (2018): 48.
  • H. Turkez, M. I. Yousef, E. Sönmez, B. Togar, F. Bakan, P. Sozio, and A. D. Stefano, “Evaluation of Cytotoxic, Oxidative Stress and Genotoxic Responses of Hydroxyapatite Nanoparticles on Human Blood Cells,” Journal of Applied Toxicology 34, no. 4 (2014): 373–379. doi:10.1002/jat.2958
  • M. E. Arslan, H. Türkez, and A. Mardinoğlu, “In Vitro Neuroprotective Effects of Farnesene Sesquiterpene on Alzheimer’s Disease Model of Differentiated Neuroblastoma Cell Line,” The International Journal of Neuroscience 131, no. 8 (2021): 745–754. doi:10.1080/00207454.2020.1754211
  • B. Emsen, A. Aslan, B. Togar, and H. Turkez, “In Vitro Antitumor Activities of the Lichen Compounds Olivetoric, Physodic and Psoromic Acid in Rat Neuron and Glioblastoma Cells,” Pharmaceutical Biology 54, no. 9 (2016): 1748–1762. doi:10.3109/13880209.2015.1126620
  • Taner Arabaci, Hasan Türkez, Cenk Fatih Çanakçi, and Mehmet Özgöz, “Özgöz, Assessment of Cytogenetic and Cytotoxic Effects of Chlorhexidine Digluconate on Cultured Human Lymphocytes,” Acta Odontologica Scandinavica 71, no. 5 (2013): 1255–1260. doi:10.3109/00016357.2012.757646
  • M. Fenech, “The Cytokinesis Blocks Micronucleus Technique. A Detailed Description on the Method and Its Application to Genotoxicity Studies in Human Population,” Mutation Research 285, no. 1 (1993): 35–44. doi:10.1016/0027-5107(93)90049-l
  • H. Turkez, I. Cacciatore, M. E. Arslan, E. Fornasari, L. Marinelli, A. Di Stefano, and A. Mardinoglu, “Histidyl-Proline Diketopiperazine Isomers as Multipotent anti-Alzheimer Drug Candidates,” Biomolecules 10, no. 5 (2020): 737. doi:10.3390/biom10050737
  • A. Daina, O. Michielin, and V. Zoete, “SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules,” Scientific Reports 7, no. 1 (2017): 42717. doi:10.1038/srep42717
  • C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney, “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings,” Advanced Drug Delivery Reviews 46, no. 1–3 (2001): 3–26. doi:10.1016/s0169-409x(00)00129-0
  • D. F. Veber, S. R. Johnson, H. Y. Cheng, B. R. Smith, K. W. Ward, and K. D. Kopple, “Molecular Properties That Influence the Oral Bioavailability of Drug Candidates,” Journal of Medicinal Chemistry 45, no. 12 (2002): 2615–2623. doi:10.1021/jm020017n
  • W. J. Egan, K. M. Merz, and J. J. Baldwin, “Prediction of Drug Absorption Using Multivariate Statistics,” Journal of Medicinal Chemistry 43, no. 21 (2000): 3867–3877. doi:10.1021/jm000292e
  • A. K. Ghose, V. N. Viswanadhan, and J. J. Wendoloski, “A Knowledge-Based Approach in Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative and Quantitative Characterization of Known Drug Databases,” Journal of Combinatorial Chemistry 1, no. 1 (1999): 55–68. doi:10.1021/cc9800071
  • I. Muegge, S. L. Heald, and D. Brittelli, “Simple Selection Criteria for Drug-like Chemical Matter,” Journal of Medicinal Chemistry 44, no. 12 (2001): 1841–1846. doi:10.1021/jm015507e
  • A. Daina and V. Zoete, “BOILED Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules,” Chemmedchem. 11, no. 11 (2016): 1117–1121. doi:10.1002/cmdc.201600182
  • P. Banerjee, A. O. Eckert, A. K. Schrey, and R. Preissner, “ProTox-II: A Webserver for the Prediction of Toxicity of Chemicals,” Nucleic Acid Res 46 (2018): 257–263.
  • L. Gossage, and T. Eisen, “Targeting Multiple Kinase Pathways: A Change in Paradigm,” Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 16, no. 7 (2010): 1973–1978. doi:10.1158/1078-0432.CCR-09-3182
  • D. S. Shewach, and R. D. Kuchta, “Introduction to Cancer Chemotherapeutics,” Chemical Reviews 109, no. 7 (2009): 2859–2861. doi:10.1021/cr900208x
  • A. M. S. El Newahie, Y. M. Nissan, N. S. M. Ismail, D. A. Abou El Ella, S. M. Khojah, and K. A. M. Abouzid, “Design and Synthesis of New Quinoxaline Derivatives as Anticancer Agents and Apoptotic Inducers,” Molecules (Basel, Switzerland) 24, no. 6 (2019): 1175. doi:10.3390/molecules24061175
  • M. S. Abdelbaset, GEDA. Abuo-Rahma, M. H. Abdelrahman, M. Ramadan, B. G. M. Youssif, S. N. A. Bukhari, M. F. A. Mohamed, and M. Abdel-Aziz, “Novel Pyrrol-2(3H)-Ones and Pyridazin-3(2H)-Ones Carrying Quinoline Scaffold as anti-Proliferative Tubulin Polymerization Inhibitors,” Bioorganic Chemistry 80 (2018): 151–163. doi:10.1016/j.bioorg.2018.06.003
  • Q. Wu, Z. Yang, Y. Nie, Y. Shi, and D. Fan, “Multi-Drug Resistance in Cancer Chemotherapeutics: Mechanisms and Lab Approaches,” Cancer Letters 347, no. 2 (2014): 159–166. doi:10.1016/j.canlet.2014.03.013
  • M. F. A. Mohamed, M. Sh, A. Shaykoon, M. H. Abdelrahman, B. E. M. Elsadek, A. S. Aboraia, and GEDAA. Abuo-Rahma, “Design, Synthesis, Docking Studies and Biological Evaluation of Novel Chalcone Derivatives as Potential Histone Deacetylase Inhibitors,” Bioorganic Chemistry 72 (2017): 32–41. doi:10.1016/j.bioorg.2017.03.005
  • T. J. Ritchie, S. J. F. Macdonald, S. Peace, S. D. Pickett, and C. N. Luscombe, “Increasing Small Molecule Drug Developability in Suboptimal Chemical Space,” MedChemComm 4, no. 4 (2013): 673. doi:10.1039/c3md00003f
  • G. Ottaviani, D. J. Gosling, C. Patissier, S. Rodde, L. Zhou, and B. Faller, “What is Modulating Solubility in Simulated Intestinal Fluids?,” European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences 41, no. 3-4 (2010): 452–457. doi:10.1016/j.ejps.2010.07.012
  • K. T. Savjani, A. K. Gajjar, and J. K. Savjani, “Drug Solubility: Importance and Enhancement Techniques,” ISRN Pharmaceutics 2012 (2012): 195727. doi:10.5402/2012/195727
  • J. S. Delaney, “ESOL: Estimating Aqueous Solubility Directly from Molecular Structure,” Journal of Chemical Information and Computer Sciences 44, no. 3 (2004): 1000–1005. doi:10.1021/ci034243x
  • J. Ali, P. Camilleri, M. B. Brown, A. J. Hutt, and S. B. Kirton, “Revisiting the General Solubility Equation: In Silico Prediction of Aqueous Solubility Incorporating the Effect of Topographical Polar Surface Area,” Journal of Chemical Information and Modeling 52, no. 2 (2012): 420–428. doi:10.1021/ci200387c
  • R. O. Potts, and R. H. Guy, “Predicting Skin Permeability,” Pharmaceutical Research 9, no. 5 (1992): 663–669. doi:10.1023/a:1015810312465
  • V. N. Toan, N. D. Thanh, and N. M. Tri, “1,3,4-Thiadiazoline Coumarin Hybrid Compounds Containing D-Glucose/D-Galactose Moieties: Synthesis and Evaluation of Their Antiproliferative Activity,” Arab J. Chem 4 (2021): 103053.
  • E. Spaczyńska, A. Mrozek-Wilczkiewicz, K. Malarz, J. Kos, T. Gonec, M. Oravec, R. Gawecki, A. Bak, J. Dohanosova, I. Kapustikova, et al. “Design and Synthesis of Anticancer 1-Hydroxynaphthalene-2-Carboxanilides with a p53 Independent Mechanism of Action,” Scientific Reports 9, no. 1 (2019): 6387. doi:10.1038/s41598-019-42595-y
  • S. Li, H. He, L. J. Parthiban, H. Yin, and A. T. M. Serajuddin, “IV-IVC Considerations in the Development of Immediate-Release Oral Dosage Form,” Journal of Pharmaceutical Sciences 94, no. 7 (2005): 1396–1417. doi:10.1002/jps.20378
  • J. Kelder, P. D. Grootenhuis, D. M. Bayada, L. P. Delbressine, and J. P. Ploemen, “Polar Molecular Surface as a Dominating Determinant for Oral Absorption and Brain Penetration of Drugs,” Pharmaceutical Research 16, no. 10 (1999): 1514–1519. doi:10.1023/a:1015040217741
  • K. Palm, K. Luthman, A. L. Unge, G. Strandlund, and P. Artursson, “Correlation of Drug Absorption with Molecular Surface Properties,” Journal of Pharmaceutical Sciences 85, no. 1 (1996): 32–39. doi:10.1021/js950285r
  • P. K. Pandey, A. K. Sharma, and U. Gupta, “Blood Brain Barrier: An Overview on Strategies in Drug Delivery, Realistic in Vitro Modeling and in Vivo Live Tracking,” Tissue Barriers 4 (2016): 1129476.
  • U. M. Zanger, and M. Schwab, “Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation,” Pharmacology & Therapeutics 138, no. 1 (2013): 103–141. doi:10.1016/j.pharmthera.2012.12.007
  • Y. Masubuchi, and T. Horie, “Toxicological Significance of Mechanism-Based Inactivation of Cytochrome p450 Enzymes by Drugs,” Critical Reviews in Toxicology 37, no. 5 (2007): 389–412. doi:10.1080/10408440701215233
  • T. Lj. Sestic, J. J. Ajdukovic, M. A. Marinovic, E. T. Petri, and M. P. Savi, “In Silico ADMET Analysis of the a-, B- and D-Modified Androstane Derivatives with Potential Anticancer Effects,” Steroids 189 (2023): 109147. doi:10.1016/j.steroids.2022.109147
  • J. Baell, and M. A. Walters, “Chemistry: Chemical Con Artists Foil Drug Discovery,” Nature 513, no. 7519 (2014): 481–483. doi:10.1038/513481a
  • J. B. Baell, and G. A. Holloway, “New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays,” Journal of Medicinal Chemistry 53, no. 7 (2010): 2719–2740. doi:10.1021/jm901137j
  • S. D. Nelson, “Metabolic Activation and Drug Toxicity,” Journal of Medicinal Chemistry 25, no. 7 (1982): 753–765. doi:10.1021/jm00349a001
  • A. S. Kalgutkar, I. Gardner, R. S. Obach, C. L. Shaffer, E. Callegari, K. R. Henne, A. E. Mutlib, D. K. Dalvie, J. S. Lee, Y. Nakai, et al. “A Comprehensive Listing of Bioactivation Pathways of Organic Functional Groups,” Current Drug Metabolism 6, no. 3 (2005): 161–225. doi:10.2174/1389200054021799
  • S. J. Teague, A. M. Davis, P. D. Leeson, and T. Oprea, “The Design of Leadlike Combinatorial Libraries,” Angewandte Chemie International Edition 38, no. 24 (1999): 3743–3748. doi:10.1002/(SICI)1521-3773(19991216)38:24<3743::AID-ANIE3743>3.0.CO;2-U

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.